A new proof of a theorem of Giordano, Putnam and Skau

J. Melleray Joint work with Simon Robert (Lyon)

Institut Camille Jordan (Université Lyon 1)

Caltech logic seminar

I. Topological dynamics on the Cantor space: some background.

Throughout, X is a Cantor space and $\varphi, \psi \colon X \to X$ are homeomorphisms.

Throughout, X is a Cantor space and $\varphi, \psi \colon X \to X$ are homeomorphisms.

Definition

A homeomorphism φ of X is *minimal* each φ -orbit is dense. Equivalently: for any clopen U, there exists N such that

$$\bigcup_{i=0}^N \varphi^i(U) = X$$

Throughout, X is a Cantor space and $\varphi, \psi \colon X \to X$ are homeomorphisms.

Definition

A homeomorphism φ of X is *minimal* each φ -orbit is dense. Equivalently: for any clopen U, there exists N such that

$$\bigcup_{i=0}^{m \{i\}} \varphi^i(U) = X$$

For any φ , there exists a closed $F \subseteq X$ such that $\varphi(F) = F$ and $\varphi_{\uparrow F}$ is minimal; if F is infinite it is homeomorphic to X.

Define Od: $\{0, 1\}^{\omega} \rightarrow \{0, 1\}^{\omega}$ as follows: • If $x \neq 1^{\infty}$, set $n_x = \min\{i: x(i) = 0\}$ and

$$\operatorname{Od}(x)(i) = \begin{cases} 0 & \text{ for all } i < n_x \\ 1 & \text{ for } i = n_x \\ x(i) & \text{ for all } i > n_x \end{cases}$$

Define Od: $\{0,1\}^{\omega} \rightarrow \{0,1\}^{\omega}$ as follows:

• If $x \neq 1^{\infty}$, set $n_x = \min\{i \colon x(i) = 0\}$ and

$$\operatorname{Od}(x)(i) = \begin{cases} 0 & \text{ for all } i < n_x \\ 1 & \text{ for } i = n_x \\ x(i) & \text{ for all } i > n_x \end{cases}$$

• If
$$x = 1^{\infty}$$
, set $\operatorname{Od}(x) = 0^{\infty}$

Then Od is a minimal homeomorphism; the associated equivalence relation is obtained from E_0 by gluing the classes of 0^{∞} and 1^{∞} together.

Fix a minimal φ , and a clopen $U \neq \emptyset$. For $x \in U$, set

$$n(x) = \min\left\{i \ge 1 \colon \varphi^i(x) \in U\right\}$$

Fix a minimal φ , and a clopen $U \neq \emptyset$. For $x \in U$, set

$$n(x) = \min\left\{i \ge 1 \colon \varphi^i(x) \in U\right\}$$

Then $n: U \to \mathbb{N}$ is continuous, hence has finite image F and each $U_i = \{x \in U : n(x) = i\}$ is clopen. Then one has

$$X = \bigsqcup_{i \in F} \bigsqcup_{j=0}^{i-1} \varphi^j(U)$$

Fix a minimal φ , and a clopen $U \neq \emptyset$. For $x \in U$, set

$$n(x) = \min\left\{i \ge 1 \colon \varphi^i(x) \in U\right\}$$

Then $n: U \to \mathbb{N}$ is continuous, hence has finite image F and each $U_i = \{x \in U : n(x) = i\}$ is clopen. Then one has

$$X = \bigsqcup_{i \in F} \bigsqcup_{j=0}^{i-1} \varphi^j(U)$$

This is the archetype of a Kakutani–Rokhlin partition: a clopen partition $(A_{i,j})_{i \in F, j \in n_i}$ such that $\varphi(A_{i,j}) = A_{i,j+1}$ for all $j \in n_i - 1$.

An artist's rendition of a Kakutani-Rokhlin partition

Each atom not in the top is moved one level up by φ ; the top is sent back to the base, and we cannot read any information about that on the partition.

Given a minimal φ , we can build a sequence of Kakutani–Rokhlin partitions \mathcal{A}_n such that:

Given a minimal φ , we can build a sequence of Kakutani–Rokhlin partitions \mathcal{A}_n such that:

• For all n, A_{n+1} refines A_n .

Given a minimal φ , we can build a sequence of Kakutani–Rokhlin partitions \mathcal{A}_n such that:

- For all n, A_{n+1} refines A_n .
- The bases and tops of A_n each shrink to a point.

