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|. Topological dynamics on the
Cantor space: some background.



Throughout, X is a Cantor space and @, : X — X are
homeomorphisms.



Minimal homeomorphisms

Throughout, X is a Cantor space and p,1: X — X are
homeomorphisms.

Definition

A homeomorphism ¢ of X is minimal each @-orbit is dense.
Equivalently: for any clopen U, there exists N such that
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Minimal homeomorphisms

Throughout, X is a Cantor space and p,1: X — X are

homeomorphisms.

Definition

A homeomorphism ¢ of X is minimal each @-orbit is dense.

Equivalently: for any cIopen U, there exists N such that
W\W‘Q %

Usoi(U) =
i=0

For any ¢, there exists a closed F C X such that ¢(F) = F and
@1F is minimal; if F is infinite it is homeomorphic to X.
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An example: the dyadic odometer

Define Od: {0,1}* — {0,1}“ as follows:
o If x # 1%, set ny, = min{i: x(/) =0} and

0 for all i < ny
Od(x)(i)=141 for i = ny
x(i)  forall i > ny
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An example: the dyadic odometer

Define Od: {0,1}* — {0,1}“ as follows:
o If x # 1%, set ny, = min{i: x(/) =0} and

0 for all i < ny
Od(x)(i)=141 for i = ny

x(i)  for all i > ny

o If x =1, set Od(x) = 0

Then Od is a minimal homeomorphism; the associated equivalence
relation is obtained from Eg by gluing the classes of 0°° and 1*°
together.
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Fix a minimal ¢, and a clopen U # (). For x € U, set

n(x) =min {i > 1: ¢/(x) € U}



Kakutani—Rokhlin partitions

Fix a minimal ¢, and a clopen U # (). For x € U, set
n()—mln{l>1<p ) e U}

Then n: U — N is continuous, hence has finite image F and each
Ui={x € U: n(x) =i} is clopen. Then one has

x= ][]

icF j=0
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Kakutani—Rokhlin partitions

Fix a minimal ¢, and a clopen U # (). For x € U, set
n(x) =min {i > 1: ¢/(x) € U}

Then n: U — N is continuous, hence has finite image F and each
Ui={x € U: n(x) =i} is clopen. Then one has

i—1
X=|]]¥W)

icF j=0

This is the archetype of a Kakutani—Rokhlin partition: a clopen
partition (A;)icF, jen; such that p(A;;) = Ajjq1 forall j € nj — 1.
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An artist’s rendition of a Kakutani—Rokhlin partition

%

Each atom not in the top is moved one level up by ¢; the top is sent

back to the base, and we cannot read any information about that on the
partition.
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Some Kakutani—Rokhlin partitions for the dyadic odometer
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Some Kakutani—Rokhlin partitions for the dyadic odometer
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Sequences of Kakutani—Rokhlin partitions

When we shrink the basis we obtain a finer Kakutani—Rokhlin
partition whose columns are obtained by “cutting and stacking”
columns of the coarser one on top of each other.
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Sequences of Kakutani—Rokhlin partitions

When we shrink the basis we obtain a finer Kakutani—Rokhlin
partition whose columns are obtained by “cutting and stacking”
columns of the coarser one on top of each other.

Given a minimal ¢, we can build a sequence of Kakutani—Rokhlin
partitions A, such that:
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When we shrink the basis we obtain a finer Kakutani—Rokhlin
partition whose columns are obtained by “cutting and stacking”
columns of the coarser one on top of each other.

Given a minimal ¢, we can build a sequence of Kakutani—Rokhlin
partitions A, such that:

® For all n, Apy1 refines A,.
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Sequences of Kakutani—Rokhlin partitions

When we shrink the basis we obtain a finer Kakutani—Rokhlin
partition whose columns are obtained by “cutting and stacking”
columns of the coarser one on top of each other.

Given a minimal ¢, we can build a sequence of Kakutani—Rokhlin
partitions A, such that:

® For all n, Apy1 refines A,.

