Borel factor maps and embeddings between \mathbb{Z}^d actions

Spencer Unger, joint work with Nishant Chandgotia(Tata institute)

University of Toronto

April 22, 2021

Partially supported by NSF grant DMS-1700425

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필.

590

Ergodic theory seeks to understand measure preserving actions of (often discrete) groups Γ on a spaces X equipped with a Borel probability measure.

Ergodic theory seeks to understand measure preserving actions of (often discrete) groups Γ on a spaces X equipped with a Borel probability measure.

Towards this goal it is natural to analyze measurable maps between these actions.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Ergodic theory seeks to understand measure preserving actions of (often discrete) groups Γ on a spaces X equipped with a Borel probability measure.

Towards this goal it is natural to analyze measurable maps between these actions.

Definition

Let a and b be Borel actions of a group Γ on spaces X and Y respectively. A function $f : X \to Y$ is equivariant if it commutes with the actions a and b, that is, for all $x \in X$ and $\gamma \in \Gamma$, $f(\gamma \cdot x) = \gamma \cdot f(x)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Ergodic theory seeks to understand measure preserving actions of (often discrete) groups Γ on a spaces X equipped with a Borel probability measure.

Towards this goal it is natural to analyze measurable maps between these actions.

Definition

Let a and b be Borel actions of a group Γ on spaces X and Y respectively. A function $f : X \to Y$ is equivariant if it commutes with the actions a and b, that is, for all $x \in X$ and $\gamma \in \Gamma$, $f(\gamma \cdot x) = \gamma \cdot f(x)$.

Note that in the ergodic theory context if *a* and *b* are measure preserving actions on (X, μ) and (Y, ν) respectively, then saying that *f* is measurable means that it only needs to be defined on some μ -conull set.

Shift spaces

Recall:

Definition

The k-shift action is the space k^{Γ} of functions $x : \Gamma \to \{0, \dots, k-1\}$ with the action given by $(\gamma \cdot x)(\delta) = x(\delta \cdot \gamma^{-1}).$

There is a natural measure here that comes from the product of uniform measure k.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Shift spaces

Recall:

Definition

The k-shift action is the space k^{Γ} of functions $x : \Gamma \to \{0, \dots, k-1\}$ with the action given by $(\gamma \cdot x)(\delta) = x(\delta \cdot \gamma^{-1}).$

There is a natural measure here that comes from the product of uniform measure k.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A shift space is a closed subset of k^{Γ} for some k and Γ .

We will particularly be interested in embeddings, that is, maps that are injective and equivariant.

We will particularly be interested in embeddings, that is, maps that are injective and equivariant.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

A well-known constraint on when there is an embedding in the ergodic sense between two such systems is given by Kolmogorov-Sinai entropy.

We will particularly be interested in embeddings, that is, maps that are injective and equivariant.

A well-known constraint on when there is an embedding in the ergodic sense between two such systems is given by Kolmogorov-Sinai entropy.

Let *a* be an action of \mathbb{Z}^d . We say that (X, a) is *universal in the ergodic sense* if every measure preserving action of \mathbb{Z}^d with entropy less than (X, a) embeds in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We will particularly be interested in embeddings, that is, maps that are injective and equivariant.

A well-known constraint on when there is an embedding in the ergodic sense between two such systems is given by Kolmogorov-Sinai entropy.

Let *a* be an action of \mathbb{Z}^d . We say that (X, a) is *universal in the ergodic sense* if every measure preserving action of \mathbb{Z}^d with entropy less than (X, a) embeds in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem (Krieger)

 $2^{\mathbb{Z}}$ is universal in the ergodic sense.

We will particularly be interested in embeddings, that is, maps that are injective and equivariant.

A well-known constraint on when there is an embedding in the ergodic sense between two such systems is given by Kolmogorov-Sinai entropy.

Let *a* be an action of \mathbb{Z}^d . We say that (X, a) is *universal in the ergodic sense* if every measure preserving action of \mathbb{Z}^d with entropy less than (X, a) embeds in X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem (Krieger)

 $2^{\mathbb{Z}}$ is universal in the ergodic sense.

What about a Borel version of this theory?

In this context, we just work with Borel actions of groups Γ on Polish spaces X.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In this context, we just work with Borel actions of groups Γ on Polish spaces X. The basic map between spaces is now an equivariant Borel function.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

In this context, we just work with Borel actions of groups Γ on Polish spaces X. The basic map between spaces is now an equivariant Borel function.

