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Basic definition

Let X ,Y be topological spaces, A ⊆ X ,B ⊆ Y .
Then A continuosly reduces — or Wadge reduces — to B iff

∃f : X → Y continuous s.t. A = f −1(B)

This is denoted A ≤W B.
If A ≤W B ≤W A, write A ≡W B.

The restriction of ≤W to the subsets of a fixed topological space X is a
preorder on P(X ), the powerset of X . This restriction is sometimes
denoted ≤X

W , to point out the ambient space.
The goal is to understand the structure of this preorder for various
topological spaces.
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Examples

(Wadge) The Wadge hierarchy on the Baire space (NN, T ).
On the Borel sets it looks like

· · · · · ·

cof = ω

cof > ω

· · ·

Similar behaviours for Polish zero-dimensional spaces.

(Schlicht) For positive-dimensional Polish spaces, there are
antichains of size the continuum among the Borel sets.

(Damiani, C.) Let τ be the compact complement topology on NN.
Then the longest antichains among sets in Σ0

2(T ) ∪ Π0
2(T ) have size

4.
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Affine varieties

Let an infinite commutative field k be fixed.

Definition

An affine variety in kn is the set V (I ) of the common zeros of a
collection of polynomials I ⊆ k[X1, . . . ,Xn].
Equivalently, it is the set V (I ) of the common zeros of an ideal of
polynomials I ⊆ k[X1, . . . ,Xn].
Equivalently, it is the set V (f1, . . . , fr ) of the common zeros of a
finite list of polynomials f1, . . . , fr ∈ k[X1, . . .Xr ].

If V is an affine variety, the Zariski topology on V is the topology
whose closed sets are the subsets of V that are affine varieties
themselves.

Problem: Understand the Wadge hierarchy on an affine variety V
endowed with the Zariski topology.
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Dimension

Definition

Let V be an affine variety.

V is irreducible if it is not the union of two proper subvarieties;
otherwise it is reducible.

The irreducible components of V are the maximal irreducible
subvarieties of V.

The dimension of an affine vatiery is the biggest d such that there
exists a strictly increasing chain

C0 ⊂ C1 ⊂ . . . ⊂ Cd

of non-empty irreducible subvarieties of V.

It turns out that every affine variety has finitely many irreducible
components. Therefore

V = V1 ∪ . . .Vs

where V1, . . . ,Vs are the irreducible components of V. This is referred to
as the (unique) decomposition of an affine variety in its irreducible
components.
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Baby case: curves

An affine variety of dimension 1 is called a curve.

An irreducible curve V is just an infinite set endowed with the cofinite
topology. Therefore, f : V → V is continuous if and only if either it is
constant or it is finite-to-1.
Consequently, given A,B ∈ P(V) \ {∅,V}, one has A ≤W B if and only
if:

either A,B are both finite or both cofinite; or

card(A) ≤ card(B) and card(V \ A) ≤ card(V \ B)
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The Wadge hierarchy on an irreducible curve

∅ Π0
1

Γℵ0 Γℵ1 Γℵ2

V Σ0
1 Γ̌ℵ0 Γ̌ℵ1 Γ̌ℵ2

. . .

. . .

∆

where, for κ < card(V):

Γκ = {A ⊆ V | card(A) = κ}
Γ̌κ = {A ⊆ V | card(V \ A) = κ}
∆ = {A ⊆ V | card(A) = card(V \ A) = card(V)}

If instead V consists of an irreducible curves plus some isolated points, it
is enough to add to the picture the degree ∆0

1 \ {∅,V}.
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More complex curves

For more complicated curves, the situation is less easy.
On the one hand:

Theorem

If V is any curve, then ≤W is a wqo, actually a bqo, on P(V).

However:

Theorem

For every m there exists a curve V such that ≤W has antichains of
size m

If the curve V has at least two irreducible components of cardinality
≥ ℵω, then ≤W has antichains of arbitrarily high finite cardinalities

Problem, for later: How many points does a curve have? Certainly
≤ card(k).
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Higher dimensions: the countable irreducible case

The Wadge hierarchy on a countable, irreducible, n-dimensional, affine
variety is:

∅ Π0
1 D2

. . . Dn

V Σ0
1 Ď2

. . . Ďn

∆

where

D i = true i-th differences of closed sets (sets in
⋃

i∈ND i are called
constructible sets in topology)

∆ = {A ⊆ V |
for some subvariety W,A ∩W is dense and condense in W}
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A corollary

Definition

(Weihrauch) If X is a second countable, T0 space, an admissible
representation is a continuous ρ : Y ⊆ NN → X such that for every
continuous σ : Z ⊆ NN → X there exists a continuous h : Z → Y
such that σ = ρh.

