A dichotomy for countable unions of smooth Borel equivalence relations

Noé de Rancourt¹ Joint work with Benjamin D. Miller²

 1 Charles University, Prague 2 Kurt Gödel Research Center, University of Vienna

Caltech logic seminar

April 26, 2021

Definition

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

• A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$.

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

• A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.

Definition

- A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.
- A embedding is a continuous reduction.

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

- A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.
- A embedding is a continuous reduction.

Definition

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

- A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.
- A embedding is a continuous reduction.

Definition

Let E and F be two equivalence relations on Polish spaces X and Y, respectively.

• We say that E Borel reduces to F, denoted by $E \leq_B F$, if there is a Borel reduction from E to F.

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

- A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.
- A embedding is a continuous reduction.

Definition

- We say that E Borel reduces to F, denoted by $E \leq_B F$, if there is a Borel reduction from E to F.
- We write $E \equiv_B F$ to say that $E \leqslant_B F$ and $F \leqslant_B E$,

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

- A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.
- A embedding is a continuous reduction.

Definition

- We say that E Borel reduces to F, denoted by $E \leq_B F$, if there is a Borel reduction from E to F.
- We write $E \equiv_B F$ to say that $E \leqslant_B F$ and $F \leqslant_B E$,and $E <_B F$ to say that $E \leqslant_B F$ and $F \nleq_B E$.

Definition

Let E and F be two equivalence relations on sets X and Y, respectively.

- A mapping $f: X \to Y$ is a reduction from E to F if it induces an injection $X/E \to Y/F$. Equivalentely, for all $x, x' \in X$, $x \in X' \Leftrightarrow f(x) \in F(x')$.
- A embedding is a continuous reduction.

Definition

- We say that E Borel reduces to F, denoted by $E \leq_B F$, if there is a Borel reduction from E to F.
- We write $E \equiv_B F$ to say that $E \leqslant_B F$ and $F \leqslant_B E$,and $E <_B F$ to say that $E \leqslant_B F$ and $F \nleq_B E$.
- We say that E continuously embeds into F, denoted by $E \sqsubseteq_c F$, if there is a continuous embedding from E to F.

Given a Polish space X, denote equality on X by Δ_X .

Given a Polish space X, denote equality on X by Δ_X .

Definition

A Borel equivalence relation on a Polish space is said to be:

Given a Polish space X, denote equality on X by Δ_X .

Definition

A Borel equivalence relation on a Polish space is said to be:

coutable if its classes are countable;

Given a Polish space X, denote equality on X by Δ_X .

Definition

A Borel equivalence relation on a Polish space is said to be:

- coutable if its classes are countable;
- smooth if it Borel reduces to equality on a Polish space;

Given a Polish space X, denote equality on X by Δ_X .

Definition

A Borel equivalence relation on a Polish space is said to be:

- coutable if its classes are countable;
- smooth if it Borel reduces to equality on a Polish space;
- essentially countable if it Borel reduces to a countable Borel equivalence relation on a Polish space.

Given a Polish space X, denote equality on X by Δ_X .

Definition

A Borel equivalence relation on a Polish space is said to be:

- coutable if its classes are countable;
- smooth if it Borel reduces to equality on a Polish space;
- essentially countable if it Borel reduces to a countable Borel equivalence relation on a Polish space.

An example of a countable, non-smooth Borel equivalence relation is the relation \mathbb{E}_0 on $2^{\mathbb{N}}$ given by $x \mathbb{E}_0 y$ iff x(n) = y(n) eventually.

Given a Polish space X, denote equality on X by Δ_X .

Definition

A Borel equivalence relation on a Polish space is said to be:

- coutable if its classes are countable;
- smooth if it Borel reduces to equality on a Polish space;
- essentially countable if it Borel reduces to a countable Borel equivalence relation on a Polish space.

An example of a countable, non-smooth Borel equivalence relation is the relation \mathbb{E}_0 on $2^{\mathbb{N}}$ given by $x \mathbb{E}_0 y$ iff x(n) = y(n) eventually.

