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Outline

1 Gale-Stewart Games
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Infinite games

We will consider Gale-Stewart games in a general form. These are
given as follows:

First, we specify:
1 A set X of possible moves.
2 A countable ordinal α, the length of the game.
3 A set A ⊂ Xα, the payoff set.

The game is played as follows: players I and II alternate turns playing
elements of X . Player I plays on turns indexed by an even ordinal and
Player II plays on turns indexed by an odd ordinal.

After α-many turns, a sequence x ∈ Xα has been produced. Player I
wins if x ∈ A; otherwise Player II wins.

The game is determined if one of the players has a winning strategy.
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Determinacy axioms

We can consider a variety of axioms asserting the determinacy of
these games.

These have the form “all games of length α with moves in X and
payoff in the pointclass Γ are determined.”

Thus, there are three parameters in play: the length, the pool of
possible moves, and the complexity of the games played.
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Determinacy axioms

A natural project is to compare these axioms and their consistency
strength. This is often nontrivial.

Question

What is the consistency strength of the assertion that all Fσ games of
length ω + ω on N are determined?

Lower bound: one strong cardinal. Upper bound (strict): one Woodin
cardinal.

The purpose of this talk: study some of these axioms over some
theories weaker than ZFC.
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Admissible sets

A transitive set A is admissible if (A,∈) |= KP.

KP is Kripke-Platek set theory. Today (and only today), KP consists
of the following axioms:

1 extensionality, pairing, union, infinity, foundation,
2 separation and collection for ∆0 formulas,
3 R exists.

KP is strong enough to define L and perform various types of
generalized recursion.
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Determinacy axioms

AD is the assertion that all games of length ω on N are determined.

Theorem (Woodin)

The following are equiconsistent:

1 ZF + DC + AD,

2 ZFC + there are infinitely many Woodin cardinals.

Question

What is the strength of KP + DC + AD, in terms of large cardinals?
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Determinacy axioms

This is open, however, it is easy to see that the strength is close to
that of ZF + DC + AD.

Theorem (Martin-Steel, Woodin)

The following are equiconsistent:

1 ZFC + Projective Determinacy,

2 ZFC + { there are n Woodin cardinals: n ∈ N}.

Woodin’s proof can easily be carried out in KP + DC + AD.

Thus, KP + DC + AD implies the consistency of ZFC + {there are n
Woodin cardinals: n ∈ N}.
Thus, KP and ZF have similar strength in the context of DC + AD
(or just AD).

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 8 / 34
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Determinacy axioms

Another type of principle worth considering is the one asserting the
existence of a transitive model of KP + DC + AD, in the context of
ZFC.

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + AD containing R;

2 All open games of length ω2 with moves in R are determined.

The proof is easy, but we will omit it.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 9 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Determinacy axioms

Another type of principle worth considering is the one asserting the
existence of a transitive model of KP + DC + AD, in the context of
ZFC.

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + AD containing R;

2 All open games of length ω2 with moves in R are determined.

The proof is easy, but we will omit it.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 9 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Determinacy axioms

Another type of principle worth considering is the one asserting the
existence of a transitive model of KP + DC + AD, in the context of
ZFC.

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + AD containing R;

2 All open games of length ω2 with moves in R are determined.

The proof is easy, but we will omit it.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 9 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Real Determinacy in Admissible Sets

ADR is the assertion that all games of length ω with moves in R are
determined.

Theorem (Steel, Woodin)

The following are equiconsistent:

1 ZF + ADR,

2 ZFC + there is a cardinal λ which is a limit of Woodin cardinals and
<λ-strong cardinals.

Theorem (Steel, Woodin)

The following are equiconsistent:

1 ZF + DC + ADR,

2 ZFC + there is a cardinal λ which is a limit of Woodin cardinals and λ-many
<λ-strong cardinals.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 10 / 34
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Real Determinacy in Admissible Sets

One would expect that, as before, the strength of KP + ADR is
similar to that of ZF + ADR.

This is not the case:

Theorem

Suppose that there are ω2 Woodin cardinals. Then, there is a transitive
model of KP + DC + ADR containing R.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 11 / 34
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Real Determinacy in Admissible Sets

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + ADR containing R;

2 All open games of length ω3 with moves in R are determined.

This theorem implies the previous one, since open determinacy for
games of length ω3 follows from the existence of ω2 Woodin
cardinals. The proof is descriptive set theoretic.

For some additional perspective, suppose there are ω2 Woodin
cardinals and a measurable cardinal above them. Then, by a theorem
of Steel, the model Mω2 exists.

This is the canonical model of ZFC with ω2 Woodin cardinals.

By a theorem of Neeman, if Mα exists, then all Π1
1 games of length

α · ω are determined.