Given a minimal φ , we can build a sequence of Kakutani–Rokhlin partitions \mathcal{A}_n such that:

- For all n, A_{n+1} refines A_n .
- The bases and tops of A_n each shrink to a point.
- Given U clopen, there exists n such that U is a union of atoms of A_n .

Given a minimal φ , we can build a sequence of Kakutani–Rokhlin partitions \mathcal{A}_n such that:

- For all n, A_{n+1} refines A_n .
- The bases and tops of A_n each shrink to a point.
- Given U clopen, there exists n such that U is a union of atoms of A_n .

Such sequences are encoding a basis of neighborhoods of φ in Homeo(X).

Cutting a Kakutani-Rokhlin partition to make it compatible with a clopen set

Cutting a Kakutani-Rokhlin partition to make it compatible with a clopen set

For every atom α of \mathcal{A}_n not contained in the top, we let τ_{α} be the involution coinciding with φ on α , φ^{-1} on $\varphi(\alpha)$; and equal to the identity everywhere else.

For every atom α of \mathcal{A}_n not contained in the top, we let τ_{α} be the involution coinciding with φ on α , φ^{-1} on $\varphi(\alpha)$; and equal to the identity everywhere else.

Let $\Gamma_{n,x}(\varphi)$ be the finite group generated by the maps τ_{α} ; it acts by permutations on each column of \mathcal{A}_n .

For every atom α of \mathcal{A}_n not contained in the top, we let τ_{α} be the involution coinciding with φ on α , φ^{-1} on $\varphi(\alpha)$; and equal to the identity everywhere else.

Let $\Gamma_{n,x}(\varphi)$ be the finite group generated by the maps τ_{α} ; it acts by permutations on each column of \mathcal{A}_n .

The group $\Gamma_x(\varphi) = \bigcup_n \Gamma_{n,x}(\varphi)$ is locally finite and acts minimally.

For every atom α of \mathcal{A}_n not contained in the top, we let τ_{α} be the involution coinciding with φ on α , φ^{-1} on $\varphi(\alpha)$; and equal to the identity everywhere else.

Let $\Gamma_{n,x}(\varphi)$ be the finite group generated by the maps τ_{α} ; it acts by permutations on each column of \mathcal{A}_n .

The group $\Gamma_x(\varphi) = \bigcup_n \Gamma_{n,x}(\varphi)$ is locally finite and acts minimally. For the dyadic odometer (and bases shrinking to 0^∞) we obtain the group of dyadic permutations.

Orbits of the action of $\Gamma_x(\varphi)$

The φ-orbit of x splits into two Γ_x(φ)-orbits (positive and negative half orbits): via Γ_x(φ), it is not possible to move φ⁻¹(x) to x.

- The φ-orbit of x splits into two Γ_x(φ)-orbits (positive and negative half orbits): via Γ_x(φ), it is not possible to move φ⁻¹(x) to x.
- All other orbits for the actions of φ and $\Gamma_x(\varphi)$ on X are the same.

II. Orbit Equivalence.

Definition

 φ , ψ are *orbit equivalent* if there exists $g \in \text{Homeo}(X)$ such that

$$\forall x, x' \in X \quad (xR_{\varphi}x') \Leftrightarrow (g(x)R_{\psi}g(x'))$$

Definition

 φ , ψ are *orbit equivalent* if there exists $g \in \text{Homeo}(X)$ such that

$$\forall x, x' \in X \quad (xR_{\varphi}x') \Leftrightarrow (g(x)R_{\psi}g(x'))$$

Denote by $M(\varphi)$ the set of all φ -invariant Borel probability measures.

Definition

 φ , ψ are *orbit equivalent* if there exists $g \in \operatorname{Homeo}(X)$ such that

$$\forall x, x' \in X \quad (x R_{\varphi} x') \Leftrightarrow (g(x) R_{\psi} g(x'))$$

Denote by $M(\varphi)$ the set of all φ -invariant Borel probability measures.

Theorem (Giordano–Putnam–Skau 1995)

Two minimal homeomorphisms φ, ψ of X are orbit equivalent iff there exists $g \in \text{Homeo}(X)$ such that $g_*M(\varphi) = M(\psi)$
Definition

 φ , ψ are *orbit equivalent* if there exists $g \in \operatorname{Homeo}(X)$ such that

$$\forall x, x' \in X \quad (x R_{\varphi} x') \Leftrightarrow (g(x) R_{\psi} g(x'))$$

Denote by $M(\varphi)$ the set of all φ -invariant Borel probability measures.