Question

What are the similarities and differences between these two contexts?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

In this context, we just work with Borel actions of groups Γ on Polish spaces X. The basic map between spaces is now an equivariant Borel function.

Question

What are the similarities and differences between these two contexts?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

The appropriate notion of entropy is *topological entropy*.

The appropriate notion of entropy is *topological entropy*. If X is a closed subset of a shift space, then the topological entropy is given by the formula:

 $\lim_{n \to \infty} \frac{1}{n^d} (\log(\text{number of patterns in X on}[1, n]^d))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The appropriate notion of entropy is *topological entropy*. If X is a closed subset of a shift space, then the topological entropy is given by the formula:

$$\lim_{n\to\infty}\frac{1}{n^d}(\log(\text{number of patterns in X on}[1, n]^d))$$

A free Borel action a of \mathbb{Z}^d is universal (in the Borel sense) if every free Borel action with lower topological entropy admits a Borel embedding in to it.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

The appropriate notion of entropy is *topological entropy*. If X is a closed subset of a shift space, then the topological entropy is given by the formula:

$$\lim_{n\to\infty}\frac{1}{n^d}(\log(\text{number of patterns in X on}[1, n]^d))$$

A free Borel action a of \mathbb{Z}^d is universal (in the Borel sense) if every free Borel action with lower topological entropy admits a Borel embedding in to it.

Theorem (Hochman)

The shift action on $2^{\mathbb{Z}}$ is universal.

There is some overlap here with measurable combinatorics.

There is some overlap here with measurable combinatorics. Suppose that *a* is a Borel action of a group \mathbb{Z}^d on a space *X* and let $\gamma_1 \dots \gamma_d$ be the standard generators.

We define the Cayley graph of *a* to be the graph G_a with vertex set X and edges $\{x, \pm \gamma_i \cdot x\}$ for $x \in X$ and $i \leq d$.

There is some overlap here with measurable combinatorics.

Suppose that *a* is a Borel action of a group \mathbb{Z}^d on a space *X* and let $\gamma_1 \dots \gamma_d$ be the standard generators.

We define the Cayley graph of *a* to be the graph G_a with vertex set *X* and edges $\{x, \pm \gamma_i \cdot x\}$ for $x \in X$ and $i \leq d$.

This is a nice Borel graph which captures many of the properties of the action.

There is some overlap here with measurable combinatorics.

Suppose that *a* is a Borel action of a group \mathbb{Z}^d on a space *X* and let $\gamma_1 \dots \gamma_d$ be the standard generators.

We define the Cayley graph of *a* to be the graph G_a with vertex set *X* and edges $\{x, \pm \gamma_i \cdot x\}$ for $x \in X$ and $i \leq d$.

This is a nice Borel graph which captures many of the properties of the action.

For instance, saying that the Borel chromatic number of some Cayley graph G_a is at most k is equivalent to the existence of an equivariant Borel map from X into a natural space of k-colorings of the Cayley graph of \mathbb{Z}^d .

Some nice shift spaces

Definition

A rectangle in \mathbb{Z}^d is a product of intervals. For a finite set of rectangles \mathcal{T} , we define a space $X_{\mathcal{T}}$ to be the set of functions $x : \mathbb{Z}^d \to \mathcal{T}$ such that $f^{-1}R$ is a disjoint union of translates of R.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Some nice shift spaces

Definition

A rectangle in \mathbb{Z}^d is a product of intervals. For a finite set of rectangles \mathcal{T} , we define a space $X_{\mathcal{T}}$ to be the set of functions $x : \mathbb{Z}^d \to \mathcal{T}$ such that $f^{-1}R$ is a disjoint union of translates of R.

Definition

Let H be a graph that is not bipartite. Let $Hom(\mathbb{Z}^d, H)$ be the set of all graph homomorphisms from the Cayley graph of \mathbb{Z}^d to H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ��

Some nice shift spaces

Definition

A rectangle in \mathbb{Z}^d is a product of intervals. For a finite set of rectangles \mathcal{T} , we define a space $X_{\mathcal{T}}$ to be the set of functions $x : \mathbb{Z}^d \to \mathcal{T}$ such that $f^{-1}R$ is a disjoint union of translates of R.

Definition

Let H be a graph that is not bipartite. Let $Hom(\mathbb{Z}^d, H)$ be the set of all graph homomorphisms from the Cayley graph of \mathbb{Z}^d to H.

▲□▶▲□▶▲□▶▲□▶ = の�?

The space of graph homorphisms generalizes vertex colorings.