® The bases and tops of A, each shrink to a point.
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Sequences of Kakutani—Rokhlin partitions

When we shrink the basis we obtain a finer Kakutani—Rokhlin
partition whose columns are obtained by “cutting and stacking”
columns of the coarser one on top of each other.

Given a minimal ¢, we can build a sequence of Kakutani—Rokhlin
partitions A, such that:

® For all n, Apy1 refines A,.
® The bases and tops of A, each shrink to a point.

® Given U clopen, there exists n such that U is a union of
atoms of A,,.
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Sequences of Kakutani—Rokhlin partitions

When we shrink the basis we obtain a finer Kakutani—Rokhlin
partition whose columns are obtained by “cutting and stacking”
columns of the coarser one on top of each other.

Given a minimal ¢, we can build a sequence of Kakutani—Rokhlin
partitions A, such that:

® For all n, Apy1 refines A,.
® The bases and tops of A, each shrink to a point.

® Given U clopen, there exists n such that U is a union of
atoms of A,,.

Such sequences are encoding a basis of neighborhoods of ¢ in
Homeo(X).

J. Melleray GPS theorem: a new proof



Cutting a Kakutani-Rokhlin partition to make it
compatible with a clopen set
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Cutting a Kakutani-Rokhlin partition to make it
compatible with a clopen set

J. Melleray GPS theorem: a new proof



Locally finite groups attached to a Z-action

Fix x, a minimal ¢ and a sequence of Kakutani-Rokhlin partitions
A, as above whose bases shrink to x.
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Locally finite groups attached to a Z-action

Fix x, a minimal ¢ and a sequence of Kakutani-Rokhlin partitions
A, as above whose bases shrink to x.

For every atom « of A, not contained in the top, we let 7, be the
involution coinciding with ¢ on a, ¢! on ¢(a); and equal to the
identity everywhere else.
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Locally finite groups attached to a Z-action

Fix x, a minimal ¢ and a sequence of Kakutani-Rokhlin partitions
A, as above whose bases shrink to x.

For every atom « of A, not contained in the top, we let 7, be the
involution coinciding with ¢ on a, ¢! on ¢(a); and equal to the
identity everywhere else.

Let ' x(p) be the finite group generated by the maps 7,; it acts
by permutations on each column of A,,.
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Locally finite groups attached to a Z-action

Fix x, a minimal ¢ and a sequence of Kakutani-Rokhlin partitions
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For every atom « of A, not contained in the top, we let 7, be the
involution coinciding with ¢ on a, ¢! on ¢(a); and equal to the
identity everywhere else.

Let ' x(p) be the finite group generated by the maps 7,; it acts
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The group Iy( U [nx(¢) is locally finite and acts minimally.
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Locally finite groups attached to a Z-action

Fix x, a minimal ¢ and a sequence of Kakutani-Rokhlin partitions
A, as above whose bases shrink to x.

For every atom « of A, not contained in the top, we let 7, be the
involution coinciding with ¢ on a, ¢! on ¢(a); and equal to the
identity everywhere else.

Let ' x(p) be the finite group generated by the maps 7,; it acts
by permutations on each column of A,,.

The group Iy( U [nx(¢) is locally finite and acts minimally.

For the dyadic odometer (and bases shrinking to 0°°) we obtain
the group of dyadic permutations.
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Orbits of the action of I',(¢)
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Orbits of the action of I',(¢)

e The w-orbit of x splits into two I'y()-orbits (positive and negative
half orbits): via [',(¢), it is not possible to move p~!(x) to x.
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Orbits of the action of I',(¢)

e The w-orbit of x splits into two I'y()-orbits (positive and negative
half orbits): via [',(¢), it is not possible to move p~!(x) to x.

e All other orbits for the actions of ¢ and I'(®) on X are the same.

J. Melleray GPS theorem: a new proof



[I. Orbit Equivalence.