(Tang, Pequignot) If A,B ⊆ X , let

A �X
TP B ⇔ ρ−1(A) ≤Y

W ρ−1(B)

for some/any admissible representation ρ.

Fact. For any second countable, T0 space X , it holds that ≤X
W⊆�X

TP .

Corollary

If V is a countable, irreducible, affine variety, then ≤VW =�VTP .
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The uncountable case: how many points are there?

Question

Assume that k is uncountable and let V be an infinite affine variety over
k. What is card(V)?

Example. If k is algebraically closed then card(V) = card(k).

Definition

Say that k is reasonable if every affine variety over k has the same
cardinality as k .
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Non-reasonable fields

Theorem

There are non-reasonable field.

In fact:

Theorem

For every infinite cardinals λ < κ there exist a field K of cardinality κ
and a curve over K of cardinality λ.

Proof.
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Transversal sets

Transversal sets are a useful tool to construct continuous functions
between affine varieties.

Definition

Let V be an infinite affine variety. A transversal set in V is a subset
T ⊆ V such that:

card(T ) = card(V)

T ∩W is finite for every proper subvariety W ⊆ V

Suppose that

T is a transversal set in some irreducible subvariety of V
W is an affine variety, and f :W → V is such that

the range of f is contained in T , and
f is finite-to-1

then f is continuous.
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Adequate varieties and fields

Definition

An infinite affine variety V is adequate if all infinite irreducible
subvarieties of V have the same cardinality as V and admit a
transversal set

The field k is adequate if every infinite affine variety over k is
adequate.

Therefore every adequate field is reasonable.

Question

Is every reasonable field adequate?

Conjecture. Yes.

Examples of adequate fields are:

countable fields: using reasonability+diagonalisation

algebraically closed fields: using reasonability+diagonalisation

R: using some mild tools from differential topology
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Adequate, irreducible, affine varieties

If V is an adequate, irreducible, n-dimensional affine variety, then the
Wadge hierarchy is:

∅ Π0
1 D2

. . . Dn

V Σ0
1 Ď2

. . . Ďn

. . . ∆

where ∆ = {A ⊆ V | ∃W irreducible subvariety of V s.t. both W ∩
A and W \ A contain a transversal set of W}.

The Wadge hierarchy on Zariski topologies



The · · · zone

The Wadge hierarchy in the dotted zone of the previous picture can be
wild. For instance:

Theorem

If V contains irreducible curve C0, C1, C2, . . . such that

each Ci is uncountable, and
Ci ∩ Cj ⇔ |i − j | ≤ 1

then ≤W has antichains of arbitrarily high finite cardinalities

If V contains irreducible curve C0, C1, C2, . . . such that

all Ci have the same cardinality ≥ ℵω, and
Ci ∩ Cj ⇔ |i − j | ≤ 1

then ≤W has antichains of cardinality the continuum
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Some questions

1. The term Zariski topology also appears in a wider context.
Let R be a commutative ring, and denote

SpecR = {p | p is a prime ideal in R}

The Zariski topology of SpecR is the topology generated by the closed
sets

V (I ) = {p ∈ SpecR | I ⊆ p}

where I ranges over all ideals of R.

The set of closed points in SpecR is Max(SpecR), the set of the maximal
ideals of R.

Given an affine variety V, there is a homeomorphism
V → Max(SpecO(V)). So, V sits inside SpecO(V).
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Some questions

Question

How is the Wadge hierarchy on SpecO(V)?
More generally, how is the Wadge hierarchy on SpecR?

Comment. Some insight to these questions, at least in the countable
case, might come from the study of �TP and some work in progress on
the relationship between ≤W and �TP on Alexandrov spaces.
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Some questions

2. The Zariski topology on affine varieties appears to be more a synthetic
way to express things than a real interesting object of investigation in
algebraic geometry. In other words, the category of affine varieties of real
interest in algebraic geometry does not have the continuous functions
V → W as morphisms, but the polynomial ones.