Theorem (Chandgotia-U)

Let $d \ge 1$. Suppose that a is a free Borel action of \mathbb{Z}^d on a Polish space X and Y is one of the following spaces:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Theorem (Chandgotia-U)

Let $d \ge 1$. Suppose that a is a free Borel action of \mathbb{Z}^d on a Polish space X and Y is one of the following spaces:

1. $X_{\mathcal{T}}$ where the set of side lengths of rectangles in \mathcal{T} is coprime.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem (Chandgotia-U)

Let $d \ge 1$. Suppose that a is a free Borel action of \mathbb{Z}^d on a Polish space X and Y is one of the following spaces:

- 1. $X_{\mathcal{T}}$ where the set of side lengths of rectangles in \mathcal{T} is coprime.
- 2. The space of homomorphisms of the Cayley graph of \mathbb{Z}^d into a finite graph H of size atleast 3 which is not bipartite.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Theorem (Chandgotia-U)

Let $d \ge 1$. Suppose that a is a free Borel action of \mathbb{Z}^d on a Polish space X and Y is one of the following spaces:

- 1. $X_{\mathcal{T}}$ where the set of side lengths of rectangles in \mathcal{T} is coprime.
- 2. The space of homomorphisms of the Cayley graph of \mathbb{Z}^d into a finite graph H of size atleast 3 which is not bipartite.
- 3. The space of bi-infinite Hamilton paths in the Cayley graph of \mathbb{Z}^d .

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Theorem (Chandgotia-U)

Let $d \ge 1$. Suppose that a is a free Borel action of \mathbb{Z}^d on a Polish space X and Y is one of the following spaces:

- 1. $X_{\mathcal{T}}$ where the set of side lengths of rectangles in \mathcal{T} is coprime.
- 2. The space of homomorphisms of the Cayley graph of \mathbb{Z}^d into a finite graph H of size atleast 3 which is not bipartite.
- 3. The space of bi-infinite Hamilton paths in the Cayley graph of \mathbb{Z}^d .

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Then there is an equivariant Borel map from X to Y where the range consists of aperiodic points.

Theorem (Chandgotia-U)

Let $d \ge 1$. Suppose that a is a free Borel action of \mathbb{Z}^d on a Polish space X and Y is one of the following spaces:

- 1. $X_{\mathcal{T}}$ where the set of side lengths of rectangles in \mathcal{T} is coprime.
- 2. The space of homomorphisms of the Cayley graph of \mathbb{Z}^d into a finite graph H of size atleast 3 which is not bipartite.
- 3. The space of bi-infinite Hamilton paths in the Cayley graph of \mathbb{Z}^d .

Then there is an equivariant Borel map from X to Y where the range consists of aperiodic points.

Some similar theorems are referenced as "to appear in a forthcoming paper" in various papers of Gao, Jackson, Krohne and Seward.

Main theorems continued

Theorem (Chandgotia-U)

Suppose that X is a closed subset of a shift space $k^{\mathbb{Z}^d}$ consisting of aperiodic points and Y is either of the following spaces:

1. The space of homomorphisms of the Cayley graph of \mathbb{Z}^d in to a finite graph H of size at least 3 which is not bipartite.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

2. The space of domino tilings of \mathbb{Z}^d .

if $h_{top}(X) < h_{top}(Y)$ then there exists an equivariant Borel embedding $\phi : X \to Y$.

Hyperfiniteness

A crucial ingredient in the proofs of the above theorems is the notion of hyperfiniteness.

Hyperfiniteness

A crucial ingredient in the proofs of the above theorems is the notion of hyperfiniteness. If G is a Borel graph on a space X and $B \subseteq X$ is Borel, then we refer to the connected components of B as the connected components of the induced subgraph of G with vertex set B.

A crucial ingredient in the proofs of the above theorems is the notion of hyperfiniteness. If G is a Borel graph on a space X and $B \subseteq X$ is Borel, then we refer to the connected components of B as the connected components of the induced subgraph of G with vertex set B.

Definition

A Borel action a of Γ on a space X is hyperfinite if there are an increasing sequence of Borel subsets B_0, B_1, \ldots of X such that

A crucial ingredient in the proofs of the above theorems is the notion of hyperfiniteness. If G is a Borel graph on a space X and $B \subseteq X$ is Borel, then we refer to the connected components of B as the connected components of the induced subgraph of G with vertex set B.

