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A(G) = sup{degg(v) : v € V(G)}.

Let n€ {1,2,...,8o}. An n-coloring of G isa map c: V(G) = n
with
Vx,y € V(G) xGy = c(x) # c(y).

The chromatic number of G is the minimal n for which G has an
n-coloring. Notation: x(G).
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Assume that V/(G) is endowed with a Borel structure.
ne{1,2,...,X0} is equipped with the trivial Borel structure.
Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of
V(G) x V(G).

Borel chromatic numbers: minimal n for which G has a Borel
n-coloring. Notation: x5(G).

F-measurable chromatic numbers, if 7 C P(V(G)) is a o-algebra.
Notation: x=(G).
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Let G be a finite graph. If A(G) < d then x(G) < d+ 1.

Theorem. (Kechris—Solecki-Todorgevi¢) Let G be a Borel graph.
If A(G) < d then xg(G) < d+ 1.

Theorem. (Brooks) Let G be a finite graph. If A(G) < d then
X(G) < d, unless d =2 an G contains an odd cycle, or d > 3 and
G contains a Kyi1.

If V(G) is Polish, xgm(G) is the Baire-measurable chromatic
number of G; if v is a measure on V(G), x,(G) is the
p-measurable chromatic number of G.

Theorem. (Conley—Marks—Tucker-Drob) Let G be a Borel graph
with V(G) Polish, and p be a measure on V(G). Let d > 3. If
A(G) < d then xgm(G), xu(G) < d unless G contains a Kgy1.
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Theorem. (Marks) Let d > 3. There exists an acyclic d-regular
Borel graph with xg(G) = d + 1.

Consider d = 3. Let I = (o, 3,v|a?® = 82 =42 =1). T acts on
the space n' by the left-shift action, i.e., for §,6" € T let

§-x(6") =x(671- 4.

The Schreier-graph of this action on n' is defined by making x, x’
adjacent if for some 6 € S = {«, 3,7} we have § - x = x'. Let G
be the restriction of this graph to

Free(n") = {x : T acts freely on the component of x}.
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Let H be a Borel graph. T acts on the space V(H)" by the
left-shift action, and define the Schreier-graph as before.

Let Hom(I', S; H) be the restriction of the Schreier-graph to the set
{h € V(H)" : his a homomorphism from Cay(I'; S) to H}.

Theorem. (Grebik=V) Assume that H is a locally countable Borel

graph. Then
m xg(H) < 3 implies xg(Hom(T', S; H)) < 3.
B Xal-abs(H) > 3 implies xg(Hom(T, 5; H)) > 3.
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Theorem. (Conley—Jackson—Marks—Seward—Tucker-Drob) There
exists a hyperfinite 3-regular acyclic Borel graph G with

xs(G) = 4.

Theorem. (Todorgevié-V)

{G : G is an acyclic Borel graph with yg(G) < 3} is £3-complete.
Theorem. (Grebik-V)

{G : G is a 3-regular acyclic Borel graph with x5(G) <3} is

> 1-complete.
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Open questions

m Is the collection of compact free subshifts of 27 with Borel
chromatic number < 3 also ¥3-complete?

m Is toastability ¥3-complete on bounded degree acyclic Borel
graphs?



Thank you for your attention!



