Jumps in the Borel complexity hierarchy

Department of Mathematics Boise State University September 2021

Samuel Coskey

Boise State University

Presenting joint work with John Clemens

Classification and Borel complexity

In Borel complexity theory we study equivalence relations E on a standard Borel space X. We sometimes think of them as classification problems.

Example

We may regard the class of countable linear orders as a subset $X \subset 2^{\mathbb{N} \times \mathbb{N}}$, and identify the classification problem for countable linear orders with the isomorphism equivalence relation \cong_X .

Definition

The complexity of a classification problem E on X is measured by its position in the Borel reducibility hierarchy:

 $E \leq_B F$ iff there is a Borel function $f: X \to Y$ such that

$$x E x' \iff f(x) F f(x')$$

Jump operators

Definition

A proper jump operator on Borel equivalence relations is a mapping $E \mapsto J(E)$ which is:

- (monotone) $E \leq_B F$ implies $J(E) \leq_B J(F)$, and;
- (proper) $E <_B J(E)$ whenever E has at least two equivalence classes.

Remark

One may wish to impose a definability condition; our examples will all be suitably definable.

Example 1

Example

If *E* is a Borel equivalence relation on *X*, the Friedman–Stanley jump of *E* is defined on X^{ω} by:

$$x E^+ y \iff \{[x(n)]_E : n \in \omega\} = \{[y(n)]_E : n \in \omega\}$$

Theorem (Friedman–Stanley)

The FS jump is proper.

Remark

The tower $F_{\alpha} = \Delta(2)^{+\alpha}$ of iterates of the Friedman–Stanley jump is unbounded in complexity among Borel equivalence relations, and is often used as a yardstick.

Example 2

Example

If E is a Borel equivalence relation on X, the Louveau jump of E with respect to the filter \mathcal{F} is defined on X^{ω} by:

$$x E^{\mathcal{F}} y \iff \{n \in \omega : x(n) E y(n)\} \in \mathcal{F}$$

Theorem (Louveau, later Hjorth–Kechris–Louveau) If \mathcal{F} is a free filter, the Louveau jump with respect to \mathcal{F} is proper.

Bernoulli jumps

Definition

Let *E* be an equivalence relation on *X*, and let Γ be a countable group. The Γ -jump of *E* is the equivalence relation $E^{[\Gamma]}$ defined on X^{Γ} by

$$x E^{[\Gamma]} y \iff (\exists \gamma \in \Gamma) (\forall \alpha \in \Gamma) x(\gamma^{-1} \alpha) E y(\alpha)$$

Remark

- In words E^[Γ] consists of Γ-many factors of E, modulo translation by Γ.
- $\Delta(2)^{[\Gamma]}$ is the orbit equivalence relation of the "Bernoulli" shift action of Γ on 2^{Γ} .
- The Γ-jump may be iterated through countable ordinals. We write E^{[Γ]^α} for the α-iterated Γ-jump.

Properties of Bernoulli jumps

Proposition

For any countable group Γ we have:

- If E is Borel then $E^{[\Gamma]}$ is Borel
- (monotone) If $E \leq_B F$ then $E^{[\Gamma]} \leq_B F^{[\Gamma]}$
- (pre-proper?) $E \leq_B E^{[\Gamma]}$
- $E^{\omega} \leq_B E^{[\Gamma]}$ (for Γ infinite)
- If Λ is a subgroup or quotient of Γ , then $E^{[\Lambda]} \leq_B E^{[\Gamma]}$

Gentleness of Bernoulli jumps

Proposition

For any countable group Γ we have:

- If E is pinned then $E^{[\Gamma]}$ is pinned
- If E_{Λ} is the orbit equivalence relation of $\Lambda \curvearrowright X$, and Γ is any countable group, then $(E_{\Lambda})^{[\Gamma]}$ is the orbit equivalence relation of $(\Lambda \wr \Gamma) \curvearrowright X^{\Gamma}$
- If E is induced by a Polish (resp. solvable, cli, closed in S_∞) group, then E^[Γ] is too.

Remark

The Friedman–Stanley jump quickly becomes non-pinned, and the Louveau jump quickly becomes non-Polish-induced. Thus the Bernoulli jumps are "kindler, gentler".

Comparison of Bernoulli jumps and FS jumps

Theorem

- $\Delta(2)^{[\mathbb{Z}]^{\alpha}} \leq_B F_{\alpha}$
- $\Delta(2)^{[\Gamma]^{lpha}} \leq_B F_{1+lpha}$
- $F_2 \not\leq_B \Delta(2)^{[\Gamma]^{\alpha}}$

Theorem

If E has perfectly many classes and $E \times E \leq_B E$, then $E^{[\mathbb{Z}]} \leq E^+$.

Theorem (Allison-Shani)

 $(E_0)^{[\mathbb{Z}^2]}$ is not potentially Π_3^0 . In particular, $(E_0)^{[\mathbb{Z}^2]}$ and $(E_0)^+$ are Borel incomparable.