Definition

A Borel action a of Γ on a space X is hyperfinite if there are an increasing sequence of Borel subsets B_0, B_1, \ldots of X such that

1. for all $k \in \mathbb{N}$, the connected components of B_k in G_a are finite and

A crucial ingredient in the proofs of the above theorems is the notion of hyperfiniteness. If G is a Borel graph on a space X and $B \subseteq X$ is Borel, then we refer to the connected components of B as the connected components of the induced subgraph of G with vertex set B.

Definition

A Borel action a of Γ on a space X is hyperfinite if there are an increasing sequence of Borel subsets B_0, B_1, \ldots of X such that

- 1. for all $k \in \mathbb{N}$, the connected components of B_k in G_a are finite and
- 2. for all $x \in X$ and $\gamma \in \Gamma$, there is $k \in \mathbb{N}$ such that $x, \gamma \cdot x$ are in the same connected component of B_k .

A crucial ingredient in the proofs of the above theorems is the notion of hyperfiniteness. If G is a Borel graph on a space X and $B \subseteq X$ is Borel, then we refer to the connected components of B as the connected components of the induced subgraph of G with vertex set B.

Definition

A Borel action a of Γ on a space X is hyperfinite if there are an increasing sequence of Borel subsets B_0, B_1, \ldots of X such that

- 1. for all $k \in \mathbb{N}$, the connected components of B_k in G_a are finite and
- 2. for all $x \in X$ and $\gamma \in \Gamma$, there is $k \in \mathbb{N}$ such that $x, \gamma \cdot x$ are in the same connected component of B_k .

A larger project

Question (Weiss)

Suppose that a is a free Borel action of a finitely generated amenable group. Is a hyperfinite?

Many partial results by Weiss, Gao and Jackson, Seward and Schneider.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

A larger project

Question (Weiss)

Suppose that a is a free Borel action of a finitely generated amenable group. Is a hyperfinite?

Many partial results by Weiss, Gao and Jackson, Seward and Schneider.

The current best known result is due to Conley, Jackson, Marks, Seward and Tucker-Drob who extract a combinatorial condition (finite Borel asymptotic dimension) that implies hyperfiniteness.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Restrictions on hyperfiniteness

The following is a theorem of Gao, Jackson, Krohne and Seward.

Theorem

Let a be a free minimal action of a countable group Γ on a compact Polish space X by homeomorphisms. Let $B_n \subseteq X$ be a sequence of Borel sets such that for all finite $F \subseteq \Gamma$ and for all sufficiently large n, the set $\{x \in X \mid \gamma \cdot x \in B_n \text{ for all } \gamma \in F\}$ is a complete section of a comeager set. Then the set $\{x \in X \mid x \text{ belongs to } B_n \text{ for infinitely many } n\}$ is comeager.

1. A complete section of a comeager set is nonmeager by the Baire category theorem.

1. A complete section of a comeager set is nonmeager by the Baire category theorem.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Define
$$B_{n,F} = \{x \mid \gamma^{-1} \cdot x \in B_n \text{ for all } \gamma \in F\}.$$

- 1. A complete section of a comeager set is nonmeager by the Baire category theorem.
- 2. Define $B_{n,F} = \{x \mid \gamma^{-1} \cdot x \in B_n \text{ for all } \gamma \in F\}.$
- 3. By our assumption and the first item $B_{n,F}$ is nonmeager for all large enough n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

- 1. A complete section of a comeager set is nonmeager by the Baire category theorem.
- 2. Define $B_{n,F} = \{x \mid \gamma^{-1} \cdot x \in B_n \text{ for all } \gamma \in F\}.$
- 3. By our assumption and the first item $B_{n,F}$ is nonmeager for all large enough n.
- 4. Since Borel sets have the Baire property, it is enough to show that the set of x which are in infinitely many B_n is nonmeager in every open set.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

- 1. A complete section of a comeager set is nonmeager by the Baire category theorem.
- 2. Define $B_{n,F} = \{x \mid \gamma^{-1} \cdot x \in B_n \text{ for all } \gamma \in F\}.$
- 3. By our assumption and the first item $B_{n,F}$ is nonmeager for all large enough n.
- 4. Since Borel sets have the Baire property, it is enough to show that the set of x which are in infinitely many B_n is nonmeager in every open set.
- 5. Let $U \subseteq X$ be open. By compactness and minimality, there is a finite set F such that $\bigcup_{\gamma \in F} \gamma \cdot U = X$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. A complete section of a comeager set is nonmeager by the Baire category theorem.
- 2. Define $B_{n,F} = \{x \mid \gamma^{-1} \cdot x \in B_n \text{ for all } \gamma \in F\}.$
- 3. By our assumption and the first item $B_{n,F}$ is nonmeager for all large enough n.
- 4. Since Borel sets have the Baire property, it is enough to show that the set of x which are in infinitely many B_n is nonmeager in every open set.
- 5. Let $U \subseteq X$ be open. By compactness and minimality, there is a finite set F such that $\bigcup_{\gamma \in F} \gamma \cdot U = X$.
- 6. It follows that for all large enough n, there is $\gamma \in F$ such that $\gamma \cdot U \cap B_{n,F}$ is nonmeager.