We have the following initial segment of the hierarchy of Borel equivalence relations:

$$\Delta_1 <_B \Delta_2 <_B \ldots <_B \Delta_{\mathbb{N}} <_B \Delta_{\mathbb{R}} <_B \mathbb{E}_0,$$

which is exhaustive in the sense that every Borel equivalence relation is either bireducible with one of the elements of this initial segment, or is strictly greater than \mathbb{E}_0 .

Definition

Say that a Borel equivalence relation on a Polish space is hypersmooth if it can be written as a countable increasing union of smooth Borel equivalence relations.

Definition

Say that a Borel equivalence relation on a Polish space is hypersmooth if it can be written as a countable increasing union of smooth Borel equivalence relations.

The relation Δ_X for every X, and \mathbb{E}_0 , are hypersmooth.

Definition

Say that a Borel equivalence relation on a Polish space is hypersmooth if it can be written as a countable increasing union of smooth Borel equivalence relations.

The relation Δ_X for every X, and \mathbb{E}_0 , are hypersmooth. Another example is the equivalence relation \mathbb{E}_1 on $(2^{\mathbb{N}})^{\mathbb{N}}$ defined by $x \mathbb{E}_1 y$ iff x(n) = y(n) eventually.

Definition

Say that a Borel equivalence relation on a Polish space is hypersmooth if it can be written as a countable increasing union of smooth Borel equivalence relations.

The relation Δ_X for every X, and \mathbb{E}_0 , are hypersmooth. Another example is the equivalence relation \mathbb{E}_1 on $(2^{\mathbb{N}})^{\mathbb{N}}$ defined by $x \mathbb{E}_1 y$ iff x(n) = y(n) eventually.

It is easy to see that a Borel equivalence E is hypersmooth iff $E \leqslant_B \mathbb{E}_1$.

Definition

Say that a Borel equivalence relation on a Polish space is hypersmooth if it can be written as a countable increasing union of smooth Borel equivalence relations.

The relation Δ_X for every X, and \mathbb{E}_0 , are hypersmooth. Another example is the equivalence relation \mathbb{E}_1 on $(2^{\mathbb{N}})^{\mathbb{N}}$ defined by $x \mathbb{E}_1 y$ iff x(n) = y(n) eventually.

It is easy to see that a Borel equivalence E is hypersmooth iff $E \leq_B \mathbb{E}_1$.

Proposition (Folklore)

The relation \mathbb{E}_1 is not essentially countable.

Theorem (Kechris-Louveau)

Let E be a Borel hypersmooth equivalence relation on a Polish space. Then exactly one of the two following conditions holds:

Theorem (Kechris-Louveau)

Let E be a Borel hypersmooth equivalence relation on a Polish space. Then exactly one of the two following conditions holds:

• $E \leqslant_B \mathbb{E}_0$;

Theorem (Kechris-Louveau)

Let E be a Borel hypersmooth equivalence relation on a Polish space. Then exactly one of the two following conditions holds:

- $E \leq_B \mathbb{E}_0$;
- $\mathbb{E}_1 \sqsubseteq_c E$.

Theorem (Kechris-Louveau)

Let E be a Borel hypersmooth equivalence relation on a Polish space. Then exactly one of the two following conditions holds:

- $E \leq_B \mathbb{E}_0$;
- $\mathbb{E}_1 \sqsubseteq_c E$.

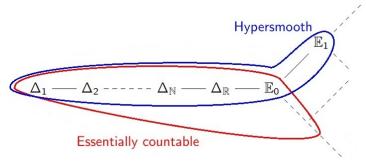
In particular, \mathbb{E}_1 is an immediate successor of \mathbb{E}_0 under \leqslant_B .

Theorem (Kechris-Louveau)

Let E be a Borel hypersmooth equivalence relation on a Polish space. Then exactly one of the two following conditions holds:

- $E \leq_B \mathbb{E}_0$;
- $\mathbb{E}_1 \sqsubseteq_c E$.