Theorem (Giordano–Putnam–Skau 1995)

Two minimal homeomorphisms φ, ψ of X are orbit equivalent iff there exists $g \in \operatorname{Homeo}(X)$ such that $g_*M(\varphi) = M(\psi)$

They also proved that φ and $\Gamma_x(\varphi)$ are OE for any minimal φ ; this shows that E_0 and the relation induced from E_0 by gluing the classes of 0^{∞} and 1^{∞} are isomorphic.

Full groups I.

Definition

A subgroup $G \leq \text{Homeo}(X)$ is a *full group* if : whenever U_0, \ldots, U_n is a clopen partition of X, g_0, \ldots, g_n are elements of G, and $g \in \text{Homeo}(X)$ is such that $g_{|U_i} = g_i|_{U_i}$ for all i, then $g \in G$.

Full groups I.

Definition

A subgroup $G \leq \text{Homeo}(X)$ is a *full group* if : whenever U_0, \ldots, U_n is a clopen partition of X, g_0, \ldots, g_n are elements of G, and $g \in \text{Homeo}(X)$ is such that $g_{|U_i} = g_{i|U_i}$ for all i, then $g \in G$.

Full groups I.

Definition

A subgroup $G \leq \text{Homeo}(X)$ is a *full group* if : whenever U_0, \ldots, U_n is a clopen partition of X, g_0, \ldots, g_n are elements of G, and $g \in \text{Homeo}(X)$ is such that $g_{|U_i} = g_{i|U_i}$ for all i, then $g \in G$.

Definition

The topological full group of φ , denoted [[φ]], is the smallest full group containing φ . It is a countable subgroup of Homeo(X).

 $\begin{array}{l} \text{Definition} \\ \text{The full group of } \varphi \text{ is} \end{array}$

 $[\varphi] = \{g \in \operatorname{Homeo}(X) \colon \forall x \exists n_x \ g(x) = \varphi^{n_x}(x)\}$

 $\begin{array}{l} \text{Definition} \\ \text{The full group of } \varphi \text{ is} \end{array}$

$$[\varphi] = \{g \in \operatorname{Homeo}(X) \colon \forall x \exists n_x \ g(x) = \varphi^{n_x}(x)\}$$

 $[\varphi]$ is an uncountable group (actually coanalytic, non-Borel when φ is minimal).

$\begin{array}{l} \text{Definition} \\ \text{The full group of } \varphi \text{ is} \end{array}$

$$[\varphi] = \{g \in \operatorname{Homeo}(X) \colon \forall x \; \exists n_x \; g(x) = \varphi^{n_x}(x)\}$$

 $[\varphi]$ is an uncountable group (actually coanalytic, non-Borel when φ is minimal).

 $[[\varphi]]$ consists of all elements of $[\varphi]$ such that $x \mapsto n_x$ is continuous. It contains each $\Gamma_x(\varphi)$. An orbit equivalence between φ and ψ is the same thing as a homeomorphism g such that $g[\varphi]g^{-1} = [\psi]$; and the set of all $[\varphi]$ -invariant Borel probability measures coincides with $M(\varphi)$.

An orbit equivalence between φ and ψ is the same thing as a homeomorphism g such that $g[\varphi]g^{-1} = [\psi]$; and the set of all $[\varphi]$ -invariant Borel probability measures coincides with $M(\varphi)$.

Thus if φ and ψ are orbit equivalent via g then $g_*(M(\varphi)) = M(\psi)$.

An orbit equivalence between φ and ψ is the same thing as a homeomorphism g such that $g[\varphi]g^{-1} = [\psi]$; and the set of all $[\varphi]$ -invariant Borel probability measures coincides with $M(\varphi)$.

Thus if φ and ψ are orbit equivalent via g then $g_*(M(\varphi)) = M(\psi)$.

The converse is more mysterious: two minimal homeomorphisms may preserve the same Borel probability measures yet have different orbits.

Theorem (Glasner–Weiss 1995)

Fix a minimal φ , and $x \in X$.

For any two clopen A, B such that μ(A) < μ(B) for all μ ∈ M(φ), there exists g ∈ Γ_x(φ) such that g(A) ⊂ B.

$$\exists N \forall n > N \forall z \qquad \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\varphi^{1}(x)}(A) < \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\varphi^{1}(x)}(B)$$

$$(\text{compositioness})$$

Theorem (Glasner–Weiss 1995)

Fix a minimal φ , and $x \in X$.