Question When is $E^{[\Gamma]} \leq_B E^+$?

Properness of Bernoulli jumps

So far we have postponed the question of whether $E \mapsto E^{[\Gamma]}$ is really a proper jump operator.

For an obvious example, if Γ is finite then $E \mapsto E^{[\Gamma]}$ is easily seen to be improper: $E_0 \sim_B (E_0)^{[\Gamma]}$.

As we will see on the next two frames, even for infinite groups $\Gamma,$ the answer depends on $\Gamma.$

Not all Bernoulli jumps are proper

Definition

A countable group satisfies the d.c.c. if it has no infinite properly descending sequence of subgroups.

Example

The Prüfer group $\mathbb{Z}(p^{\infty})$ satisfies the d.c.c.

Theorem

If Γ satisfies the d.c.c. then the Γ -jump is not proper.

Proof idea.

It is straightforward to exhibit a reduction function:

$$\Delta(2)^{[\Gamma]^{\omega+1}} \leq_B \Delta(2)^{[\Gamma]^{\omega}}$$

in this case.

Jumps in the Borel complexity hierarchy

Samuel Coskey (Boise State University)

Most Bernoulli jumps are proper

Theorem

Let Γ be a countable group such that \mathbb{Z} or $\mathbb{Z}_p^{<\omega}$ for p prime is a quotient of a subgroup of Γ . Then the Γ -jump is proper.

The proof consists of two pieces.

- A theorem of Solecki, which implies there are Γ^ω actions of arbitrarily high complexity;
- An adaptation of the Hjorth–Kechris–Louveau proof of Friedman–Stanley's theorem, which implies that Γ^ω actions are Borel reducible to iterates of the Γ-jump.

Solecki's theorem

Definition

A family \mathcal{F} of Borel equivalence relations has cofinal essential complexity if for every α there exists $E \in \mathcal{F}$ such that E is not Borel reducible to any equivalence relation in Π^0_{α} .

Theorem (Solecki)

If Γ is one of the groups \mathbb{Z} or $\mathbb{Z}_p^{<\omega}$ for p a prime, then the family of Γ^{ω} -actions has cofinal essential complexity.

Remark

Solecki's proof involves constructing structures called *group trees* of unbounded rank.

Hjorth–Kechris–Louveau argument

Definition

Let Γ be a countable group. The infinite Γ -tree T_{Γ} consists of the tree $\Gamma^{<\omega}$ together with the structure of Γ on every set of siblings.

Theorem

Let Γ be a countable group, and E an equivalence relation induced by a continuous action of a closed subgroup of Aut (T_{Γ}) . If E is Π^0_{α} then $E \leq_B \Delta(2)^{[\Gamma]^{\omega \cdot \alpha}}$.

Proof idea.

Hjorth-Kechris-Louveau show that $[x]_E$ is determined by the orbit closure of x in a topology $\tau_{x,\beta}$ (β is roughly $\omega \cdot \alpha$).

For a closed subgroup of S_{∞} , the topology and orbit-closure can be coded in a tree of rank roughly β .

We show that for a closed subgroup of Aut(T_{Γ}), the topology and orbit-closure can be coded in the β 'th iterate of the Γ -jump.

Conclusion of proof of properness

Theorem

Let Γ be a countable group such that \mathbb{Z} or $\mathbb{Z}_p^{<\omega}$ for p prime is a quotient of a subgroup of Γ . Then the Γ -jump is proper.

Proof sketch.

- By the Hjorth–Kechris–Louveau machinery we proved: any orbit equivalence relation induced by an action of Γ^ω is Borel reducible to some iterate Δ(2)^{[Γ]^α}.
- Solecki's theorem: The family of Γ^{ω} -actions has cofinal essential complexity. In particular the family of iterates $\Delta(2)^{[\Gamma]^{\alpha}}$ has cofinal essential complexity.
- Now if E^[Γ] ~_B E, then all iterates Δ(2)^{[Γ]^α} are Borel reducible to E. Since the iterates have cofinal essential complexity, E is not Borel, a contradiction.

What is left for properness

Question

Which groups Γ give rise to a proper jump?

Example

A "test" group that (1) fails the d.c.c. and (2) fails to have \mathbb{Z} or $\mathbb{Z}_p^{<\omega}$ as a quotient of a subgroup is:

$$\Gamma = \bigoplus_{p \text{ prime}} \mathbb{Z}_p$$

Scattered orders definition

The definition of the Beroulli jumps was initially motivated by the classification of countable scattered orders.

Definition

A linear order *L* is said to be scattered if there does not exist an embedding from \mathbb{Q} to *L*.