Definition
@, 1 are orbit equivalent if there exists g € Homeo(X) such that

Vx, X € X (xRpX) < (g(x)Rypg(x))



Orbit equivalence

Definition
©, ¥ are orbit equivalent if there exists g € Homeo(X) such that

Vx,x' € X (xRyx') & (g(x)Ryg(xX))

Denote by M(p) the set of all p-invariant Borel probability
measures.
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Orbit equivalence

Definition
©, ¥ are orbit equivalent if there exists g € Homeo(X) such that

Vx,x' € X (xRyx') & (g(x)Ryg(xX))
Denote by M(p) the set of all p-invariant Borel probability

measures.

Theorem (Giordano—Putnam—Skau 1995)

Two minimal homeomorphisms ¢, 1 of X are orbit equivalent iff
there exists g € Homeo(X) such that g.M(p) = M(v))
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Orbit equivalence

Definition
©, ¥ are orbit equivalent if there exists g € Homeo(X) such that

Vx,x' € X (xRyx') & (g(x)Ryg(xX))

Denote by M(p) the set of all p-invariant Borel probability
measures.

Theorem (Giordano—Putnam—Skau 1995)

Two minimal homeomorphisms ¢, ¢ of X are orbit equivalent iff
there exists g € Homeo(X) such that g.M(p) = M(v))

They also proved that ¢ and I'y(¢) are OE for any minimal ¢; this
shows that Ep and the relation induced from Eg by gluing the
classes of 0°° and 1°° are isomorphic.
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Full groups |.

Definition
A subgroup G < Homeo(X) is a full group if : whenever
Uo, ..., U, is a clopen partition of X, g, ..., g, are elements of G,

and g € Homeo(X) is such that gy, = gi|y, for all i, then g € G.
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Full groups |.

Definition
A subgroup G < Homeo(X) is a full group if : whenever
Uo, ..., U, is a clopen partition of X, go,...,gn are elements of G,

and g € Homeo(X) is such that gy, = gi|y, for all /, then g € G.
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Full groups |.

Definition
A subgroup G < Homeo(X) is a full group if : whenever
Uo, ..., U, is a clopen partition of X, go,...,gn are elements of G,

and g € Homeo(X) is such that gy, = gi|y, for all /, then g € G.

Definition
The topological full group of ¢, denoted [[¢]], is the smallest full
group containing ¢. It is a countable subgroup of Homeo(X).
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Definition
The full group of ¢ is

[¢] = {g € Homeo(X): Vx In, g(x) = p™(x)}



Full groups II.

Definition
The full group of ¢ is

[¢] = {g € Homeo(X): Vx In, g(x) = ¢p™(x)}

[#] is an uncountable group (actually coanalytic, non-Borel when ¢
is minimal).
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Full groups II.

Definition
The full group of ¢ is

[¢] = {g € Homeo(X): Vx In, g(x) = ¢p™(x)}

[#] is an uncountable group (actually coanalytic, non-Borel when ¢
is minimal).

[[¢]] consists of all elements of [¢] such that x — ny is continuous.
It contains each [,(¢).
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One direction of the GPS theorem is easy

An orbit equivalence between ¢ and ) is the same thing as a
homeomorphism g such that g[¢]g™ = [¢]; and the set of all
[¢]-invariant Borel probability measures coincides with M().
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One direction of the GPS theorem is easy

An orbit equivalence between ¢ and ) is the same thing as a

homeomorphism g such that g[¢]g™ = [¢]; and the set of all
[¢]-invariant Borel probability measures coincides with M().

Thus if ¢ and 1) are orbit equivalent via g then g.(M(p)) = M(v).
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One direction of the GPS theorem is easy

An orbit equivalence between ¢ and ) is the same thing as a
homeomorphism g such that g[¢]g™ = [¢]; and the set of all
[¢]-invariant Borel probability measures coincides with M().

Thus if ¢ and 1) are orbit equivalent via g then g.(M(p)) = M(v).

