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Classification and Borel complexity

In Borel complexity theory we study equivalence relations E on a
standard Borel space X . We sometimes think of them as
classification problems.

Example

We may regard the class of countable linear orders as a subset
X ⊂ 2N×N, and identify the classification problem for countable
linear orders with the isomorphism equivalence relation ∼=X .

Definition
The complexity of a classification problem E on X is measured by
its position in the Borel reducibility hierarchy:
E ≤B F iff there is a Borel function f : X → Y such that

x E x ′ ⇐⇒ f (x) F f (x ′)
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Jump operators

Definition
A proper jump operator on Borel equivalence relations is a
mapping E 7→ J(E ) which is:

• (monotone) E ≤B F implies J(E ) ≤B J(F ), and;

• (proper) E <B J(E ) whenever E has at least two equivalence
classes.

Remark
One may wish to impose a definability condition; our examples will
all be suitably definable.
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Example 1

Example

If E is a Borel equivalence relation on X , the Friedman–Stanley
jump of E is defined on Xω by:

x E + y ⇐⇒ {[x(n)]E : n ∈ ω} = {[y(n)]E : n ∈ ω}

Theorem (Friedman–Stanley)

The FS jump is proper.

Remark
The tower Fα = ∆(2)+α of iterates of the Friedman–Stanley jump
is unbounded in complexity among Borel equivalence relations, and
is often used as a yardstick.
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Example 2

Example

If E is a Borel equivalence relation on X , the Louveau jump of E
with respect to the filter F is defined on Xω by:

x EF y ⇐⇒ {n ∈ ω : x(n) E y(n)} ∈ F

Theorem (Louveau, later Hjorth–Kechris–Louveau)

If F is a free filter, the Louveau jump with respect to F is proper.
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Bernoulli jumps

Definition
Let E be an equivalence relation on X , and let Γ be a countable
group. The Γ-jump of E is the equivalence relation E [Γ] defined on
X Γ by

x E [Γ] y ⇐⇒ (∃γ ∈ Γ) (∀α ∈ Γ) x(γ−1α) E y(α)

Remark
• In words E [Γ] consists of Γ-many factors of E , modulo

translation by Γ.

• ∆(2)[Γ] is the orbit equivalence relation of the “Bernoulli”
shift action of Γ on 2Γ.

• The Γ-jump may be iterated through countable ordinals. We
write E [Γ]α for the α-iterated Γ-jump.
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Properties of Bernoulli jumps

Proposition

For any countable group Γ we have:

• If E is Borel then E [Γ] is Borel

• (monotone) If E ≤B F then E [Γ] ≤B F [Γ]

• (pre-proper?) E ≤B E [Γ]

• Eω ≤B E [Γ] (for Γ infinite)

• If Λ is a subgroup or quotient of Γ, then E [Λ] ≤B E [Γ]
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Gentleness of Bernoulli jumps

Proposition

For any countable group Γ we have:

• If E is pinned then E [Γ] is pinned

• If EΛ is the orbit equivalence relation of Λ y X , and Γ is any
countable group, then (EΛ)[Γ] is the orbit equivalence relation
of (Λ o Γ) y X Γ

• If E is induced by a Polish (resp. solvable, cli, closed in S∞)
group, then E [Γ] is too.

Remark
The Friedman–Stanley jump quickly becomes non-pinned, and the
Louveau jump quickly becomes non-Polish-induced. Thus the
Bernoulli jumps are “kindler, gentler”.
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Comparison of Bernoulli jumps and FS jumps

Theorem
• ∆(2)[Z]α ≤B Fα
• ∆(2)[Γ]α ≤B F1+α

• F2 6≤B ∆(2)[Γ]α

Theorem
If E has perfectly many classes and E × E ≤B E , then E [Z] ≤ E +.

Theorem (Allison–Shani)

(E0)[Z2] is not potentially Π0
3. In particular, (E0)[Z2] and (E0)+ are

Borel incomparable.

Question
When is E [Γ] ≤B E +?
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Properness of Bernoulli jumps

So far we have postponed the question of whether E 7→ E [Γ] is
really a proper jump operator.

For an obvious example, if Γ is finite then E 7→ E [Γ] is easily seen
to be improper: E0 ∼B (E0)[Γ].

As we will see on the next two frames, even for infinite groups Γ,
the answer depends on Γ.
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Not all Bernoulli jumps are proper

Definition
A countable group satisfies the d.c.c. if it has no infinite properly
descending sequence of subgroups.

Example

The Prüfer group Z(p∞) satisfies the d.c.c.

Theorem
If Γ satisfies the d.c.c. then the Γ-jump is not proper.

Proof idea.
It is straightforward to exhibit a reduction function:

∆(2)[Γ]ω+1 ≤B ∆(2)[Γ]ω

in this case.
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Most Bernoulli jumps are proper

Theorem
Let Γ be a countable group such that Z or Z<ωp for p prime is a
quotient of a subgroup of Γ. Then the Γ-jump is proper.

The proof consists of two pieces.

• A theorem of Solecki, which implies there are Γω actions of
arbitrarily high complexity;

• An adaptation of the Hjorth–Kechris–Louveau proof of
Friedman–Stanley’s theorem, which implies that Γω actions
are Borel reducible to iterates of the Γ-jump.
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Solecki’s theorem

Definition
A family F of Borel equivalence relations has cofinal essential
complexity if for every α there exists E ∈ F such that E is not
Borel reducible to any equivalence relation in Π0

α.

Theorem (Solecki)

If Γ is one of the groups Z or Z<ωp for p a prime, then the family of
Γω-actions has cofinal essential complexity.