In particular, \mathbb{E}_1 is an immediate successor of \mathbb{E}_0 under \leqslant_B .



Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Hypersmooth Borel equivalence relations are obviously $\sigma\text{-smooth}.$

Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Hypersmooth Borel equivalence relations are obviously σ -smooth.

Lemma

Essentially countable Borel equivalence relations are σ -smooth.

Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Hypersmooth Borel equivalence relations are obviously σ -smooth.

Lemma

Essentially countable Borel equivalence relations are σ -smooth.

Proof.

It is enough to prove it for countable Borel equivalence relations.

Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Hypersmooth Borel equivalence relations are obviously σ -smooth.

Lemma

Essentially countable Borel equivalence relations are σ -smooth.

Proof.

It is enough to prove it for countable Borel equivalence relations. By the proof of Feldman-Moore's theorem, they can be expressed as countable unions of graphs of Borel involutions.

Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Hypersmooth Borel equivalence relations are obviously σ -smooth.

Lemma

Essentially countable Borel equivalence relations are σ -smooth.

Proof.

It is enough to prove it for countable Borel equivalence relations. By the proof of Feldman-Moore's theorem, they can be expressed as countable unions of graphs of Borel involutions. Those graphs are finite, hence smooth equivalence relations.

Definition

A Borel equivalence relation E on a Polish space is said to be σ -smooth if it is a countable union of smooth Borel subequivalence relations.

Hypersmooth Borel equivalence relations are obviously σ -smooth.

Lemma

Essentially countable Borel equivalence relations are σ -smooth.

Proof.

It is enough to prove it for countable Borel equivalence relations. By the proof of Feldman-Moore's theorem, they can be expressed as countable unions of graphs of Borel involutions. Those graphs are finite, hence smooth equivalence relations.

There are other examples, for instance the disjoint union of \mathbb{E}_1 and of a non-hypersmooth countable Borel equivalence relation.

The main theorem

Theorem

Let E be σ -smooth Borel equivalence relation on a Polish space. Then exactly one of the following conditions holds.

The main theorem

Theorem

Let E be σ -smooth Borel equivalence relation on a Polish space. Then exactly one of the following conditions holds.

E is essentially countable.

The main theorem

Theorem

Let E be σ -smooth Borel equivalence relation on a Polish space. Then exactly one of the following conditions holds.

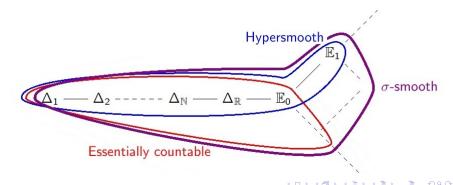
- E is essentially countable.
- $\mathbb{E}_1 \sqsubseteq_c E$.

The main theorem

Theorem

Let E be σ -smooth Borel equivalence relation on a Polish space. Then exactly one of the following conditions holds.

- E is essentially countable.
- $\mathbb{E}_1 \sqsubseteq_c E$.



A Borel equivalence relation E on a Polish space X is said to be idealistic (resp. strongly idealistic) if there is an E-invariant assignment $x \mapsto \mathcal{I}_x$ sending each point in X to a σ -ideal on X in such a way that:

• $\forall x \in X, [x]_E \notin \mathcal{I}_x$;

A Borel equivalence relation E on a Polish space X is said to be idealistic (resp. strongly idealistic) if there is an E-invariant assignment $x\mapsto \mathcal{I}_x$ sending each point in X to a σ -ideal on X in such a way that:

- $\forall x \in X, [x]_E \notin \mathcal{I}_x$;
- For every Borel set $R \subseteq X \times X$, the set $\{x \in X \mid R_x \in \mathcal{I}_x\}$ is Borel

A Borel equivalence relation E on a Polish space X is said to be idealistic (resp. strongly idealistic) if there is an E-invariant assignment $x \mapsto \mathcal{I}_x$ sending each point in X to a σ -ideal on X in such a way that:

- $\forall x \in X, [x]_E \notin \mathcal{I}_x$;
- For every Borel set $R \subseteq X \times X$, the set $\{x \in X \mid R_x \in \mathcal{I}_x\}$ is Borel (resp. for every Polish space Y and every Borel set $R \subseteq X \times Y \times X$, the set $\{(x,y) \in X \times Y \mid R_{x,y} \in \mathcal{I}_x\}$ is Borel).