The converse is more mysterious: two minimal homeomorphisms
may preserve the same Borel probability measures yet have
different orbits.
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Actions on clopen sets

Theorem (Glasner—Weiss 1995)
Fix a minimal ¢, and x € X.

e For any two clopen A, B such that u(A) < u(B) for all
€ M(p), there exists g € Fx(gp) such that g(A) C B.

i
TN VN VYo /?’, %}q (w\ £ ZSCP%CEJ
Ccm\dzsdf(\c%’s)
(C{er@N
Fal 7
b
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Actions on clopen sets

Theorem (Glasner—Weiss 1995)
Fix a minimal ¢, and x € X.

e For any two clopen A, B such that u(A) < u(B) for all
€ M(p), there exists g € () such that g(A) C B.

e For any two clopen A, B such that u(A) = p(B) for all
€ M(¢p), there exists g € [¢] such that g(A) = g(B).
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Actions on clopen sets

Theorem (Glasner—Weiss 1995)
Fix a minimal ¢, and x € X.

e For any two clopen A, B such that p(A) < u(B) for all
€ M(p), there exists g € () such that g(A) C B.

e For any two clopen A, B such that u(A) = p(B) for all
€ M(¢p), there exists g € [¢] such that g(A) = g(B).

The first item above is proved by a compactness argument, and
the second follows from the first by back-and-forth.

J. Melleray GPS theorem: a new proof



Reformulating the Glasner—Weiss result in terms of full
groups

For full groups G, H, one has G = H iff for any clopen A, B

(3g € G g(A) = B) < (3h € H h(A) = B)
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Reformulating the Glasner—Weiss result in terms of full
groups

For full groups G, H, one has G = H iff for any clopen A, B

(3g € G g(A) = B) < (3h € H h(A) = B)

Hence the second item on the previous slide implies that

[¢] = {g € Homeo(X): Vi € M(p) g = u}.
Soppried 1 encode [_Cp]/
low wa Knaw F c,sffw\b j:q,j .
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Reformulating the Glasner—Weiss result in terms of full
groups

For full groups G, H, one has G = H iff for any clopen A, B

(3g € G g(A) = B) < (3h € H h(A) = B)

Hence the second item on the previous slide implies that
[¢] = {g € Homeo(X): Vi € M() gupr = u}.

It is always true that [x(¢) = [[¢]] so the orbits for the action of
'«(¢) on clopens do not depend on x.
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Reformulating the Glasner—Weiss result in terms of full
groups

For full groups G, H, one has G = H iff for any clopen A, B

(3g € G g(A) = B) & (3h € H h(A) = B)
Ence the second item on the previous slide implies that
[¢] = {g € Homeo(X): Vi € M(¢) gupt = pi}-

It is always true that [x(¢) = [[¢]] so the orbits for the action of
'«(¢) on clopens do not depend on x.

But in general([[¢]] # [¢]- VQB «(‘E))D'D-Qn/\ & @ZNQ G-Ps —

J. Melleray GPS theorem: a new proof



Definition (Krieger)
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Definition (Krieger)
A subgroup I of Homeo(X) is an ample group if
e [ is locally finite;

e [ is a full group;



Ample groups

Definition (Krieger)

A subgroup I of Homeo(X) is an ample group if
e [ is locally finite; MWY@Jg@Q
® [ is a full group;
® Forany v €T, {x: vy(x) = x} is clopen.
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Ample groups

Definition (Krieger)

A subgroup I' of Homeo(X) is an ample group if
® [ is locally finite; coun
® [ is a full group;
® Forany v €T, {x: vy(x) = x} is clopen.

Each T'x(¢p) is an ample group.
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Ample groups

Definition (Krieger)

A subgroup I of Homeo(X) is an ample group if
e [ is locally finite;
® [ is a full group;
® Forany v €T, {x: vy(x) = x} is clopen.

Each T'x(¢p) is an ample group.

An analogue of the Glasner-Weiss theorem holds for ample groups.
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Ample groups

Definition (Krieger)

A subgroup I of Homeo(X) is an ample group if
® [ is locally finite;
® [ is a full group;
® Forany v €T, {x: vy(x) = x} is clopen.

Each T'x(¢p) is an ample group.
An analogue of the Glasner-Weiss theorem holds for ample groups.

