The Wadge hierarchy on Zariski topologies

Joint work with C. Massaza

The Wadge hierarchy on Zariski topologies

Let X, Y be topological spaces, $A \subseteq X, B \subseteq Y$. Then A continuosly reduces — or Wadge reduces — to B iff

$$\exists f: X \to Y$$
 continuous s.t. $A = f^{-1}(B)$

This is denoted
$$A \leq_W B$$
.
If $A \leq_W B \leq_W A$, write $A \equiv_W B$.

The restriction of \leq_W to the subsets of a fixed topological space X is a preorder on $\mathcal{P}(X)$, the powerset of X. This restriction is sometimes denoted \leq_W^X , to point out the ambient space. The goal is to understand the structure of this preorder for various topological spaces.

Examples

(Wadge) The Wadge hierarchy on the Baire space (N^N, *T*).
 On the Borel sets it looks like

- Similar behaviours for Polish zero-dimensional spaces.
- (Schlicht) For positive-dimensional Polish spaces, there are antichains of size the continuum among the Borel sets.
- (Damiani, C.) Let τ be the compact complement topology on $\mathbb{N}^{\mathbb{N}}$. Then the longest antichains among sets in $\Sigma_2^0(\mathcal{T}) \cup \Pi_2^0(\mathcal{T})$ have size 4.

(1) マン・ (1) マン・ (1)

Let an infinite commutative field k be fixed.

Definition

- An affine variety in kⁿ is the set V(1) of the common zeros of a collection of polynomials I ⊆ k[X₁,...,X_n]. Equivalently, it is the set V(1) of the common zeros of an ideal of polynomials I ⊆ k[X₁,...,X_n]. Equivalently, it is the set V(f₁,...,f_r) of the common zeros of a finite list of polynomials f₁,..., f_r ∈ k[X₁,...,X_r].
- If \mathcal{V} is an affine variety, the Zariski topology on \mathcal{V} is the topology whose closed sets are the subsets of \mathcal{V} that are affine varieties themselves.

Problem: Understand the Wadge hierarchy on an affine variety ${\cal V}$ endowed with the Zariski topology.

・ロット (雪) (日) (日) (日)

Dimension

Definition

Let $\ensuremath{\mathcal{V}}$ be an affine variety.

- \mathcal{V} is *irreducible* if it is not the union of two proper subvarieties; otherwise it is *reducible*.
- The *irreducible components* of \mathcal{V} are the maximal irreducible subvarieties of \mathcal{V} .
- The *dimension* of an affine vatiery is the biggest *d* such that there exists a strictly increasing chain

$$C_0 \subset C_1 \subset \ldots \subset C_d$$

of non-empty irreducible subvarieties of \mathcal{V} .

It turns out that every affine variety has finitely many irreducible components. Therefore

$$\mathcal{V} = \mathcal{V}_1 \cup \ldots \mathcal{V}_s$$

where $\mathcal{V}_1, \ldots, \mathcal{V}_s$ are the irreducible components of \mathcal{V} . This is referred to as the (unique) *decomposition* of an affine variety in its irreducible components.

An affine variety of dimension 1 is called a *curve*.

An irreducible curve \mathcal{V} is just an infinite set endowed with the cofinite topology. Therefore, $f : \mathcal{V} \to \mathcal{V}$ is continuous if and only if either it is constant or it is finite-to-1.

Consequently, given $A, B \in \mathcal{P}(\mathcal{V}) \setminus \{\emptyset, \mathcal{V}\}$, one has $A \leq_W B$ if and only if:

- either A, B are both finite or both cofinite; or
- $\operatorname{card}(A) \leq \operatorname{card}(B)$ and $\operatorname{card}(\mathcal{V} \setminus A) \leq \operatorname{card}(\mathcal{V} \setminus B)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

The Wadge hierarchy on an irreducible curve

where, for $\kappa < \operatorname{card}(\mathcal{V})$:

•
$$\Gamma_{\kappa} = \{A \subseteq \mathcal{V} \mid \operatorname{card}(A) = \kappa\}$$

• $\check{\Gamma}_{\kappa} = \{A \subseteq \mathcal{V} \mid \operatorname{card}(\mathcal{V} \setminus A) = \kappa\}$
• $\Delta = \{A \subseteq \mathcal{V} \mid \operatorname{card}(A) = \operatorname{card}(\mathcal{V} \setminus A) = \operatorname{card}(\mathcal{V})\}$

If instead \mathcal{V} consists of an irreducible curves plus some isolated points, it is enough to add to the picture the degree $\Delta_1^0 \setminus \{\emptyset, \mathcal{V}\}$.

