New examples of bounded degree acyclic graphs with large Borel chromatic number

Zoltán Vidnyánszky

California Institute of Technology

Caltech Logic Seminar

Preliminaries

Let G be a graph on the vertex set V(G). Define

$$\Delta(G) = \sup\{\deg_G(v) : v \in V(G)\}.$$

Preliminaries

Let G be a graph on the vertex set V(G). Define

$$\Delta(G) = \sup\{\deg_G(v) : v \in V(G)\}.$$

Let $n \in \{1, 2, \dots, \aleph_0\}$. An *n*-coloring of G is a map $c : V(G) \rightarrow n$ with

$$\forall x, y \in V(G) \ xGy \implies c(x) \neq c(y).$$

Preliminaries

Let G be a graph on the vertex set V(G). Define

$$\Delta(G) = \sup\{\deg_G(v) : v \in V(G)\}.$$

Let $n \in \{1, 2, ..., \aleph_0\}$. An *n*-coloring of G is a map $c : V(G) \rightarrow n$ with

$$\forall x,y \in V(G) \ xGy \implies c(x) \neq c(y).$$

The *chromatic number* of G is the minimal n for which G has an *n*-coloring. Notation: $\chi(G)$.

Assume that V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure.

Assume that V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure. Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of $V(G) \times V(G)$.

Assume that V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure. Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of $V(G) \times V(G)$.

Borel chromatic numbers: minimal *n* for which *G* has a Borel *n*-coloring. Notation: $\chi_B(G)$.

Assume that V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure. Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of $V(G) \times V(G)$.

Borel chromatic numbers: minimal *n* for which *G* has a Borel *n*-coloring. Notation: $\chi_B(G)$.

 \mathcal{F} -measurable chromatic numbers, if $\mathcal{F} \subset \mathcal{P}(V(G))$ is a σ -algebra. Notation: $\chi_{\mathcal{F}}(G)$.

Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d + 1$.

Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d+1$.

Theorem. (Kechris–Solecki–Todorčević) Let G be a Borel graph. If $\Delta(G) \leq d$ then $\chi_B(G) \leq d + 1$.

Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d + 1$.

Theorem. (Kechris–Solecki–Todorčević) Let G be a Borel graph. If $\Delta(G) \leq d$ then $\chi_B(G) \leq d + 1$.

Theorem. (Brooks) Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d$, unless d = 2 an G contains an odd cycle, or $d \geq 3$ and G contains a K_{d+1} .

Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d + 1$.

Theorem. (Kechris–Solecki–Todorčević) Let G be a Borel graph. If $\Delta(G) \leq d$ then $\chi_B(G) \leq d + 1$.

Theorem. (Brooks) Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d$, unless d = 2 an G contains an odd cycle, or $d \geq 3$ and G contains a K_{d+1} .

If V(G) is Polish, $\chi_{BM}(G)$ is the Baire-measurable chromatic number of G; if μ is a measure on V(G), $\chi_{\mu}(G)$ is the μ -measurable chromatic number of G.

Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d + 1$.

Theorem. (Kechris–Solecki–Todorčević) Let G be a Borel graph. If $\Delta(G) \leq d$ then $\chi_B(G) \leq d + 1$.

Theorem. (Brooks) Let G be a finite graph. If $\Delta(G) \leq d$ then $\chi(G) \leq d$, unless d = 2 an G contains an odd cycle, or $d \geq 3$ and G contains a K_{d+1} .

If V(G) is Polish, $\chi_{BM}(G)$ is the Baire-measurable chromatic number of G; if μ is a measure on V(G), $\chi_{\mu}(G)$ is the μ -measurable chromatic number of G.

Theorem. (Conley–Marks–Tucker-Drob) Let G be a Borel graph with V(G) Polish, and μ be a measure on V(G). Let $d \ge 3$. If $\Delta(G) \le d$ then $\chi_{BM}(G), \chi_{\mu}(G) \le d$ unless G contains a K_{d+1} .

Theorem. (Marks) Let $d \ge 3$. There exists an acyclic *d*-regular Borel graph with $\chi_B(G) = d + 1$.

Theorem. (Marks) Let $d \ge 3$. There exists an acyclic *d*-regular Borel graph with $\chi_B(G) = d + 1$.