By relativizing, we see that if there are ω2 Woodin cardinals below a
measurable, then all analytic games of length ω3 are determined.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 12 / 34
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Real Determinacy in Admissible Sets

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + ADR containing R;

2 All open games of length ω3 with moves in R are determined.

Theorem (Martin, Woodin)

Let α ≥ ω · 2 be a recursive wellordering which is provably wellfounded in
ZFC. The following are equivalent over ZF + DC:

1 ADR,

2 all games of length α with moves in N are determined.

Over KP, however, this equivalence is not true. Determinacy axioms
for longer games form a proper hierarchy.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 13 / 34
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Real Determinacy in Admissible Sets

For the remainder of the talk, let us sketch the proof of the following
theorem:

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + ADR containing R;

2 All open games of length ω3 with moves in N are determined.

We first focus on the existence of a model of KP + ADR from open
determinacy of length ω3. This requires reviewing the theory of
Spector classes of relations and inductive definability.
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Generalized quantifiers

A quantifier on R is a non-empty collection of subsets of R closed
under supersets but not equal to P(R). We write Qx A(x) for A ∈ Q.
pause

Example:
∃ = {A ⊂ R : A is nonempty}.

Example:

aR = {A ⊂ R : Player I has a w.s. on the game

of length ω on R with payoff A}

Example: if Q is a quantifier, then its dual Q̆ is also a quantifier.
Here, A ∈ Q̆ if and only if R \ A 6∈ Q.
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Generalized quantifiers

Note: Q is closed under supersets, so Qx A(x) is equivalent to
∃Y ∈ Q∀x ∈ Y A(x). Using this triviality, we can make sense of
expressions such as

Qx1Qx2 . . . φ(x1, x2, . . .).

Namely, this formula holds if and only if Player I has a winning
strategy in the following game:

Player I begins by playing Y1 ∈ Q,
Player II responds by playing x1 ∈ Y1,
Player I responds with Y2 ∈ Q, etc.
After infinitely many rounds, Player I wins if and only if φ(x1, x2, . . .)
holds.
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Inductive definability

We consider operators φ : P(R)→ P(R).

We say that an operator φ is definable by a formula ψ(x ,X ) if for
every set A

φ(A) = {x ∈ R : ψ(x ,A)}.

We say that ψ(x ,X ) is positive if X appears only positive in it.

We are concerned with operators φ definable by positive second-order
formulas ψ(x ,X ) in the language of second-order arithmetic with
constants for every real number and expanded by the quantifiers Q
and Q̆.
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Inductive definability

Such positive operators can be iterated:

φ0 = ∅

φα = φ(
⋃
β<α

φβ)

φ∞ =
⋃
α

φα

Definition

A set A ⊂ R is Q-inductive if A = {x : (x , a) ∈ φ∞} for some φ as above.
We say that A is Q-hyperprojective if both A and R \ A are Q-inductive.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 21 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Inductive definability

Such positive operators can be iterated:

φ0 = ∅

φα = φ(
⋃
β<α

φβ)

φ∞ =
⋃
α

φα

Definition

A set A ⊂ R is Q-inductive if A = {x : (x , a) ∈ φ∞} for some φ as above.

We say that A is Q-hyperprojective if both A and R \ A are Q-inductive.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 21 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Inductive definability

Such positive operators can be iterated:

φ0 = ∅

φα = φ(
⋃
β<α

φβ)

φ∞ =
⋃
α

φα

Definition

A set A ⊂ R is Q-inductive if A = {x : (x , a) ∈ φ∞} for some φ as above.
We say that A is Q-hyperprojective if both A and R \ A are Q-inductive.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 21 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Spector classes

We will need some more notions from generalized recursion theory.

Definition

A Spector class on R is an R-parametrized collection of subsets of R
closed under finite conjunctions and disjunctions, ∃R and ∀R, containing
all projective sets, and having the prewellordering property.

Theorem (Aczel)

The Q-inductive sets form the smallest Spector class on R closed under Q
and Q̆.

Theorem (Aczel)

The Q-inductive sets are precisely those sets defined by a formula of the
form

Qx1 Q̆x2 ∃x3 ∀x4Qx5 Q̆x6 . . . A(x1, x2, x3, . . .),

where A is projective.
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Companion theorems

Finally, we will need one of the companion theorems of Moschovakis:

Theorem (Moschovakis)

Let Γ be a Spector class on R. Then, there is an admissible set M with
R ∈ M and such that P(R) ∩M = Γ ∩ Γ̆.
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Back to the theorem

Theorem

The following are equivalent over ZFC:

1 There is a transitive model of KP + DC + ADR containing R;

2 All open games of length ω3 with moves in N are determined.
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Back to the theorem

Proof sketch for the first half. Suppose that all open games of length
ω3 are determined.

Consider the quantifier aR
ω2 consisting of all sets of reals A such that

Player I has a winning strategy for the game on A with moves in R
and length ω2.