- 1. A complete section of a comeager set is nonmeager by the Baire category theorem.
- 2. Define $B_{n,F} = \{x \mid \gamma^{-1} \cdot x \in B_n \text{ for all } \gamma \in F\}.$
- 3. By our assumption and the first item $B_{n,F}$ is nonmeager for all large enough n.
- 4. Since Borel sets have the Baire property, it is enough to show that the set of x which are in infinitely many B_n is nonmeager in every open set.
- 5. Let $U \subseteq X$ be open. By compactness and minimality, there is a finite set F such that $\bigcup_{\gamma \in F} \gamma \cdot U = X$.
- 6. It follows that for all large enough n, there is $\gamma \in F$ such that $\gamma \cdot U \cap B_{n,F}$ is nonmeager.
- 7. Now $\gamma^{-1} \cdot (\gamma \cdot U \cap B_{n,F}) \subseteq U \cap B_n$ is nonmeager for all large enough *n*, so we are done.

A consequence for \mathbb{Z}^d actions

We can derive another theorem of Gao, Jackson, Krohne and Seward from this.

Theorem

Let $d \ge 2$ and a be a free minimal action of \mathbb{Z}^d such that subaction with respect to the $\mathbb{Z} \times \{0\}^{d-1}$ is also minimal. Given a sequence of Borel sets $B_n \subseteq X$ with the following properties:

- 1. B_n is a complete section.
- 2. The connected components of B_n are finite rectangles such that if v_n is the minimum side length of a rectangle in B_n , then $\lim_{n\to\infty} v_n = \infty$.

Then the set

$$\{x \in X : x \text{ belongs to } \partial B_n \text{ for infinitely many } n\}$$

is comeager.

Almost squares

Definition

A finite subset F of \mathbb{Z}^d is α -almost square with side length s if there are squares S, S' of side lengths s, α s respectively with the same center such that $S \subseteq F \subseteq S'$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Almost squares

Definition

A finite subset F of \mathbb{Z}^d is α -almost square with side length s if there are squares S, S' of side lengths s, α s respectively with the same center such that $S \subseteq F \subseteq S'$.

We can extend this notion to finite subsets F of X where we have an action of \mathbb{Z}^d and F is contained in a single orbit.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Our proof makes use of a particular witness to hyperfiniteness due to Gao, Jackson, Krohne and Seward.

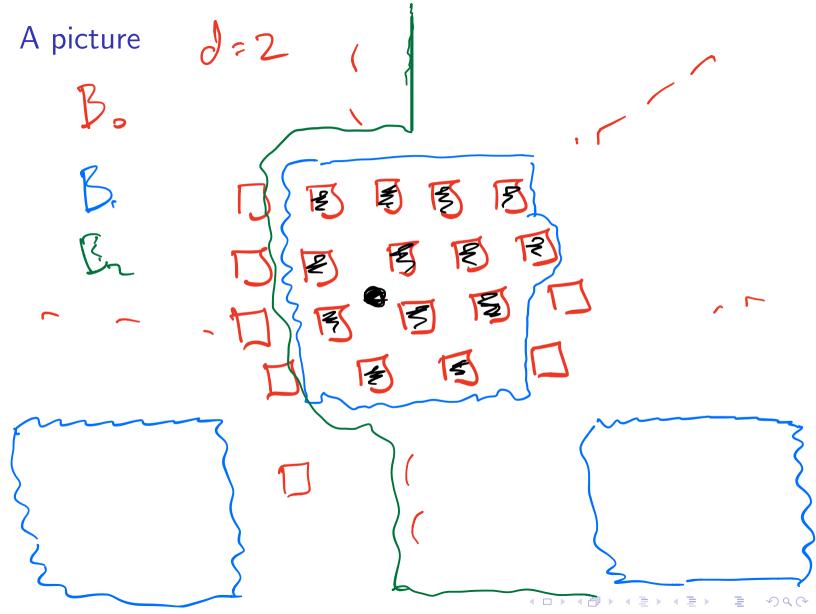
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our proof makes use of a particular witness to hyperfiniteness due to Gao, Jackson, Krohne and Seward.