- For any two clopen A, B such that μ(A) < μ(B) for all μ ∈ M(φ), there exists g ∈ Γ_x(φ) such that g(A) ⊂ B.
- For any two clopen A, B such that μ(A) = μ(B) for all μ ∈ M(φ), there exists g ∈ [φ] such that g(A) = g(B).

Theorem (Glasner–Weiss 1995)

Fix a minimal φ , and $x \in X$.

- For any two clopen A, B such that μ(A) < μ(B) for all μ ∈ M(φ), there exists g ∈ Γ_x(φ) such that g(A) ⊂ B.
- For any two clopen A, B such that μ(A) = μ(B) for all μ ∈ M(φ), there exists g ∈ [φ] such that g(A) = g(B).

The first item above is proved by a compactness argument, and the second follows from the first by back-and-forth.

Reformulating the Glasner–Weiss result in terms of full groups

For full groups G, H, one has $\overline{G} = \overline{H}$ iff for any clopen A, B

$$(\exists g \in G \ g(A) = B) \Leftrightarrow (\exists h \in H \ h(A) = B)$$

Reformulating the Glasner–Weiss result in terms of full groups

For full groups G, H, one has $\overline{G} = \overline{H}$ iff for any clopen A, B

$$(\exists g \in G \ g(A) = B) \Leftrightarrow (\exists h \in H \ h(A) = B)$$

Hence the second item on the previous slide implies that $\overline{[\varphi]} = \{g \in \operatorname{Homeo}(X) \colon \forall \mu \in \underbrace{\mathcal{M}(\varphi)}_{\text{Supplied}} g_* \mu = \mu \}.$ Supplied to encode $\underbrace{\zeta q J}_{\text{Low we know it coptures}} \underbrace{\zeta q J}_{\overline{[q]}}.$ For full groups G, H, one has $\overline{G} = \overline{H}$ iff for any clopen A, B

$$(\exists g \in G \ g(A) = B) \Leftrightarrow (\exists h \in H \ h(A) = B)$$

Hence the second item on the previous slide implies that $\overline{[\varphi]} = \{g \in \operatorname{Homeo}(X) \colon \forall \mu \in M(\varphi) \ g_*\mu = \mu\}.$

It is always true that $\overline{\Gamma_x(\varphi)} = \overline{[[\varphi]]}$ so the orbits for the action of $\Gamma_x(\varphi)$ on clopens do not depend on x.

For full groups G, H, one has $\overline{G} = \overline{H}$ iff for any clopen A, B

$$(\exists g \in G \ g(A) = B) \Leftrightarrow (\exists h \in H \ h(A) = B)$$

Hence the second item on the previous slide implies that $\overline{[\varphi]} = \{g \in \operatorname{Homeo}(X) \colon \forall \mu \in M(\varphi) \ g_*\mu = \mu\}.$

It is always true that $\overline{\Gamma_x(\varphi)} = \overline{[[\varphi]]}$ so the orbits for the action of $\Gamma_x(\varphi)$ on clopens do not depend on x.

But in general
$$([\varphi]] \neq [\varphi]$$
. Key problem to powe G-PS -

A subgroup Γ of Homeo(X) is an *ample group* if

A subgroup Γ of Homeo(X) is an *ample group* if

• Γ is locally finite;

A subgroup Γ of Homeo(X) is an *ample group* if

- Γ is locally finite;
- Γ is a full group;

A subgroup Γ of Homeo(X) is an *ample group* if

- Γ is locally finite; +convable
- Γ is a full group;

• For any
$$\gamma \in \Gamma$$
, $\{x \colon \gamma(x) = x\}$ is clopen.

A subgroup Γ of Homeo(X) is an *ample group* if

- Γ is locally finite; cantable
- Γ is a full group;
- For any $\gamma \in \Gamma$, $\{x \colon \gamma(x) = x\}$ is clopen.

Each $\Gamma_x(\varphi)$ is an ample group.

A subgroup Γ of Homeo(X) is an *ample group* if

- Γ is locally finite;
- Γ is a full group;
- For any $\gamma \in \Gamma$, $\{x \colon \gamma(x) = x\}$ is clopen.

Each $\Gamma_{x}(\varphi)$ is an ample group.