A Borel equivalence relation E on a Polish space X is said to be idealistic (resp. strongly idealistic) if there is an E-invariant assignment $x \mapsto \mathcal{I}_x$ sending each point in X to a σ -ideal on X in such a way that:

- $\forall x \in X, [x]_E \notin \mathcal{I}_x$;
- For every Borel set $R \subseteq X \times X$, the set $\{x \in X \mid R_x \in \mathcal{I}_x\}$ is Borel (resp. for every Polish space Y and every Borel set $R \subseteq X \times Y \times X$, the set $\{(x,y) \in X \times Y \mid R_{x,y} \in \mathcal{I}_x\}$ is Borel).

The equivalence relation E is said to be ccc idealistic (resp. strongly ccc idealistic) if for every $x \in X$ and every uncountable family $(B_i)_{i \in I}$ of pairwise disjoint Borel subsets of X, one of the B_i 's is in \mathcal{I}_x .

Group actions

Given a Borel action $G \curvearrowright X$ of a Polish group on a Polish space, we can consider the orbit equivalence relation associated to this action, i.e. the analytic equivalence relation E_G^X on X defined by:

$$x E_G^X x' \Leftrightarrow (\exists g \in G)(g \cdot x = x').$$

Group actions

Given a Borel action $G \curvearrowright X$ of a Polish group on a Polish space, we can consider the orbit equivalence relation associated to this action, i.e. the analytic equivalence relation E_G^X on X defined by:

$$x E_G^X x' \Leftrightarrow (\exists g \in G)(g \cdot x = x').$$

Proposition (Folklore)

Borel orbit equivalence relations on Polish spaces are strongly ccc idealistic.

Group actions

Given a Borel action $G \cap X$ of a Polish group on a Polish space, we can consider the orbit equivalence relation associated to this action, i.e. the analytic equivalence relation E_G^X on X defined by:

$$x E_G^X x' \Leftrightarrow (\exists g \in G)(g \cdot x = x').$$

Proposition (Folklore)

Borel orbit equivalence relations on Polish spaces are strongly ccc idealistic.

Theorem (Feldman-Moore)

Let E be a countable Borel equivalence relation on a Polish space X. Then there is a Borel action $\Gamma \curvearrowright X$ of a countable discrete group such that $E = E_{\Gamma}^X$.

Theorem (Kechris-Louveau)

 \mathbb{E}_1 is not Borel reducible to any ccc idealistic Borel equivalence relation.

Theorem (Kechris–Louveau)

 \mathbb{E}_1 is not Borel reducible to any ccc idealistic Borel equivalence relation.

Conjecture (Kechris-Louveau)

Let E be a Borel equivalence relation on a Polish space. Then exactly one of the following two conditions holds:

- E Borel reduces to a ccc idealistic Borel equivalence relation on a Polish space;
- $\mathbb{E}_1 \sqsubseteq E$.

Theorem (Kechris–Louveau)

 \mathbb{E}_1 is not Borel reducible to any ccc idealistic Borel equivalence relation.

Conjecture (Kechris-Louveau)

Let E be a Borel equivalence relation on a Polish space. Then exactly one of the following two conditions holds:

- E Borel reduces to a ccc idealistic Borel equivalence relation on a Polish space;
- $\mathbb{E}_1 \sqsubseteq E$.

Kechris–Louveau's dichotomy solves this conjecture in the special case of hypersmooth Borel equivalence relations.

Theorem (Kechris–Louveau)

 \mathbb{E}_1 is not Borel reducible to any ccc idealistic Borel equivalence relation.