Theorem

Let a be a free action of \mathbb{Z}^d on X with d > 1 and $\delta > 0$. If $r_1 < r_2 \dots$ is a sequence of natural numbers satisfying $12 \sum_{j < k} r_j < \delta r_k$, then there is a sequence of Borel sets B_1, B_2, \dots such that

- 1. the connected components C of B_j are $(1 + \delta)$ -almost squares of side length r_j whose complement is connected.
- 2. for all $x \in X$, there is $k \in \mathbb{N}$ such that $x \in B_k$ and
- 3. if C, D are connected components of B_l and B_m respectively with $l \le m$, then $d(\partial C, \partial D) > r_l$.



How to define a map from this?

We make use of the connection with measurable combinatorics. Given a, X, B_1, B_2, \ldots and a target space $Y \subseteq k^{\mathbb{Z}^d}$ we define maps $f_n : B_n \to k$ such that setting $f = \bigcup_{n \ge 1} f_n$ we have that \hat{f} defined by

$$\widehat{f}(x) = (\gamma \mapsto f(\gamma \cdot x))$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

is our desired equivariant map.

How to define a map from this?

We make use of the connection with measurable combinatorics. Given a, X, B_1, B_2, \ldots and a target space $Y \subseteq k^{\mathbb{Z}^d}$ we define maps $f_n : B_n \to k$ such that setting $f = \bigcup_{n \ge 1} f_n$ we have that \hat{f} defined by

$$\widehat{f}(x) = (\gamma \mapsto f(\gamma \cdot x))$$

is our desired equivariant map.

This means for example that if Y is a space of tilings, then the functions f_n define tilings of the Cayley graph of a restricted to B_n which has finite connected components.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

How to define a map from this?

We make use of the connection with measurable combinatorics. Given a, X, B_1, B_2, \ldots and a target space $Y \subseteq k^{\mathbb{Z}^d}$ we define maps $f_n : B_n \to k$ such that setting $f = \bigcup_{n \ge 1} f_n$ we have that \hat{f} defined by

$$\widehat{f}(x) = (\gamma \mapsto f(\gamma \cdot x))$$

is our desired equivariant map.

This means for example that if Y is a space of tilings, then the functions f_n define tilings of the Cayley graph of a restricted to B_n which has finite connected components.

There is an interplay here between the shape of the connected components of the B_i and our ability to extend patterns on components of B_i for i < n to B_n .

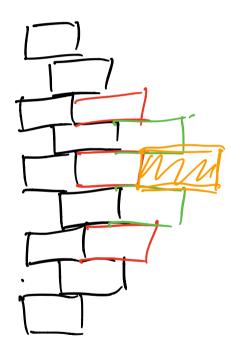
Embeddings

To get an embedding we need to modify the construction above. For simplicity we assume that X is a closed subset of a shift.

Embeddings

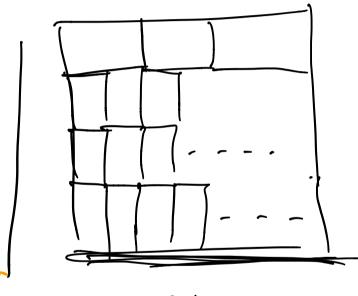
To get an embedding we need to modify the construction above. For simplicity we assume that X is a closed subset of a shift. We modify the previous construction to add a Borel set B_0 and define a starting function f_0 on B_0 such that the restriction of f_0 to the orbit of x completely codes x in a way that is shift invariant. This uses a "marker" construction which is typical in ergodic theory. Not all patterns extend

Domino Tilings, d=2



▲□▶▲□▶▲□▶▲□▶ □ のへで

Some patterns do extend



Clea

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

Open problems

Work in \mathbb{Z}^d .

1. Let *a* be a tiling of a finite region. Can *a* be extended to a tiling of a box?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

Open problems

Work in \mathbb{Z}^d .

- 1. Let *a* be a tiling of a finite region. Can *a* be extended to a tiling of a box?
- 2. Consider tilings by a coprime set of boxes. Is there a collection of *extendible* finite patterns whose entropy is the same as the entropy of the space of all tilings? By our work, this would give embeddings of shift spaces of smaller entropy into spaces of coprime tilings.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - 釣ぬぐ