Consider d = 3. Let $\Gamma = \langle \alpha, \beta, \gamma | \alpha^2 = \beta^2 = \gamma^2 = 1 \rangle$. Γ acts on the space n^{Γ} by the left-shift action, i.e., for $\delta, \delta' \in \Gamma$ let

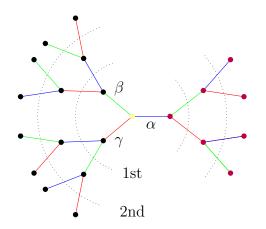
$$\delta \cdot x(\delta') = x(\delta^{-1} \cdot \delta').$$

Theorem. (Marks) Let $d \ge 3$. There exists an acyclic *d*-regular Borel graph with $\chi_B(G) = d + 1$.

Consider d = 3. Let $\Gamma = \langle \alpha, \beta, \gamma | \alpha^2 = \beta^2 = \gamma^2 = 1 \rangle$. Γ acts on the space n^{Γ} by the left-shift action, i.e., for $\delta, \delta' \in \Gamma$ let

$$\delta \cdot x(\delta') = x(\delta^{-1} \cdot \delta').$$

The Schreier-graph of this action on n^{Γ} is defined by making x, x' adjacent if for some $\delta \in S = \{\alpha, \beta, \gamma\}$ we have $\delta \cdot x = x'$. Let G be the restriction of this graph to *Free* $(n^{\Gamma}) = \{x : \Gamma \text{ acts freely on the component of } x\}.$



New examples

Let *H* be a Borel graph. Γ acts on the space $V(H)^{\Gamma}$ by the left-shift action, and define the Schreier-graph as before. Let $Hom(\Gamma, S; H)$ be the restriction of the Schreier-graph to the set

 $\{h \in V(H)^{\Gamma} : h \text{ is a homomorphism from } Cay(\Gamma; S) \text{ to } H\}.$

New examples

Let *H* be a Borel graph. Γ acts on the space $V(H)^{\Gamma}$ by the left-shift action, and define the Schreier-graph as before. Let $Hom(\Gamma, S; H)$ be the restriction of the Schreier-graph to the set

 $\{h \in V(H)^{\Gamma} : h \text{ is a homomorphism from } Cay(\Gamma; S) \text{ to } H\}.$

Theorem. (Grebík–V) Assume that H is a locally countable Borel graph. Then

• $\chi_B(H) \leq 3$ implies $\chi_B(Hom(\Gamma, S; H)) \leq 3$.

New examples

Let *H* be a Borel graph. Γ acts on the space $V(H)^{\Gamma}$ by the left-shift action, and define the Schreier-graph as before.

Let $Hom(\Gamma, S; H)$ be the restriction of the Schreier-graph to the set

 $\{h \in V(H)^{\Gamma} : h \text{ is a homomorphism from } Cay(\Gamma; S) \text{ to } H\}.$

Theorem. (Grebík–V) Assume that H is a locally countable Borel graph. Then

- $\chi_B(H) \leq 3$ implies $\chi_B(Hom(\Gamma, S; H)) \leq 3$.
- $\chi_{\Delta_2^1-abs}(H) > 3$ implies $\chi_B(Hom(\Gamma, S; H)) > 3$.

Theorem. (Conley–Jackson–Marks–Seward–Tucker-Drob) There exists a hyperfinite 3-regular acyclic Borel graph *G* with $\chi_B(G) = 4$.

Theorem. (Conley–Jackson–Marks–Seward–Tucker-Drob) There exists a hyperfinite 3-regular acyclic Borel graph *G* with $\chi_B(G) = 4$.

Theorem. (Todorčević–V) $\{G : G \text{ is an acyclic Borel graph with } \chi_B(G) \leq 3\}$ is Σ_2^1 -complete.

Theorem. (Conley–Jackson–Marks–Seward–Tucker-Drob) There exists a hyperfinite 3-regular acyclic Borel graph *G* with $\chi_B(G) = 4$.

Theorem. (Todorčević–V) $\{G : G \text{ is an acyclic Borel graph with } \chi_B(G) \leq 3\}$ is Σ_2^1 -complete. **Theorem.** (Grebík–V) $\{G : G \text{ is a 3-regular acyclic Borel graph with } \chi_B(G) \leq 3\}$ is Σ_2^1 -complete.

Open questions

Is the collection of compact free subshifts of 2^Γ with Borel chromatic number ≤ 3 also Σ₂¹-complete?

Open questions

- Is the collection of compact free subshifts of 2^Γ with Borel chromatic number ≤ 3 also Σ₂¹-complete?
- Is toastability Σ¹₂-complete on bounded degree acyclic Borel graphs?

Thank you for your attention!