Remark
Solecki’s proof involves constructing structures called group trees
of unbounded rank.
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Hjorth–Kechris–Louveau argument

Definition
Let Γ be a countable group. The infinite Γ-tree TΓ consists of the
tree Γ<ω together with the structure of Γ on every set of siblings.

Theorem
Let Γ be a countable group, and E an equivalence relation induced
by a continuous action of a closed subgroup of Aut(TΓ). If E is
Π0
α then E ≤B ∆(2)[Γ]ω·α .

Proof idea.
Hjorth–Kechris–Louveau show that [x ]E is determined by the orbit
closure of x in a topology τx ,β (β is roughly ω · α).
For a closed subgroup of S∞, the topology and orbit-closure can
be coded in a tree of rank roughly β.
We show that for a closed subgroup of Aut(TΓ), the topology and
orbit-closure can be coded in the β’th iterate of the Γ-jump.
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Conclusion of proof of properness

Theorem
Let Γ be a countable group such that Z or Z<ωp for p prime is a
quotient of a subgroup of Γ. Then the Γ-jump is proper.

Proof sketch.
• By the Hjorth–Kechris–Louveau machinery we proved: any

orbit equivalence relation induced by an action of Γω is Borel
reducible to some iterate ∆(2)[Γ]α .

• Solecki’s theorem: The family of Γω-actions has cofinal
essential complexity. In particular the family of iterates
∆(2)[Γ]α has cofinal essential complexity.

• Now if E [Γ] ∼B E , then all iterates ∆(2)[Γ]α are Borel
reducible to E . Since the iterates have cofinal essential
complexity, E is not Borel, a contradiction.
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What is left for properness

Question
Which groups Γ give rise to a proper jump?

Example

A “test” group that (1) fails the d.c.c. and (2) fails to have Z or
Z<ωp as a quotient of a subgroup is:

Γ =
⊕

p prime

Zp
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Scattered orders definition

The definition of the Beroulli jumps was initially motivated by the
classification of countable scattered orders.

Definition
A linear order L is said to be scattered if there does not exist an
embedding from Q to L.

Example

• α, for α an ordinal

• α∗ (reverse), for α an ordinal

• Z
• Zk , the lexicographic power

• Z · (Z + 2 + Z) + Z · (Z + 3 + Z) + N, combinations using
sums and products
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Derivatives

Definition
The derivative of L is the quotient L/∼ where:

x ∼ y ⇐⇒ the interval between x , y is finite

Definition
The α-derivative of L is the quotient L/∼α where:

x ∼β+1 y ⇐⇒ [x ]β ∼ [y ]β

x ∼λ y ⇐⇒ (∃β < λ) x ∼β y

Proposition

L is scattered if and only if there exists α such that L/∼α is trivial
(has just one equivalence class).
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Scattered orders derivative

Example

L = Z · (Z + 2 + Z) + Z · (Z + 3 + Z) + N
L/∼ = Z + 2 + Z + Z + 3 + Z + 1

L/∼2 = 7

L/∼3 = 1

Remark
We can view L as a well-founded Z-tree: each set of siblings carries
a suborder of Z.

· · ·ZZZ· · · ZZ · · ·ZZZ· · ·· · ·ZZZ· · · ZZZ · · ·ZZZ· · · N
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Scattered orders rank

Definition
The rank of L is the least α such that L/∼α = 1. (Or, the rank of
the corresponding tree is 1 + α.)

Observation
Incrementing the rank allows up to Z-many structures of the
previous rank. This suggests that incrementing the rank results in
a Z-jump in complexity.
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Scattered orders and the Z-jump

Theorem
The isomorphism relation ∼=1+α on countable scattered linear
orders of rank 1 +α is Borel bireducible with the αth iterated jump
of the identity ∆(N) (that is, with ∆(N)[Z]α).

Proof sketch.
• First we can confirm that ∼=1+α is Borel bireducible with

isomorphism of Z-trees of rank 2 + α.

• Second we show that incrementing the rank of the Z-trees
corresponds with taking a Z-jump.

Corollary

Since we know the Z-jump is proper, we conclude that the
classification of countable scattered linear orders increases properly
in complexity with the rank.
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Generic ergodicity

Here we present a selection recent results comparing jumps against
one another, and against standard complexities. Many of these
comparisons derive from generic ergodicity results.

Definition
E is generically F -ergodic if whenever x E x ′ =⇒ f (x) F f (x ′)
then f maps a comeager set into a single F -class.

Theorem
For any infinite Γ, we have (E0)[Γ] is generically (E∞)ω-ergodic.

Theorem (Allison–Panagiotopoulos)

(E0)[Z] is generically F -ergodic for any F induced by a TSI polish
group.
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Applications below F2

The Z-jump provides new examples of complexity points in the
Borel reducibility hierarchy.

Theorem
• (E0)ω <B (E0)[Z] <B F2

• (E∞)ω <B (E∞)[Z] <B F2

• (E0)[Z] and (E∞)ω are Borel incomparable

Question
We do not know whether there are complexities properly between
(E0)ω and (E0)[Z].
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Varying the group

Theorem (Shani)

Suppose E is generically ∆(2)-ergodic. If Γ is not a quotient of a
subgroup of Γ′, then E [Γ] is generically (E∞)[Γ′]-ergodic.

Corollary

• (E0)[Z] <B (E0)[Z2] <B · · · <B (E0)[Z<ω] <B (E0)[F2].

• (E0)[Z] and (E0)[Z<ω2 ] are Borel incomparable.

Remark
Shani recently extended his result using tools of Larson–Zapletal:
If every homomorphism Γ→ Γ′ has finite image and kernel
isomorphic to Γ, then ∆(2)[Γ]2

is generically ∆(2)[Γ′]α-ergodic.
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Thank you!
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