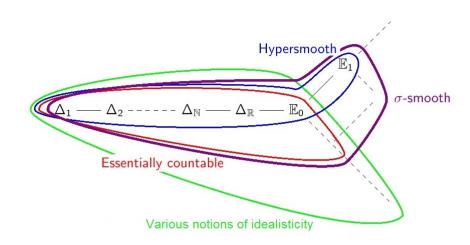
Conjecture (Kechris-Louveau)

Let E be a Borel equivalence relation on a Polish space. Then exactly one of the following two conditions holds:

- E Borel reduces to a ccc idealistic Borel equivalence relation on a Polish space;
- $\mathbb{E}_1 \sqsubseteq E$.

Kechris–Louveau's dichotomy solves this conjecture in the special case of hypersmooth Borel equivalence relations. Our dichotomy solves it in the special case of σ -smooth Borel equivalence relations.

A picture



Theorem (Rephrasing of the main theorem)

Let E be a Borel equivalence relation on a Polish space. Suppose that $\mathbb{E}_1 \nleq_B E$ (this holds, for instance, if E is ccc idealistic).

Theorem (Rephrasing of the main theorem)

Let E be a Borel equivalence relation on a Polish space. Suppose that $\mathbb{E}_1 \nleq_B E$ (this holds, for instance, if E is ccc idealistic). If E is a countable union of essentially countable Borel subequivalence relations, then E is essentially countable.

Theorem (Rephrasing of the main theorem)

Let E be a Borel equivalence relation on a Polish space. Suppose that $\mathbb{E}_1 \nleq_B E$ (this holds, for instance, if E is ccc idealistic). If E is a countable union of essentially countable Borel subequivalence relations, then E is essentially countable.

We want to generalize this result to other classes than the class of countable Borel equivalence relations.

Theorem (Rephrasing of the main theorem)

Let E be a Borel equivalence relation on a Polish space. Suppose that $\mathbb{E}_1 \nleq_B E$ (this holds, for instance, if E is ccc idealistic). If E is a countable union of essentially countable Borel subequivalence relations, then E is essentially countable.

We want to generalize this result to other classes than the class of countable Borel equivalence relations.

Definition

An equivalence relation E on a Polish space X is said to be potentially F_{σ} if it is Borel reducible to an F_{σ} equivalence relation on a Polish space.

Definition

For every $n \in \mathbb{N}$, let E_n be an equivalence relation on a set X_n . The disjoint union of the E_n 's is the equivalence relation E on $X := \bigsqcup_{n \in \mathbb{N}} X_n$ defined by $x \in X' \Leftrightarrow (\exists n \in \mathbb{N})(x, x' \in X_n \text{ and } x \in X_n x')$.

Definition

For every $n \in \mathbb{N}$, let E_n be an equivalence relation on a set X_n . The disjoint union of the E_n 's is the equivalence relation E on $X := \bigsqcup_{n \in \mathbb{N}} X_n$ defined by $x \in X' \Leftrightarrow (\exists n \in \mathbb{N})(x, x' \in X_n \text{ and } x \in X_n x')$.

Definition

Let $E \subseteq F$ be two equivalence relations on the same set X. Say that F has countable index over E if each F-class is a countable union of E-classes.

Definition

For every $n \in \mathbb{N}$, let E_n be an equivalence relation on a set X_n . The disjoint union of the E_n 's is the equivalence relation E on $X := \bigsqcup_{n \in \mathbb{N}} X_n$ defined by $x \in X' \Leftrightarrow (\exists n \in \mathbb{N})(x, x' \in X_n \text{ and } x \in X_n x')$.

Definition

Let $E \subseteq F$ be two equivalence relations on the same set X. Say that F has countable index over E if each F-class is a countable union of E-classes.

If \mathcal{F} is a family of Borel equivalence relations on Polish spaces, denote by $\mathcal{F}^{\leqslant_{\mathcal{B}}}$ the family of all equivalence relations on Polish spaces that are Borel reducible to an element of \mathcal{F} , and by $\sigma(\mathcal{F})$ the class of all equivalence relations on Polish spaces that can be expressed as countable unions of subequivalence relations belonging to \mathcal{F} .