Given A ⊂ R2, we write aR
ω2A for {y ∈ R : {x : (x , y) ∈ A} ∈ aR

ω2}.
Write aR

ω2Σ0
1 for the pointclass of all sets of the form aR

ω2A, with A
open.
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ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Back to the theorem

Proof sketch for the first half. Suppose that all open games of length
ω3 are determined.

Consider the quantifier aR
ω2 consisting of all sets of reals A such that

Player I has a winning strategy for the game on A with moves in R
and length ω2.

Given A ⊂ R2, we write aR
ω2A for {y ∈ R : {x : (x , y) ∈ A} ∈ aR

ω2}.
Write aR

ω2Σ0
1 for the pointclass of all sets of the form aR

ω2A, with A
open.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 25 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Back to the theorem

Proof sketch for the first half. Suppose that all open games of length
ω3 are determined.

Consider the quantifier aR
ω2 consisting of all sets of reals A such that

Player I has a winning strategy for the game on A with moves in R
and length ω2.

Given A ⊂ R2, we write aR
ω2A for {y ∈ R : {x : (x , y) ∈ A} ∈ aR

ω2}.

Write aR
ω2Σ0

1 for the pointclass of all sets of the form aR
ω2A, with A

open.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 25 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Back to the theorem

Proof sketch for the first half. Suppose that all open games of length
ω3 are determined.

Consider the quantifier aR
ω2 consisting of all sets of reals A such that

Player I has a winning strategy for the game on A with moves in R
and length ω2.

Given A ⊂ R2, we write aR
ω2A for {y ∈ R : {x : (x , y) ∈ A} ∈ aR

ω2}.
Write aR

ω2Σ0
1 for the pointclass of all sets of the form aR

ω2A, with A
open.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 25 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Proof sketch

Lemma 1. The pointclass of all aR-inductive sets is contained in
aR
ω2Σ0

1.

Proof idea: Naively, sets in aR
ω2Σ0

1 are those defined by a formula of the
form ∃x1 ∀x2 . . . φ(x1, x2, . . .), where the string of quantifiers has length
ω2 and φ is Σ0

1 with parameters.
By Aczel’s characterization, aR-inductive sets can be defined by a

formula of the form aRx1 ăRx2 . . . ψ(x1, x2, . . .), where ψ is projective.
This formula has a specific semantics, but naively, we should be
allowed to replace each game quantifier by an infinite string of real
quantifiers. Thus, we obtain a definition of a given aR-inductive set by
a formula of the form

∃x1 ∀x2 . . . ψ∗(x1, x2, . . .),

where ψ∗ is projective. With some extra work, we can replace ψ∗ by a
Σ0

1 formula, thus obtaining the result.

Indeed, the converse of the lemma is true. We shall not prove that,
but it will be used as well in the future.
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Proof sketch

Lemma 2. Suppose that all open games on of length ω3 on N are
determined. Then, all aR

ω2Σ0
1-games of length ω2 on N are

determined.

Proof idea: as before, we can naively define each set in aR
ω2Σ0

1 by a
formula of the form ∃x1 ∀x2 . . . φ(x1, x2, . . .), where the string of
quantifiers has length ω2 and φ is Σ0

1.
The total number of digits in all quantified reals is ω3.
Thus, we can consider a game in which players play ω2 many turns and
then they are required to play the game given by the formula

∃x1 ∀x2 . . . φ(x1, x2, . . .),

which takes ω3 turns and has a Σ0
1 winning condition.

Combining the two lemmata: if all open games of length ω3 are
determined, then all games of length ω2 on N with aR-inductive payoff are
also determined.
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Lemma 3. Suppose that aR-hyperprojective games of length ω2 on N
are determined. Then, every aR-hyperprojective game of length ω on
R has a aR-hyperprojective winning strategy.

Proof idea: First, one adapts Moschovakis’ argument for showing that
inductive sets have inductive scales in order to show that, under the
hypotheses of the lemma, aR-hyperprojective sets have
aR-hyperprojective scales. This requires (the proof of) Martin’s
theorem on the propagation of scales under the real-game quantifier.
Then, one adapts the proof of Moschovakis’ Third Periodicity Theorem
to prove the lemma. This requires the scale property, as well as the
fact that aR-hyperprojective relations can be uniformized by
aR-hyperprojective functions (this follows from the existence of scales).
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Proof sketch

From the lemmata, one half of the theorem is straightforward.

Suppose that open games of length ω3 are determined. By the first
two lemmata, all games of length ω2 on N with aR-inductive payoff
are also determined.

By the third lemma, every aR-hyperprojective game of length ω on R
has a aR-hyperprojective winning strategy.