We say that [ is saturated if

T = {g € Homeo(X): Y € M(T) gupi = pu}
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Krieger's theorem

Theorem (Krieger 1979)

Assume that ', A are two ample subgroups of Homeo(X) such
that for any clopen U, V

(FyelyU)=V)e (BEreAXNU)=V)
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Krieger's theorem

Theorem (Krieger 1979)

Assume that ', A are two ample subgroups of Homeo(X) such
that for any clopen U, V

(FyelyU)=V)e (BEreAXNU)=V)

Then there exists g € Homeo(X) such that gFg™! = A

J. Melleray GPS theorem: a new proof



Krieger's theorem

Theorem (Krieger 1979)

Assume that ', A are two ample subgroups of Homeo(X) such
that for any clopen U, V

(FyelyU)=V)e (BEreAXNU)=V)
Then there exists g € Homeo(X) such that gFg™! = A

e |t follows that [',(¢), M« (¢) are conjugate for any two

x.x € X. ( m =Tl ] - v )
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Krieger's theorem

Theorem (Krieger 1979)

Assume that ', A are two ample subgroups of Homeo(X) such
that for any clopen U, V

Gyelr~yU)=V)s (EBreANU)=V)
Then there exists g € Homeo(X) such that gFg™! = A
e |t follows that [',(¢), M« (¢) are conjugate for any two
x,x' € X.
® From Krieger's theorem, one easily obtains the particular case
of the GPS theorem where ¢, are saturated,

ie. [[¢]] = [l [[¥]] = [¥]; and similarly for orbit equivalence
of saturated ample groups.
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How to prove the GPS theorem?

e The original proof of Giordano—Putnam—Skau is based on
techniques from operator algebras/homological algebra, and
Bratteli diagrams play an essential part. In this (and
subsequent refinements) it is hard to “understand the
dynamics that lie beneath”, to quote Glasner and Weiss.
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How to prove the GPS theorem?

e The original proof of Giordano—Putnam—Skau is based on
techniques from operator algebras/homological algebra, and
Bratteli diagrams play an essential part. In this (and
subsequent refinements) it is hard to “understand the
dynamics that lie beneath”, to quote Glasner and Weiss.

e A more recent “elementary” proof of Hamachi—Keane—Yuasa
(2011) elaborates on ideas of Glasner—Weiss; it is quite long
and technical.
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How to prove the GPS theorem?

e The original proof of Giordano—Putnam—Skau is based on
techniques from operator algebras/homological algebra, and
Bratteli diagrams play an essential part. In this (and
subsequent refinements) it is hard to “understand the
dynamics that lie beneath”, to quote Glasner and Weiss.

e A more recent “elementary” proof of Hamachi—Keane—Yuasa
(2011) elaborates on ideas of Glasner—Weiss; it is quite long
and technical.

e Based on the above discussion, we would like a proof, as
elementary as possible, of the following fact: every minimal
homeomorphism is orbit equivalent to a saturated minimal
homeomorphism.

J. Melleray GPS theorem: a new proof



A refinement of Krieger's theorem

Given an ample group I acting minimally, say that K is [-sparse if
K intersects each orbit in at most one point.
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A refinement of Krieger's theorem

Given an ample group I acting minimally, say that K is [-sparse if
K intersects each orbit in at most one point.

Theorem

Let I', A be two ample groups acting minimally, and such that for
any clopen U, V

Gy el 1(U)= V) (3r e AAU) = V)
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A refinement of Krieger's theorem

Given an ample group I acting minimally, say that K is [-sparse if
K intersects each orbit in at most one point.

Theorem

Let I', A be two ample groups acting minimally, and such that for
any clopen U, V

Gy el 1(U)= V) (3r e AAU) = V)

Let K (resp. L) be a I-sparse (resp. A-sparse) closed subset of X,
and h: K — L a homeomorphism.
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A refinement of Krieger's theorem

Given an ample group I acting minimally, say that K is [-sparse if
K intersects each orbit in at most one point.