Example

- α , for α an ordinal
- α^* (reverse), for α an ordinal
- Z
- \mathbb{Z}^k , the lexicographic power
- $\mathbb{Z} \cdot (\mathbb{Z} + 2 + \mathbb{Z}) + \mathbb{Z} \cdot (\mathbb{Z} + 3 + \mathbb{Z}) + \mathbb{N}$, combinations using sums and products

Derivatives

Definition The derivative of L is the quotient L/\sim where:

 $x \sim y \iff$ the interval between x, y is finite

Definition

The α -derivative of *L* is the quotient L/\sim_{α} where:

$$egin{array}{lll} x\sim_{eta+1}y&\Longleftrightarrow& [x]_eta\sim[y]_eta\ x\sim_\lambda y&\Longleftrightarrow& (\existseta<\lambda)\ x\sim_eta y \end{array}$$

Proposition

L is scattered if and only if there exists α such that L/\sim_{α} is trivial (has just one equivalence class).

Scattered orders derivative

Example

$$L = \mathbb{Z} \cdot (\mathbb{Z} + 2 + \mathbb{Z}) + \mathbb{Z} \cdot (\mathbb{Z} + 3 + \mathbb{Z}) + \mathbb{N}$$
$$L/\sim = \mathbb{Z} + 2 + \mathbb{Z} + \mathbb{Z} + 3 + \mathbb{Z} + 1$$
$$L/\sim_2 = 7$$
$$L/\sim_3 = 1$$

Remark

We can view *L* as a well-founded \mathbb{Z} -tree: each set of siblings carries a suborder of \mathbb{Z} .

Scattered orders rank

Definition

The rank of L is the least α such that $L/\sim_{\alpha} = 1$. (Or, the rank of the corresponding tree is $1 + \alpha$.)

Observation

Incrementing the rank allows up to $\mathbb{Z}\text{-many}$ structures of the previous rank. This suggests that incrementing the rank results in a $\mathbb{Z}\text{-jump}$ in complexity.

Scattered orders and the \mathbb{Z} -jump

Theorem

The isomorphism relation $\cong_{1+\alpha}$ on countable scattered linear orders of rank $1+\alpha$ is Borel bireducible with the α th iterated jump of the identity $\Delta(\mathbb{N})$ (that is, with $\Delta(\mathbb{N})^{[\mathbb{Z}]^{\alpha}}$).

Proof sketch.

- First we can confirm that $\cong_{1+\alpha}$ is Borel bireducible with isomorphism of \mathbb{Z} -trees of rank $2 + \alpha$.
- Second we show that incrementing the rank of the Z-trees corresponds with taking a Z-jump.

Corollary

Since we know the \mathbb{Z} -jump is proper, we conclude that the classification of countable scattered linear orders increases properly in complexity with the rank.

Generic ergodicity

Here we present a selection recent results comparing jumps against one another, and against standard complexities. Many of these comparisons derive from generic ergodicity results.

Definition *E* is generically *F*-ergodic if whenever $x E x' \implies f(x) F f(x')$ then *f* maps a comeager set into a single *F*-class.

Theorem

For any infinite Γ , we have $(E_0)^{[\Gamma]}$ is generically $(E_\infty)^{\omega}$ -ergodic.

Theorem (Allison–Panagiotopoulos) $(E_0)^{[\mathbb{Z}]}$ is generically *F*-ergodic for any *F* induced by a TSI polish group.

Applications below F_2

The $\mathbb{Z}\mbox{-jump}$ provides new examples of complexity points in the Borel reducibility hierarchy.

Theorem

- $(E_0)^{\omega} <_B (E_0)^{[\mathbb{Z}]} <_B F_2$
- $(E_{\infty})^{\omega} <_B (E_{\infty})^{[\mathbb{Z}]} <_B F_2$
- $(E_0)^{[\mathbb{Z}]}$ and $(E_\infty)^\omega$ are Borel incomparable

Question

We do not know whether there are complexities properly between $(E_0)^{\omega}$ and $(E_0)^{[\mathbb{Z}]}$.

Varying the group

Theorem (Shani)

Suppose E is generically $\Delta(2)$ -ergodic. If Γ is not a quotient of a subgroup of Γ' , then $E^{[\Gamma]}$ is generically $(E_{\infty})^{[\Gamma']}$ -ergodic.

Corollary

•
$$(E_0)^{[\mathbb{Z}]} <_B (E_0)^{[\mathbb{Z}^2]} <_B \cdots <_B (E_0)^{[\mathbb{Z}^{<\omega}]} <_B (E_0)^{[F_2]}.$$

•
$$(E_0)^{[\mathbb{Z}]}$$
 and $(E_0)^{[\mathbb{Z}_2^{<\omega}]}$ are Borel incomparable.

Remark

Shani recently extended his result using tools of Larson–Zapletal: If every homomorphism $\Gamma \rightarrow \Gamma'$ has finite image and kernel isomorphic to Γ , then $\Delta(2)^{[\Gamma]^2}$ is generically $\Delta(2)^{[\Gamma']^{\alpha}}$ -ergodic.

Jump operators 00000000	Properness 0000000	Scattered orders 00000	Ergocidity 000

Thank you!

Jumps in the Borel complexity hierarchy

Samuel Coskey (Boise State University)