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Hall’s Group H

The class of all finite groups is a Fräıssé class, with Fräıssé limit H.

Theorem (Hall, 1959)

1. Every finite group can be embedded in H.

2. Any two isomorphic finite subgroups of H are conjugate in H.

3. H is the unique countable locally finite group up to
isomorphism with properties 1 and 2.

4. Every countable locally finite group can be embedded in H,
i.e., H is a universal countable locally finite group.
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Hall’s Group H

Fact

H is the unique countable locally finite group with the property:

For any finite subgroup F ≤ H, finite group Γ, and isomorphic
embedding ϕ : F → Γ, there is a finite subgroup G with
F ≤ G ≤ H and isomorphism γ : G ∼= Γ such that γ |F= ϕ.
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Omnigenous groups

Definition

A countable locally finite group H is omnigenous if

For any finite subgroup F ≤ H, finite group Γ, and isomorphic
embedding ϕ : F → Γ, there is a finite subgroup G with
F ≤ G ≤ H and surjective homomorphism γ : G → Γ such that
γ |F= ϕ.
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Theorem (EGLMM)

There are continuum many pairwise nonisomorphic countable
universally locally finite groups that are omnigenous.



Background and Definition Urysohn Spaces and Vershik’s Conjecture The Converse Problem

Urysohn Spaces U∆

Definition

∆ is a distance value set if it is a subset of (0,+∞) such that

∀x , y ∈ ∆ min(x + y , sup(∆)) ∈ ∆.

This is a particular case of Conant’s distance monoids.

If ∆ is a countable distance value set, the class of all finite
∆-metric spaces form a Fräıssé class, with Fräıssé limit U∆. The
isometry group of U∆ is denoted as Iso(U∆).

E.g., when |∆| = 1, U∆ = K∞ and Iso(U∆) = S∞. When
∆ = {1, 2}, U∆ = R is the random graph and Iso(U∆) = Aut(R).
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Theorem (EGLMM)

Let H be a countable omnigenous locally finite group. Then for
any countable distance value set ∆, Iso(U∆) contains H as a dense
subgroup.

Corollary (Vershik’s Conjecture, 2008)

Aut(R) and Iso(U) contain H as a dense subgroup.
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Lemma (Essentially Rosendal, 2011)

Let ∆ be any countable distance value set. Let X be a finite
∆-metric space. Let Λ ≤ Γ be finite groups and π : Λ→ Iso(X ) be
an isomorphic embedding. Then there is a finite ∆-metric space Y
extending X and an isomorphic embedding π′ : Γ→ Iso(Y ) such
that for any γ ∈ Λ and x ∈ X , π′(γ)(x) = π(γ)(x).
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Theorem (Solecki, 2009; Siniora-Solecki, 2020)

Let ∆ be any distance value set and X be a finite ∆-metric space.
Then there is a finite ∆-metric space Y extending X and a map φ
such that

(a) for any partial isometry p of X , φ(p) ∈ Iso(Y ) extends p;

(b) for any partial isometries p and q of X with rng(q) = dom(p),
φ(p ◦ q) = φ(p) ◦ φ(q).
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The Converse Problem

To characterize dense countable (locally finite) subgroups of
Iso(U∆) for all countable distance value sets ∆.
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The MIF Properties

Definition

Let G be a group. Let Fn be the free group generated by variables
x1, . . . , xn. A nontrivial mixed identity in G is a word
w(x1, . . . , xn) ∈ G ∗ Fn \ G such that w(g1, . . . , gn) = 1 for all
g1, . . . , gn ∈ G .

If there is no nontrivial mixed identity in G , we say G is mixed
identity free (MIF).

E.g. in an abelian group G , xyx−1y−1 is a nontrivial mixed identity.
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Theorem (EGLMM)

For any countable distance value set ∆ with |∆| > 1, any dense
subgroup of Iso(U∆) is MIF.

The theorem fails for |∆| = 1.

Theorem (Hull-Osin, 2016)

Let G be a countable dense subgroup of S∞. Then exactly one of
the following holds:

(i) G contains an isomorphic copy of Alt(N) as a normal
subgroup;

(ii) G is MIF.
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Definition

Let G be a locally finite group. We say that G is ∞-MIF if for any

w1(x1, . . . , xn; g1, . . . , gk),w2(x1, . . . , xn; g1, . . . , gk), · · · · · · ∈ G∗Fn\G

whenever there is a finite group Γ which is an overgroup of
〈g1, . . . , gk〉 in which there are γ1, . . . , γk ∈ Γ such that

wi (γ1, . . . , γn; g1, . . . , gn) 6= 1 ∀i ≥ 1,

there are h1, . . . , hn ∈ G such that

wi (h1, . . . , hn; g1, . . . , gk) 6= 1 ∀i ≥ 1.
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Theorem (EGLMM)

If G is a locally finite group, then G is ∞-MIF iff G is omnigenous.
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