Theorem

Let \mathcal{F} be a class of strongly idealistic potentially F_{σ} equivalence relations on Polish spaces. Suppose that \mathcal{F} is closed under countable disjoint union and countable index Borel superequivalence relations.

Theorem

Let $\mathcal F$ be a class of strongly idealistic potentially F_σ equivalence relations on Polish spaces. Suppose that $\mathcal F$ is closed under countable disjoint union and countable index Borel superequivalence relations. Let $E\in\sigma(\mathcal F^{\leqslant_B})$.

Theorem

Let $\mathcal F$ be a class of strongly idealistic potentially F_σ equivalence relations on Polish spaces. Suppose that $\mathcal F$ is closed under countable disjoint union and countable index Borel superequivalence relations. Let $E\in\sigma(\mathcal F^{\leqslant_B})$. Then at least one of the following conditions holds:

Theorem

Let $\mathcal F$ be a class of strongly idealistic potentially F_σ equivalence relations on Polish spaces. Suppose that $\mathcal F$ is closed under countable disjoint union and countable index Borel superequivalence relations. Let $E\in\sigma(\mathcal F^{\leqslant B})$. Then at least one of the following conditions holds:

• $E \in \mathcal{F}^{\leqslant_B}$;

Theorem

Let $\mathcal F$ be a class of strongly idealistic potentially F_σ equivalence relations on Polish spaces. Suppose that $\mathcal F$ is closed under countable disjoint union and countable index Borel superequivalence relations. Let $E\in\sigma(\mathcal F^{\leqslant_B})$. Then at least one of the following conditions holds:

- $E \in \mathcal{F}^{\leqslant_B}$;
- $\mathbb{E}_1 \sqsubseteq_c E$.

Theorem

Let $\mathcal F$ be a class of strongly idealistic potentially F_σ equivalence relations on Polish spaces. Suppose that $\mathcal F$ is closed under countable disjoint union and countable index Borel superequivalence relations. Let $E\in\sigma(\mathcal F^{\leqslant_B})$. Then at least one of the following conditions holds:

- $E \in \mathcal{F}^{\leqslant_B}$;
- $\mathbb{E}_1 \sqsubseteq_c E$.

Moreover, if elements of \mathcal{F} are ccc idealistic, then these two conditions are mutually exclusive.

Theorem

Let $\mathcal F$ be a class of strongly idealistic potentially F_σ equivalence relations on Polish spaces. Suppose that $\mathcal F$ is closed under countable disjoint union and countable index Borel superequivalence relations. Let $E\in\sigma(\mathcal F^{\leqslant_B})$. Then at least one of the following conditions holds:

- $E \in \mathcal{F}^{\leqslant_B}$;
- $\mathbb{E}_1 \sqsubseteq_c E$.

Moreover, if elements of $\mathcal F$ are ccc idealistic, then these two conditions are mutually exclusive.

Our dichotomy for σ -smooth equivalence relations is the special case when $\mathcal F$ is the class of all countable Borel equivalence relations.

When \mathcal{F} is the class of strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces, we obtain:

When \mathcal{F} is the class of strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces, we obtain:

Corollary

Let E be an equivalence relation on a Polish space. Suppose that E can be expressed as a countable union of subequivalence relations that are Borel reducible to strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces.

When \mathcal{F} is the class of strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces, we obtain:

Corollary

Let E be an equivalence relation on a Polish space. Suppose that E can be expressed as a countable union of subequivalence relations that are Borel reducible to strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces. Then exactly one of the following conditions hold:

• E is Borel reducible to a strongly ccc idealistic potentially F_{σ} equivalence relation on a Polish space.

When \mathcal{F} is the class of strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces, we obtain:

Corollary

Let E be an equivalence relation on a Polish space. Suppose that E can be expressed as a countable union of subequivalence relations that are Borel reducible to strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces. Then exactly one of the following conditions hold:

- E is Borel reducible to a strongly ccc idealistic potentially F_{σ} equivalence relation on a Polish space.
- $\mathbb{E}_1 \sqsubseteq_c E$.