An analogue of the Glasner-Weiss theorem holds for ample groups.

A subgroup Γ of Homeo(X) is an *ample group* if

- Γ is locally finite;
- Γ is a full group;
- For any $\gamma \in \Gamma$, $\{x \colon \gamma(x) = x\}$ is clopen.

Each $\Gamma_{x}(\varphi)$ is an ample group.

An analogue of the Glasner-Weiss theorem holds for ample groups. We say that Γ is <code>saturated</code> if

$$\overline{\Gamma} = \{ g \in \operatorname{Homeo}(X) \colon \forall \mu \in M(\Gamma) \ g_* \mu = \mu \}$$

Assume that $\Gamma,\,\Lambda$ are two ample subgroups of $\operatorname{Homeo}(X)$ such that for any clopen $\,U,\,V$

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Assume that Γ , Λ are two ample subgroups of $\operatorname{Homeo}(X)$ such that for any clopen U, V

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Then there exists $g \in \operatorname{Homeo}(X)$ such that $g \Gamma g^{-1} = \Lambda$.

Assume that Γ , Λ are two ample subgroups of Homeo(X) such that for any clopen U, V

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Then there exists $g \in \operatorname{Homeo}(X)$ such that $g \Gamma g^{-1} = \Lambda$.

• It follows that $\Gamma_{x}(\varphi)$, $\Gamma_{x'}(\varphi)$ are conjugate for any two $x, x' \in X$. $\left(\begin{array}{c} \Gamma_{z}(\varphi) = \overline{\Gamma_{z}} \\ \Gamma_{z}(\varphi) \end{array} \right) = \overline{\Gamma_{x'}} \left[\begin{array}{c} \varphi \\ \varphi \end{array} \right]$

Assume that Γ , Λ are two ample subgroups of $\operatorname{Homeo}(X)$ such that for any clopen U, V

$$(\exists \gamma \in \mathsf{\Gamma} \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \mathsf{\Lambda} \ \lambda(U) = V)$$

Then there exists $g \in \operatorname{Homeo}(X)$ such that $g \Gamma g^{-1} = \Lambda$.

- It follows that $\Gamma_x(\varphi)$, $\Gamma_{x'}(\varphi)$ are conjugate for any two $x, x' \in X$.
- From Krieger's theorem, one easily obtains the particular case of the GPS theorem where φ, ψ are saturated,
 i.e. [[φ]] = [φ], [[ψ]] = [ψ]; and similarly for orbit equivalence of saturated ample groups.

• The original proof of Giordano–Putnam–Skau is based on techniques from operator algebras/homological algebra, and Bratteli diagrams play an essential part. In this (and subsequent refinements) it is hard to "understand the dynamics that lie beneath", to quote Glasner and Weiss.

- The original proof of Giordano–Putnam–Skau is based on techniques from operator algebras/homological algebra, and Bratteli diagrams play an essential part. In this (and subsequent refinements) it is hard to "understand the dynamics that lie beneath", to quote Glasner and Weiss.
- A more recent "elementary" proof of Hamachi–Keane–Yuasa (2011) elaborates on ideas of Glasner–Weiss; it is quite long and technical.

- The original proof of Giordano–Putnam–Skau is based on techniques from operator algebras/homological algebra, and Bratteli diagrams play an essential part. In this (and subsequent refinements) it is hard to "understand the dynamics that lie beneath", to quote Glasner and Weiss.
- A more recent "elementary" proof of Hamachi–Keane–Yuasa (2011) elaborates on ideas of Glasner–Weiss; it is quite long and technical.
- Based on the above discussion, we would like a proof, as elementary as possible, of the following fact: every minimal homeomorphism is orbit equivalent to a saturated minimal homeomorphism.

Theorem

Let $\Gamma, \ \Lambda$ be two ample groups acting minimally, and such that for any clopen U, V

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Theorem

Let $\Gamma, \ \Lambda$ be two ample groups acting minimally, and such that for any clopen U, V

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Let K (resp. L) be a Γ -sparse (resp. Λ -sparse) closed subset of X, and $h: K \to L$ a homeomorphism.

Theorem

Let $\Gamma,\,\Lambda$ be two ample groups acting minimally, and such that for any clopen $\,U,\,V$

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Let K (resp. L) be a Γ -sparse (resp. Λ -sparse) closed subset of X, and $h: K \to L$ a homeomorphism. Then there exists $g \in \operatorname{Homeo}(X)$ such that $g\Gamma g^{-1} = \Lambda$ and $g_{|K} = h$.