Let M be the companion model of the aR-hyperprojective sets
obtained from Moschovakis’ theorem. Then, the sets of reals in M
are precisely the aR-hyperprojective sets. Thus, for each game in M
of length ω on R, there is a strategy in M. Therefore, M |= AD.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 29 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Proof sketch

From the lemmata, one half of the theorem is straightforward.

Suppose that open games of length ω3 are determined. By the first
two lemmata, all games of length ω2 on N with aR-inductive payoff
are also determined.

By the third lemma, every aR-hyperprojective game of length ω on R
has a aR-hyperprojective winning strategy.

Let M be the companion model of the aR-hyperprojective sets
obtained from Moschovakis’ theorem. Then, the sets of reals in M
are precisely the aR-hyperprojective sets. Thus, for each game in M
of length ω on R, there is a strategy in M. Therefore, M |= AD.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 29 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Proof sketch

From the lemmata, one half of the theorem is straightforward.

Suppose that open games of length ω3 are determined. By the first
two lemmata, all games of length ω2 on N with aR-inductive payoff
are also determined.

By the third lemma, every aR-hyperprojective game of length ω on R
has a aR-hyperprojective winning strategy.

Let M be the companion model of the aR-hyperprojective sets
obtained from Moschovakis’ theorem. Then, the sets of reals in M
are precisely the aR-hyperprojective sets. Thus, for each game in M
of length ω on R, there is a strategy in M. Therefore, M |= AD.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 29 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Proof sketch

From the lemmata, one half of the theorem is straightforward.

Suppose that open games of length ω3 are determined. By the first
two lemmata, all games of length ω2 on N with aR-inductive payoff
are also determined.

By the third lemma, every aR-hyperprojective game of length ω on R
has a aR-hyperprojective winning strategy.

Let M be the companion model of the aR-hyperprojective sets
obtained from Moschovakis’ theorem. Then, the sets of reals in M
are precisely the aR-hyperprojective sets. Thus, for each game in M
of length ω on R, there is a strategy in M. Therefore, M |= AD.

Juan P. Aguilera (TU Vienna, UGent) Real Determinacy in Admissible Sets October 2021 29 / 34



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

Proof sketch

Let us finish by sketching the argument for the converse. Let M be a
transitive model of KP + DC + ADR such that R ∈ M. We claim
that all open games of length ω3 are determined.

First, we need a stronger determinacy hypothesis in M; namely that
all games of length ω2 with moves in N are determined in M. This is
proved using the uniformization property for sets in M.

Thus, every aR-hyperprojective game of length ω2 on N is
determined.
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We now need the following determinacy transfer theorem:

Theorem

Let α be a countable limit ordinal with ω2 ≤ α. Let Γ be an
ω-parametrized pointclass containing all recursive sets and satisfying the
prewellordering property. Suppose that Γ is closed under recursive
substitution, finite unions and intersections, and the quantifier ăN

α for
games of length α on N. Suppose moreover that all games of length α
with moves in N and payoff in Γ ∩ Γ̆ are determined.
Then, all games of length α with moves in N and payoff in Γ are
determined.

The theorem is an extension of a determinacy transfer theorem due to
Kechris and Solovay, and its proof is a very simple modification of
Kechris and Solovay’s proof.
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Its consequence of relevance to us is that from the determinacy of all
aR-hyperprojective games of length ω2 on N, we can conclude the
determinacy of all aR-inductive games of length ω2 on N.

Hence, we can conclude the determinacy of all games of length ω2

with moves in N and payoff in aR
ω2Σ0

1.

To finish, we need to show that this implies open determinacy for
games of length ω3.
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Proof sketch

The idea is as follows: Let G be an open game of length ω3 for which
Player I does not have a winning strategy. Divide G into infinitely
many blocks G1,G2, . . ., of length ω2 and consider each of them a
separate game.

We consider an auxiliary game H1 where the players play ω2 moves
x1 ∈ Nω2

, after which Player I wins if and only if she has a winning
strategy for A with which x1 is consistent.

This can be regarded as a game of length ω2 with payoff in aR
ω2Σ0

1, so
it is determined.

Observe that Player I does not have a winning strategy for H1,
because this would induce a winning strategy for G .
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Suppose that the auxiliary game is determined in favor of Player II.
Then, by playing G according to the strategy of H1, after ω2 turns, a
real x is produced from which Player I does not have a winning
strategy for G .

We then consider an auxiliary game Hx
2 where the players play ω2

moves x2 ∈ Nω2
, after which Player I wins if and only if she has a

winning strategy for A with which x_1 x2 is consistent.

This game is determined, but Player I cannot have a winning strategy
for it, as before.

Continuing this way, we produce a sequence xi with each xi an
element of Nω2

.

The point is that this sequence is a winning play for Player II in G .
This is because the game is open, so if Player I were to win, she would
do so at some bounded stage, but we argued that this was impossible.

We have just described a winning strategy for Player II in G .
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This completes the sketch of the proof.

Thank you!
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