Theorem
Let I', A be two ample groups acting minimally, and such that for
any clopen U, V

Gy el 1(U)= V) (3r e AAU) = V)

Let K (resp. L) be a I-sparse (resp. A-sparse) closed subset of X,
and h: K — L a homeomorphism.
Then there exists g € Homeo(X) such that gFg™! = A and
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A refinement of Krieger's theorem

Given an ample group I acting minimally, say that K is [-sparse if
K intersects each orbit in at most one point.

Theorem
Let I', A be two ample groups acting minimally, and such that for
any clopen U, V

Gy el 1(U)= V) (3r e AAU) = V)

Let K (resp. L) be a I-sparse (resp. A-sparse) closed subset of X,
and h: K — L a homeomorphism.
Then there exists g € Homeo(X) such that gFg™! = A and

8k = h.
The proof is by back-and-forth (adapting Krieger's original
argument).

J. Melleray GPS theorem: a new proof



GPS classification theorem for minimal ample groups

Let I' be minimal ample. On can (with some work!) produce:
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GPS classification theorem for minimal ample groups

Let I' be minimal ample. On can (with some work!) produce:

® A closed set K Ll o(K) = without isolated points, with ¢ a
homeomorphic involution, such that the relation Rr x
obtained by gluing together the -orbits of x and o(x) for all
x € K is induced by an ample group [ with the same orbits as
I on Clopen(X).
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GPS classification theorem for minimal ample groups

Let I' be minimal ample. On can (with some work!) produce:

® A closed set K Ll o(K) = without isolated points, with ¢ a
homeomorphic involution, such that the relation Rr x
obtained by gluing together the -orbits of x and o(x) for all
x € K is induced by an ample group [ with the same orbits as
I on Clopen(X).

® A closed set L (L) = without isolated points, with 7 a
homeomorphic involution, such that Rr; is induced by a

saturated ample group A.
Syl D

S—= L OuR Sty M\— Q(\_Q‘T\J ‘,d_QA_\'-
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GPS classification theorem for minimal ample groups

Let I' be minimal ample. On can (with some work!) produce:

® A closed set K Ll o(K) = without isolated points, with ¢ a
homeomorphic involution, such that the relation Rr x
obtained by gluing together the -orbits of x and o(x) for all
x € K is induced by an ample group [ with the same orbits as
I on Clopen(X).

® A closed set L (L) = without isolated points, with 7 a
homeomorphic involution, such that Rr; is induced by a
saturated ample group A.

Then [ and A are OE by our refinement of Krieger's theorem, and
I, I are conjugate. So I is OF to a saturated ample group, and
this proves that invariant measures are a complete invariant of OE
for minimal ample groups.
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GPS classification theorem for Z-actions

® As observed by Giordano-Putnam-Skau, the classification
theorem for minimal Z-actions follows from the classification
theorem for minimal ample groups once we know that I',(¢)
and ¢ are OE (for minimal ¢).

J. Melleray GPS theorem: a new proof



GPS classification theorem for Z-actions

® As observed by Giordano-Putnam-Skau, the classification
theorem for minimal Z-actions follows from the classification
theorem for minimal ample groups once we know that I',(¢)
and ¢ are OE (for minimal ¢).

® Fix ¢, and x, y belonging to different ¢-orbits. Denote

My () =Tx(p) NIy (), It is ample, acts minimally; 'y ,(¢)
and I,(¢) have the same/invariant Borel probability measures.
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GPS classification theorem for Z-actions

® As observed by Giordano-Putnam-Skau, the classification
theorem for minimal Z-actions follows from the classification
theorem for minimal ample groups once we know that I',(¢)
and ¢ are OE (for minimal ¢).

® Fix ¢, and x, y belonging to different ¢-orbits. Denote

Mxy(9) =Tx(p)NTy (). It is ample, acts minimally; 'y ,(¢)
and I,(¢) have the same invariant Borel probability measures.
Hence they are OE.

® So k() is OE to a relation obtained by gluing together two
I'x(p)-orbits. This is true for any two orbits by our refinement
of Krieger's theorem: 'y(¢) and ¢ are OE.

J. Melleray GPS theorem: a new proof



Thanks for your attention!
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