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Preliminaries

Let G be a graph on the vertex set V (G ). Define

∆(G ) = sup{degG (v) : v ∈ V (G )}.

Let n ∈ {1, 2, . . . ,ℵ0}. An n-coloring of G is a map c : V (G )→ n
with

∀x , y ∈ V (G ) xGy =⇒ c(x) 6= c(y).

The chromatic number of G is the minimal n for which G has an
n-coloring. Notation: χ(G ).
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On Borel combinatorics

Assume that V (G ) is endowed with a Borel structure.
n ∈ {1, 2, . . . ,ℵ0} is equipped with the trivial Borel structure.

Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of
V (G )× V (G ).

Borel chromatic numbers: minimal n for which G has a Borel
n-coloring. Notation: χB(G ).

F-measurable chromatic numbers, if F ⊂ P(V (G )) is a σ-algebra.
Notation: χF (G ).
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Earlier results

Let G be a finite graph. If ∆(G ) ≤ d then χ(G ) ≤ d + 1.

Theorem. (Kechris–Solecki–Todorčević) Let G be a Borel graph.
If ∆(G ) ≤ d then χB(G ) ≤ d + 1.

Theorem. (Brooks) Let G be a finite graph. If ∆(G ) ≤ d then
χ(G ) ≤ d , unless d = 2 an G contains an odd cycle, or d ≥ 3 and
G contains a Kd+1.

If V (G ) is Polish, χBM(G ) is the Baire-measurable chromatic
number of G ; if µ is a measure on V (G ), χµ(G ) is the
µ-measurable chromatic number of G .

Theorem. (Conley–Marks–Tucker-Drob) Let G be a Borel graph
with V (G ) Polish, and µ be a measure on V (G ). Let d ≥ 3. If
∆(G ) ≤ d then χBM(G ), χµ(G ) ≤ d unless G contains a Kd+1.
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Marks’ method

Theorem. (Marks) Let d ≥ 3. There exists an acyclic d-regular
Borel graph with χB(G ) = d + 1.

Consider d = 3. Let Γ = 〈α, β, γ|α2 = β2 = γ2 = 1〉. Γ acts on
the space nΓ by the left-shift action, i.e., for δ, δ′ ∈ Γ let

δ · x(δ′) = x(δ−1 · δ′).

The Schreier-graph of this action on nΓ is defined by making x , x ′

adjacent if for some δ ∈ S = {α, β, γ} we have δ · x = x ′. Let G
be the restriction of this graph to
Free(nΓ) = {x : Γ acts freely on the component of x}.
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New examples

Let H be a Borel graph. Γ acts on the space V (H)Γ by the
left-shift action, and define the Schreier-graph as before.

Let Hom(Γ,S ;H) be the restriction of the Schreier-graph to the set

{h ∈ V (H)Γ : h is a homomorphism from Cay(Γ;S) to H}.

Theorem. (Greb́ık–V) Assume that H is a locally countable Borel
graph. Then

χB(H) ≤ 3 implies χB(Hom(Γ,S ;H)) ≤ 3.

χ∆1
2−abs

(H) > 3 implies χB(Hom(Γ,S ;H)) > 3.
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Applications

Theorem. (Conley–Jackson–Marks–Seward–Tucker-Drob) There
exists a hyperfinite 3-regular acyclic Borel graph G with
χB(G ) = 4.

Theorem. (Todorčević–V)
{G : G is an acyclic Borel graph with χB(G ) ≤ 3} is Σ1

2-complete.

Theorem. (Greb́ık–V)
{G : G is a 3-regular acyclic Borel graph with χB(G ) ≤ 3} is
Σ1

2-complete.
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{G : G is an acyclic Borel graph with χB(G ) ≤ 3} is Σ1

2-complete.

Theorem. (Greb́ık–V)
{G : G is a 3-regular acyclic Borel graph with χB(G ) ≤ 3} is
Σ1

2-complete.



Applications

Theorem. (Conley–Jackson–Marks–Seward–Tucker-Drob) There
exists a hyperfinite 3-regular acyclic Borel graph G with
χB(G ) = 4.

Theorem. (Todorčević–V)
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Open questions

Is the collection of compact free subshifts of 2Γ with Borel
chromatic number ≤ 3 also Σ1

2-complete?

Is toastability Σ1
2-complete on bounded degree acyclic Borel

graphs?
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Thank you for your attention!