Theorem

Let $\Gamma,\,\Lambda$ be two ample groups acting minimally, and such that for any clopen $\,U,\,V$

$$(\exists \gamma \in \Gamma \ \gamma(U) = V) \Leftrightarrow (\exists \lambda \in \Lambda \ \lambda(U) = V)$$

Let K (resp. L) be a Γ -sparse (resp. Λ -sparse) closed subset of X, and $h: K \to L$ a homeomorphism. Then there exists $g \in \operatorname{Homeo}(X)$ such that $g\Gamma g^{-1} = \Lambda$ and $g_{|K} = h$.

The proof is by back-and-forth (adapting Krieger's original argument).
GPS classification theorem for minimal ample groups

Let Γ be minimal ample. On can (with some work!) produce:

Let Γ be minimal ample. On can (with some work!) produce:

A closed set K ⊔ σ(K) = without isolated points, with σ a homeomorphic involution, such that the relation R_{Γ,K} obtained by gluing together the Γ-orbits of x and σ(x) for all x ∈ K is induced by an ample group Γ with the same orbits as Γ on Clopen(X).

Let Γ be minimal ample. On can (with some work!) produce:

- A closed set K ⊔ σ(K) = without isolated points, with σ a homeomorphic involution, such that the relation R_{Γ,K} obtained by gluing together the Γ-orbits of x and σ(x) for all x ∈ K is induced by an ample group Γ with the same orbits as Γ on Clopen(X).
- A closed set L ⊔ π(L) = without isolated points, with π a homeomorphic involution, such that R_{Γ,L} is induced by a saturated ample group Λ.

Let Γ be minimal ample. On can (with some work!) produce:

- A closed set K ⊔ σ(K) = without isolated points, with σ a homeomorphic involution, such that the relation R_{Γ,K} obtained by gluing together the Γ-orbits of x and σ(x) for all x ∈ K is induced by an ample group Γ with the same orbits as Γ on Clopen(X).
- A closed set L ⊔ π(L) = without isolated points, with π a homeomorphic involution, such that R_{Γ,L} is induced by a saturated ample group Λ.

Then $\tilde{\Gamma}$ and Λ are OE by our refinement of Krieger's theorem, and Γ , $\tilde{\Gamma}$ are conjugate. So Γ is OE to a saturated ample group, and this proves that invariant measures are a complete invariant of OE for minimal ample groups.

GPS classification theorem for $\mathbb{Z}\text{-}actions$

 As observed by Giordano-Putnam-Skau, the classification theorem for minimal Z-actions follows from the classification theorem for minimal ample groups once we know that Γ_x(φ) and φ are OE (for minimal φ).

GPS classification theorem for $\mathbb{Z}\text{-}actions$

- As observed by Giordano-Putnam-Skau, the classification theorem for minimal Z-actions follows from the classification theorem for minimal ample groups once we know that Γ_x(φ) and φ are OE (for minimal φ).
- Fix φ , and x, y belonging to different φ -orbits. Denote $\Gamma_{x,y}(\varphi) = \Gamma_x(\varphi) \cap \Gamma_y(\varphi)$. It is ample, acts minimally; $\Gamma_{x,y}(\varphi)$ and $\Gamma_x(\varphi)$ have the same invariant Borel probability measures. Hence they are OE. $O^{+}(x) = O^{+}(x) = O^{+}(y) = O^{+}(y) = O^{+}(y)$

GPS classification theorem for $\mathbb{Z}\text{-}actions$

- As observed by Giordano-Putnam-Skau, the classification theorem for minimal Z-actions follows from the classification theorem for minimal ample groups once we know that Γ_x(φ) and φ are OE (for minimal φ).
- Fix φ , and x, y belonging to different φ -orbits. Denote $\Gamma_{x,y}(\varphi) = \Gamma_x(\varphi) \cap \Gamma_y(\varphi)$. It is ample, acts minimally; $\Gamma_{x,y}(\varphi)$ and $\Gamma_x(\varphi)$ have the same invariant Borel probability measures. Hence they are OE.
- So Γ_x(φ) is OE to a relation obtained by gluing together two Γ_x(φ)-orbits. This is true for any two orbits by our refinement of Krieger's theorem: Γ_x(φ) and φ are OE.

Thanks for your attention!