(4) E (4) (4) E (4)

For more complicated curves, the situation is less easy. On the one hand:

Theorem

If \mathcal{V} is any curve, then \leq_W is a wqo, actually a bqo, on $\mathcal{P}(\mathcal{V})$.

However:

Theorem

- For every *m* there exists a curve V such that ≤_W has antichains of size *m*
- If the curve \mathcal{V} has at least two irreducible components of cardinality $\geq \aleph_{\omega}$, then \leq_W has antichains of arbitrarily high finite cardinalities

Problem, for later: How many points does a curve have? Certainly $\leq \operatorname{card}(k)$.

・ロト ・回 ト ・ヨト ・ヨト - ヨ

Higher dimensions: the countable irreducible case

The Wadge hierarchy on a countable, irreducible, *n*-dimensional, affine variety is:

where

- D_i = true *i*-th differences of closed sets (sets in U_{i∈N} D_i are called constructible sets in topology)
- $\Delta = \{A \subseteq \mathcal{V} \mid for some subvariety \ \mathcal{W}, A \cap \mathcal{W} \text{ is dense and condense in } \mathcal{W} \}$

-

Definition

(Weihrauch) If X is a second countable, T₀ space, an admissible representation is a continuous ρ : Y ⊆ N^N → X such that for every continuous σ : Z ⊆ N^N → X there exists a continuous h : Z → Y such that σ = ρh.

• (Tang, Pequignot) If $A, B \subseteq X$, let

$$A \preceq^X_{TP} B \Leftrightarrow \rho^{-1}(A) \leq^Y_W \rho^{-1}(B)$$

for some/any admissible representation ρ .

Fact. For any second countable, T_0 space X, it holds that $\leq_W^X \subseteq \preceq_{TP}^X$.

Corollary

If \mathcal{V} is a countable, irreducible, affine variety, then $\leq_W^{\mathcal{V}} = \preceq_{TP}^{\mathcal{V}}$.

・ロット (雪) (日) (日) (日)

Question

Assume that k is uncountable and let \mathcal{V} be an infinite affine variety over k. What is $\operatorname{card}(\mathcal{V})$?

Example. If k is algebraically closed then $card(\mathcal{V}) = card(k)$.

Definition

Say that k is reasonable if every affine variety over k has the same cardinality as k.

Non-reasonable fields

Theorem

There are non-reasonable field.

In fact:

Theorem

For every infinite cardinals $\lambda < \kappa$ there exist a field K of cardinality κ and a curve over K of cardinality λ .

Proof.

The Wadge hierarchy on Zariski topologies

Transversal sets are a useful tool to construct continuous functions between affine varieties.

Definition

Let $\mathcal V$ be an infinite affine variety. A *transversal set* in $\mathcal V$ is a subset $\mathcal T\subseteq \mathcal V$ such that:

- $\operatorname{card}(\mathcal{T}) = \operatorname{card}(\mathcal{V})$
- $T \cap W$ is finite for every proper subvariety $W \subseteq V$

Suppose that

- T is a transversal set in some irreducible subvariety of $\mathcal V$
- $\mathcal W$ is an affine variety, and $f:\mathcal W\to\mathcal V$ is such that
 - the range of f is contained in T, and
 - f is finite-to-1

then f is continuous.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Adequate varieties and fields

Definition

- An infinite affine variety \mathcal{V} is *adequate* if all infinite irreducible subvarieties of \mathcal{V} have the same cardinality as \mathcal{V} and admit a transversal set
- The field k is *adequate* if every infinite affine variety over k is adequate.

Therefore every adequate field is reasonable.

