▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Omnigenous Groups

Su Gao

College of Science University of North Texas

Caltech Logic Seminar February 1, 2021

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Results in this talk are joint work with Mahmood Etedadialiabadi, François Le Maître, and Julien Melleray. My research was supported by U.S. NSF grant DMS-1800323. Background and Definition

The Converse Problem

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Background and Definition

Urysohn Spaces and Vershik's Conjecture

The Converse Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hall's Group \mathbb{H}

The class of all finite groups is a Fraïssé class, with Fraïssé limit $\mathbb H.$

Theorem (Hall, 1959)

- 1. Every finite group can be embedded in \mathbb{H} .
- 2. Any two isomorphic finite subgroups of \mathbb{H} are conjugate in \mathbb{H} .
- 3. Ⅲ is the unique countable locally finite group up to isomorphism with properties 1 and 2.
- Every countable locally finite group can be embedded in ℍ, i.e., ℍ is a universal countable locally finite group.

Hall's Group \mathbb{H}

Fact

 $\mathbb H$ is the unique countable locally finite group with the property:

For any finite subgroup $F \leq \mathbb{H}$, finite group Γ , and isomorphic embedding $\varphi : F \to \Gamma$, there is a finite subgroup G with $F \leq G \leq \mathbb{H}$ and isomorphism $\gamma : G \cong \Gamma$ such that $\gamma \mid_F = \varphi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Omnigenous groups

Definition

A countable locally finite group H is omnigenous if

For any finite subgroup $F \leq H$, finite group Γ , and isomorphic embedding $\varphi : F \to \Gamma$, there is a finite subgroup G with $F \leq G \leq H$ and surjective homomorphism $\gamma : G \to \Gamma$ such that $\gamma \mid_{F} = \varphi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (EGLMM)

There are continuum many pairwise nonisomorphic countable universally locally finite groups that are omnigenous.

Urysohn Spaces \mathbb{U}_{Δ}

Definition

 Δ is a distance value set if it is a subset of $(0, +\infty)$ such that

$$\forall x, y \in \Delta \ \min(x + y, \sup(\Delta)) \in \Delta.$$

This is a particular case of Conant's distance monoids.

If Δ is a countable distance value set, the class of all finite Δ -metric spaces form a Fraïssé class, with Fraïssé limit \mathbb{U}_{Δ} . The isometry group of \mathbb{U}_{Δ} is denoted as $Iso(\mathbb{U}_{\Delta})$.

E.g., when $|\Delta| = 1$, $\mathbb{U}_{\Delta} = K_{\infty}$ and $\mathsf{lso}(\mathbb{U}_{\Delta}) = S_{\infty}$. When $\Delta = \{1, 2\}$, $\mathbb{U}_{\Delta} = R$ is the random graph and $\mathsf{lso}(\mathbb{U}_{\Delta}) = \mathsf{Aut}(R)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Theorem (EGLMM)

Let H be a countable omnigenous locally finite group. Then for any countable distance value set Δ , $lso(\mathbb{U}_{\Delta})$ contains H as a dense subgroup.

Corollary (Vershik's Conjecture, 2008)

Aut(R) and Iso(U) contain \mathbb{H} as a dense subgroup.

Lemma (Essentially Rosendal, 2011)

Let Δ be any countable distance value set. Let X be a finite Δ -metric space. Let $\Lambda \leq \Gamma$ be finite groups and $\pi : \Lambda \rightarrow Iso(X)$ be an isomorphic embedding. Then there is a finite Δ -metric space Y extending X and an isomorphic embedding $\pi' : \Gamma \rightarrow Iso(Y)$ such that for any $\gamma \in \Lambda$ and $x \in X$, $\pi'(\gamma)(x) = \pi(\gamma)(x)$.

Theorem (Solecki, 2009; Siniora-Solecki, 2020)

Let Δ be any distance value set and X be a finite Δ -metric space. Then there is a finite Δ -metric space Y extending X and a map ϕ such that

- (a) for any partial isometry p of X, $\phi(p) \in Iso(Y)$ extends p;
- (b) for any partial isometries p and q of X with rng(q) = dom(p), $\phi(p \circ q) = \phi(p) \circ \phi(q)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Converse Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Converse Problem

To characterize dense countable (locally finite) subgroups of $Iso(\mathbb{U}_{\Delta})$ for all countable distance value sets Δ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The MIF Properties

Definition

Let G be a group. Let F_n be the free group generated by variables x_1, \ldots, x_n . A nontrivial mixed identity in G is a word $w(x_1, \ldots, x_n) \in G * F_n \setminus G$ such that $w(g_1, \ldots, g_n) = 1$ for all $g_1, \ldots, g_n \in G$.

If there is no nontrivial mixed identity in G, we say G is mixed identity free (MIF).

E.g. in an abelian group G, $xyx^{-1}y^{-1}$ is a nontrivial mixed identity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (EGLMM)

For any countable distance value set Δ with $|\Delta| > 1$, any dense subgroup of Iso(\mathbb{U}_{Δ}) is MIF.

The theorem fails for $|\Delta| = 1$.

Theorem (Hull-Osin, 2016)

Let G be a countable dense subgroup of S_{∞} . Then exactly one of the following holds:

- (i) G contains an isomorphic copy of Alt(ℕ) as a normal subgroup;
- (ii) G is MIF.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

Let G be a locally finite group. We say that G is ∞ -MIF if for any

 $w_1(x_1,\ldots,x_n;g_1,\ldots,g_k), w_2(x_1,\ldots,x_n;g_1,\ldots,g_k), \cdots \in G*F_n \setminus G$

whenever there is a finite group Γ which is an overgroup of $\langle g_1, \ldots, g_k \rangle$ in which there are $\gamma_1, \ldots, \gamma_k \in \Gamma$ such that

$$w_i(\gamma_1,\ldots,\gamma_n;g_1,\ldots,g_n) \neq 1 \quad \forall i \geq 1,$$

there are $h_1, \ldots, h_n \in G$ such that

$$w_i(h_1,\ldots,h_n;g_1,\ldots,g_k) \neq 1 \quad \forall i \geq 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (EGLMM)

If G is a locally finite group, then G is ∞ -MIF iff G is omnigenous.