Definition. If A,B ⊆ V, let

A ≤pol B ⇔ ∃f : V → V polynomial s.t. A = f −1(B)

Notice that ≤pol⊆≤W .

Question

How is the structure of ≤pol ?
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Polynomial reducibility on k

≤pol is already non-trivial in the case V = k .

≤pol is much more sensible than ≤W to the algebraic properties of k.

An example. If k is an ordered field, then ≤pol ,≤W coincide on
Π0

1(k) \ {∅, k}: given A,B ⊆ k finite, non-empty, it holds that A ≡p B:

A ≤pol {0}: witnessed by
∏

a∈A(X − a) (holds for any k)

{0} ≤pol A: witnessed by X 2 + maxA

Question. Is this true for any non-algebraically closed field?
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Polynomial reducibility on k algebraically closed

Hence assume that k is algebraically closed.

Proposition. If A,B ∈ P(k) \ {∅, k} and A ≤pol B, then either A,B are
both finite and card(B) ≤ card(A), or card(A) = card(B).
Pf. Every non-constant polynomial is surjective, and every elements has
finitely many preimages.

For 1 ≤ κ < card(k) let

Pκ = {A ⊆ k | card(A) = κ}, P̌κ = {k \ A}A∈Pκ

Also, let Pfin =
⋃

n∈N\{0} Pn.

It appears (unsurprisingly) that different tools are needed for the study of
≤pol on Pfin, and on Pκ for infinite κ.
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The case of finite sets

Proposition

P1 and P2 each consist of a single class, say [A1], [A2], respectively,
and [A2] ≤pol [A1].

Let n ≥ 3 and A,B ∈ Pn. If A ≤pol B and f is a polynomial such
that A = f −1(B), then f is linear. Consequently A ≡pol B.

Therefore, denote Qn = Pn
/
≡pol .
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Geometric representations

Under some technical conditions, the space of orbits V/G of the action
by isomorphisms of an algebraic group on an affine variety

G y V

can be endowed with the structure of affine variety.

This is always possible when G is finite.
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Geometric representations

Symn acts on kn by permutation. An orbit is a n-element sets, with some
elements counted possibly several times.
The set of points with distinct coordinates is an open invariant set of kn:
it is the complement of the union of the hyperplanes xj − xj′ = 0. Its
quotient Pn can be given the structure of a n-dimensional affine variety.

Each ≡pol -class is a 2-dimensional subvariety of Pn.
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Geometric representations

The quotient Sn = Pn
/
≡pol is a (n − 2)-dimensional affine variety.

The elements of Sn are the ≡pol -classes.

In other words, the restriction of ≤pol to the ≡pol -classes of n-element
subsets of kn is a preorder defined on an affine variety.
This extra structure gives a framework to measure quantitatively the
behaviour of ≤pol , especially as many sets naturally defined using ≤pol

turn out to be subvarieties of some Sn.
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Geometric representations

Example. Given m > n:

1 How many classes of Sm reduce to a fixed class of Sn?

2 How many classes of Sn a fixed class of Sm reduces to?

The set of classes in (1) is a subvariety of Sm.
The set of classes in (2) is a subvariety of Sn.
Therefore questions (1) and (2) can be made quantitatively more precise
by asking what is the dimension of such sets.
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Geometric representations

Example (cont.)

If there is no integer g such that m
n ≤ g ≤ m−1

n−1 , then there are no
[A] ∈ Sm, [B] ∈ Sn such that [A] ≤pol [B]. In particular, given any n,
the least m such that there exists [B] ∈ Sm with [B] ≤pol A is
m = 2n − 1.

For any [A] ∈ Sm, it holds that {[B] | [A] ≤pol [B]} is finite.

For any [B] ∈ Sn−1, there exists a unique [A] ∈ S2n−1 such that
[A] ≤pol B.

The set of [B] ∈ S4 that reduces to the unique element of S2 is a
subvariety of dimension 1.
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The case of infinite and coinfinite sets

There exist 2card(k) maximal elements

If k ⊆ C has chains of order type ζ
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