When \mathcal{F} is the class of strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces, we obtain:

Corollary

Let E be an equivalence relation on a Polish space. Suppose that E can be expressed as a countable union of subequivalence relations that are Borel reducible to strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces. Then exactly one of the following conditions hold:

- E is Borel reducible to a strongly ccc idealistic potentially F_{σ} equivalence relation on a Polish space.
- $\mathbb{E}_1 \sqsubseteq_c E$.

This proves Kechris–Louveau's conjecture for the class of equivalence relations that can be expressed as countable unions of subequivalence relations that are Borel reducible to strongly ccc idealistic potentially F_{σ} equivalence relations on Polish spaces.

F^+ and F^{\cap}

Definition

Let F be an equivalence relation on a Polish space X.

• For $A \subseteq X$, denote by $[A]_F$ the F-saturation of A, that is, the set $\{x \in X \mid (\exists x' \in A)(x F x')\}.$

F^+ and F^\cap

Definition

Let F be an equivalence relation on a Polish space X.

- For $A \subseteq X$, denote by $[A]_F$ the F-saturation of A, that is, the set $\{x \in X \mid (\exists x' \in A)(x F x')\}.$
- The Friedman–Stanley jump of F is the equivalence relation F^+ on $X^{\mathbb{N}}$ defined by $x F^+ x'$ iff $[x(\mathbb{N})]_F = [x'(\mathbb{N})]_F$.

F^+ and F^\cap

Definition

Let F be an equivalence relation on a Polish space X.

- For $A \subseteq X$, denote by $[A]_F$ the *F*-saturation of *A*, that is, the set $\{x \in X \mid (\exists x' \in A)(x F x')\}.$
- The Friedman–Stanley jump of F is the equivalence relation F^+ on $X^{\mathbb{N}}$ defined by $x F^+ x'$ iff $[x(\mathbb{N})]_F = [x'(\mathbb{N})]_F$.
- The binary relation F^{\cap} on $X^{\mathbb{N}}$ is defined by $x F^{\cap} x'$ iff $[x(\mathbb{N})]_F \cap [x'(\mathbb{N})]_F$ is nonempty.

Definition

Let F be an equivalence relation on a Polish space X.

- For $A \subseteq X$, denote by $[A]_F$ the *F*-saturation of *A*, that is, the set $\{x \in X \mid (\exists x' \in A)(x F x')\}.$
- The Friedman–Stanley jump of F is the equivalence relation F^+ on $X^{\mathbb{N}}$ defined by $x F^+ x'$ iff $[x(\mathbb{N})]_F = [x'(\mathbb{N})]_F$.
- The binary relation F^{\cap} on $X^{\mathbb{N}}$ is defined by $x F^{\cap} x'$ iff $[x(\mathbb{N})]_F \cap [x'(\mathbb{N})]_F$ is nonempty.

Definition

• A homomorphism from a binary relation R on a set X to a binary relation S on a set Y is a mapping $f: X \to Y$ such that $(f \times f)[R] \subseteq S$.

Definition

Let F be an equivalence relation on a Polish space X.

- For $A \subseteq X$, denote by $[A]_F$ the *F*-saturation of *A*, that is, the set $\{x \in X \mid (\exists x' \in A)(x F x')\}.$
- The Friedman–Stanley jump of F is the equivalence relation F^+ on $X^{\mathbb{N}}$ defined by $x F^+ x'$ iff $[x(\mathbb{N})]_F = [x'(\mathbb{N})]_F$.
- The binary relation F^{\cap} on $X^{\mathbb{N}}$ is defined by $x F^{\cap} x'$ iff $[x(\mathbb{N})]_F \cap [x'(\mathbb{N})]_F$ is nonempty.