Question

Is every reasonable field adequate?

Conjecture. Yes.

Examples of adequate fields are:

- countable fields: using reasonability+diagonalisation
- algebraically closed fields: using reasonability+diagonalisation
- \mathbb{R} : using some mild tools from differential topology

If ${\mathcal V}$ is an adequate, irreducible, $\mathit{n}\text{-dimensional}$ affine variety, then the Wadge hierarchy is:

where $\Delta = \{A \subseteq \mathcal{V} \mid \exists W \text{ irreducible subvariety of } \mathcal{V} \text{ s.t. both } \mathcal{W} \cap A \text{ and } \mathcal{W} \setminus A \text{ contain a transversal set of } \mathcal{W} \}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Wadge hierarchy in the dotted zone of the previous picture can be wild. For instance:

Theorem

- If $\mathcal V$ contains irreducible curve $\mathcal C_0,\mathcal C_1,\mathcal C_2,\ldots$ such that
 - each C_i is uncountable, and
 - $C_i \cap C_j \Leftrightarrow |i-j| \leq 1$

then \leq_{W} has antichains of arbitrarily high finite cardinalities

- $\bullet~$ If ${\mathcal V}$ contains irreducible curve ${\mathcal C}_0, {\mathcal C}_1, {\mathcal C}_2, \ldots$ such that
 - all \mathcal{C}_i have the same cardinality $\geq leph_\omega$, and
 - $C_i \cap C_j \Leftrightarrow |i-j| \leq 1$

then \leq_W has antichains of cardinality the continuum

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

1. The term *Zariski topology* also appears in a wider context. Let R be a commutative ring, and denote

Spec $R = \{ \mathfrak{p} \mid \mathfrak{p} \text{ is a prime ideal in } R \}$

The *Zariski topology* of *SpecR* is the topology generated by the closed sets

$$V(I) = \{ \mathfrak{p} \in SpecR \mid I \subseteq \mathfrak{p} \}$$

where I ranges over all ideals of R.

The set of closed points in SpecR is Max(SpecR), the set of the maximal ideals of R.

Given an affine variety \mathcal{V} , there is a homeomorphism $\mathcal{V} \to Max(Spec\mathcal{O}(\mathcal{V}))$. So, \mathcal{V} sits inside $Spec\mathcal{O}(\mathcal{V})$.

Question

How is the Wadge hierarchy on Spec O(V)? More generally, how is the Wadge hierarchy on SpecR?

Comment. Some insight to these questions, at least in the countable case, might come from the study of \leq_{TP} and some work in progress on the relationship between \leq_{W} and \leq_{TP} on Alexandrov spaces.

(1) マント (1) マント

2. The Zariski topology on affine varieties appears to be more a synthetic way to express things than a real interesting object of investigation in algebraic geometry. In other words, the category of affine varieties of real interest in algebraic geometry does not have the continuous functions $\mathcal{V} \rightarrow \mathcal{W}$ as morphisms, but the polynomial ones.

Definition. If $A, B \subseteq \mathcal{V}$, let

 $A \leq_{pol} B \Leftrightarrow \exists f : \mathcal{V} \to \mathcal{V} \text{ polynomial s.t. } A = f^{-1}(B)$

Notice that $\leq_{pol} \subseteq \leq_W$.

Question

How is the structure of \leq_{pol} ?

The Wadge hierarchy on Zariski topologies

・ロト・日下・日下・日下・日 うくの

 \leq_{pol} is already non-trivial in the case $\mathcal{V} = k$.

 \leq_{pol} is much more sensible than \leq_W to the algebraic properties of k.

An example. If k is an ordered field, then \leq_{pol}, \leq_W coincide on $\Pi_1^0(k) \setminus \{\emptyset, k\}$: given $A, B \subseteq k$ finite, non-empty, it holds that $A \equiv_p B$:

- $A \leq_{pol} \{0\}$: witnessed by $\prod_{a \in A} (X a)$ (holds for any k)
- $\{0\} \leq_{pol} A$: witnessed by $X^2 + \max A$

Question. Is this true for any non-algebraically closed field?