Definition

- A homomorphism from a binary relation R on a set X to a binary relation S on a set Y is a mapping $f: X \to Y$ such that $(f \times f)[R] \subseteq S$.
- A reduction from R to S is a mapping $f: X \to Y$ which is both a homomorphism from R to S and from $\sim R$ to $\sim S$.

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y.

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y. Suppose that E Borel reduces to a countable-index superequivalence relation of F.

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y. Suppose that E Borel reduces to a countable-index superequivalence relation of F. Then there is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$.

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y. Suppose that E Borel reduces to a countable-index superequivalence relation of F. Then there is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$. In particular, E Borel reduces to F^\cap .

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y. Suppose that E Borel reduces to a countable-index superequivalence relation of F. Then there is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$. In particular, E Borel reduces to F^\cap .

Proposition

Let E and F be Borel equivalence relations on Polish spaces X and Y, respectively. The following are equivalent:

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y. Suppose that E Borel reduces to a countable-index superequivalence relation of F. Then there is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$. In particular, E Borel reduces to F^\cap .

Proposition

Let E and F be Borel equivalence relations on Polish spaces X and Y, respectively. The following are equivalent:

• E Borel reduces to $(F \times \Delta_{\mathbb{N}})^{\cap}$;

Proposition

Let E be an equivalence relation on a Polish space X, and F be a strongly idealistic Borel equivalence relation on a Polish space Y. Suppose that E Borel reduces to a countable-index superequivalence relation of F. Then there is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$. In particular, E Borel reduces to F^\cap .

Proposition

Let E and F be Borel equivalence relations on Polish spaces X and Y, respectively. The following are equivalent:

- E Borel reduces to $(F \times \Delta_{\mathbb{N}})^{\cap}$;
- E is a countable union of subequivalence relations that are Borel reducible to $F \times \Delta_{\mathbb{N}}$.

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation.

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation. Let \tilde{F} be a strongly idealistic potentially F_{σ} equivalence relation on a Polish space and let $F = \tilde{F} \times \Delta_{\mathbb{N}}$.

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation. Let \tilde{F} be a strongly idealistic potentially F_{σ} equivalence relation on a Polish space and let $F = \tilde{F} \times \Delta_{\mathbb{N}}$. The following are equivalent:

 E is Borel reducible to a countable index superequivalence relation of F;

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation. Let \tilde{F} be a strongly idealistic potentially F_{σ} equivalence relation on a Polish space and let $F = \tilde{F} \times \Delta_{\mathbb{N}}$. The following are equivalent:

- E is Borel reducible to a countable index superequivalence relation of F;
- There is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$;

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation. Let \tilde{F} be a strongly idealistic potentially F_{σ} equivalence relation on a Polish space and let $F = \tilde{F} \times \Delta_{\mathbb{N}}$. The following are equivalent:

- E is Borel reducible to a countable index superequivalence relation of F;
- There is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^\cap)$;
- E Borel reduces to F[∩];

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation. Let \tilde{F} be a strongly idealistic potentially F_{σ} equivalence relation on a Polish space and let $F = \tilde{F} \times \Delta_{\mathbb{N}}$. The following are equivalent:

- E is Borel reducible to a countable index superequivalence relation of F;
- There is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^{\cap})$;
- E Borel reduces to F[∩];
- E is a countable union of subequivalence relations that are Borel reducible to F.

Theorem

Let E be an equivalence relation on a Polish space which is Borel reducible to a ccc idealistic Borel equivalence relation. Let \tilde{F} be a strongly idealistic potentially F_{σ} equivalence relation on a Polish space and let $F = \tilde{F} \times \Delta_{\mathbb{N}}$. The following are equivalent:

- E is Borel reducible to a countable index superequivalence relation of F;
- There is a Borel homomorphism from $(E, \sim E)$ to $(F^+, \sim F^{\cap})$;
- E Borel reduces to F^{\cap} ;
- E is a countable union of subequivalence relations that are Borel reducible to F.

Moreover, if these conditions are satisfied, then $E \leq_B F^+$.

Thank you for your attention!