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Hence assume that k is algebraically closed.

Proposition. If $A, B \in \mathcal{P}(k) \setminus \{\emptyset, k\}$ and $A \leq_{pol} B$, then either A, B are both finite and $card(B) \leq card(A)$, or card(A) = card(B). **Pf.** Every non-constant polynomial is surjective, and every elements has finitely many preimages.

For $1 \le \kappa < \operatorname{card}(k)$ let $\mathcal{P}_{\kappa} = \{A \subseteq k \mid \operatorname{card}(A) = \kappa\}, \quad \check{\mathcal{P}}_{\kappa} = \{k \setminus A\}_{A \in \mathcal{P}_{\kappa}}$ Also, let $\mathcal{P}_{fin} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \mathcal{P}_{n}.$

It appears (unsurprisingly) that different tools are needed for the study of \leq_{pol} on \mathcal{P}_{fin} , and on \mathcal{P}_{κ} for infinite κ .

・ロト・日下・日下・日下・日 うくの

Proposition

- \mathcal{P}_1 and \mathcal{P}_2 each consist of a single class, say $[A_1], [A_2]$, respectively, and $[A_2] \leq_{pol} [A_1]$.
- Let n ≥ 3 and A, B ∈ P_n. If A ≤_{pol} B and f is a polynomial such that A = f⁻¹(B), then f is linear. Consequently A ≡_{pol} B.

Therefore, denote $\mathcal{Q}_n = \mathcal{P}_n / \equiv_{pol}$.

▲御▶ ▲臣▶ ▲臣▶ 二臣

Under some technical conditions, the space of orbits \mathcal{V}/\mathcal{G} of the action by isomorphisms of an algebraic group on an affine variety

$G \curvearrowright \mathcal{V}$

can be endowed with the structure of affine variety.

This is always possible when G is finite.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

 Sym_n acts on k^n by permutation. An orbit is a *n*-element sets, with some elements counted possibly several times.

The set of points with distinct coordinates is an open invariant set of k^n : it is the complement of the union of the hyperplanes $x_j - x_{j'} = 0$. Its quotient \mathcal{P}_n can be given the structure of a *n*-dimensional affine variety.

Each \equiv_{pol} -class is a 2-dimensional subvariety of \mathcal{P}_n .

The quotient $S_n = \mathcal{P}_n / \equiv_{pol}$ is a (n-2)-dimensional affine variety. The elements of S_n are the \equiv_{pol} -classes.

In other words, the restriction of \leq_{pol} to the \equiv_{pol} -classes of *n*-element subsets of k^n is a preorder defined on an affine variety.

This extra structure gives a framework to measure quantitatively the behaviour of \leq_{pol} , especially as many sets naturally defined using \leq_{pol} turn out to be subvarieties of some S_n .

(4回) (注) (注) (注) (注)

Example. Given m > n:

- **(**) How many classes of S_m reduce to a fixed class of S_n ?
- **2** How many classes of S_n a fixed class of S_m reduces to?

The set of classes in (1) is a subvariety of S_m .

The set of classes in (2) is a subvariety of S_n .

Therefore questions (1) and (2) can be made quantitatively more precise by asking what is the dimension of such sets.

Example (cont.)

- If there is no integer g such that $\frac{m}{n} \leq g \leq \frac{m-1}{n-1}$, then there are no $[A] \in S_m, [B] \in S_n$ such that $[A] \leq_{pol} [B]$. In particular, given any n, the least m such that there exists $[B] \in S_m$ with $[B] \leq_{pol} A$ is m = 2n 1.
- For any $[A] \in \mathcal{S}_m$, it holds that $\{[B] \mid [A] \leq_{pol} [B]\}$ is finite.
- For any $[B] \in S_{n-1}$, there exists a unique $[A] \in S_{2n-1}$ such that $[A] \leq_{pol} B$.
- The set of $[B] \in S_4$ that reduces to the unique element of S_2 is a subvariety of dimension 1.

The case of infinite and coinfinite sets

- There exist $2^{\operatorname{card}(k)}$ maximal elements
- If $k \subseteq \mathbb{C}$ has chains of order type ζ