

Introduction Knaster Continua History The Lattice Abstract

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

On the universal minimal flow of the homeomorphism group of a Knaster continuum

Lauren Wickman

University of Florida

Caltech Logic Seminar December 1, 2021

Outline

ntroduction Knaster Continua

History The Lattice Abstract Characterization

Projective Fraïssé Theoi

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow Introduction to Knaster Continua History The Lattice

Abstract Characterization

Projective Fraïssé Theory Projective Fraïssé Classes Projective Fraïssé Limits, Quotients of Projective Fraïssé Limits Examples

- 3 Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class
- 4 Extreme Amenability

The Universal Minimal Flow KPT, 2005

Procedure

Outline

Introduction to Knaster Continua

History

The Lattice Abstract Characterization

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Introduction to Knaster Continua History The Lattice

Abstract Characterization

2 Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits Examples

3 Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

4 Extreme Amenability

The Universal Minimal Flow

KPT, 2005

Procedure

Smale & The Horseshoe Map

Introduction t Knaster Continua

History

The Lattice Abstract

Projective Fraïssé Theory

Projective Fraïsse Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow • Stephen Smale, 1960 in Rio: So maybe chaos DOES exist

- Mary Cartwright & L. J. Littlewood worked on analyzing equations that arose in the study of radio waves in World War II
- Norman Levinson (MIT) found in their work an example of a chaotic system
- Smale then worked to represent this example in as simple a manner as possible, and came up with the Horseshoe map (Won Fields Medal 1966)
- The attractor of the Smale horseshoe map is an indecomposable continuum.

$$K_2 = \bigcap_{n=0}^{\infty} f^n(D^2)$$

"A system is chaotic if the future is determined by the present, but the approximate present does not approximate the future."

The Horseshoe Map

Introduction Knaster Continua

History

The Lattice Abstract Characterizatio

Projective Fraïssé Theo

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Indecomposable Continuua

Introduction t Knaster Continua

History

The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Indecomposable Continuum

Say a continuum is decomposable if it can be written as a union of two proper subcontinua. Otherwise, say the continuum is indecomposable.

- In 1910, L. E. J. Brouwer was the first to describe an indecomposable continuum.
- The Buckethandle example first appeared in Kuratowski's 1922 continuum theory paper.
- In the paper he attributed the construction to Knaster, who in turn obtained his definition by simplifying Janiszewski's definition from his thesis

The Geometric Description

Introduction to Knaster Continua

History

The Lattice Abstract Characterization

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow This description comes from Kuratowski's 1968 textbook *Topology II*:

- Form a set C₀ which is defined to be the set of all semi-circles in ² that lie above the x-axis, whose endpoints are elements of the Cantor (middle-third) set, and whose center is (¹/₂, 0)
- 2 Next, form the set C_1 which is defined to be the set of all semi-circles in ² that lie **below** the x-axis, whose endpoints are elements of the Cantor set, and whose center is the midpoint of the interval $[\frac{2}{3}, \frac{3}{3}]$.
- 3 Continue so that each C_n is the set of semi-circles lying **below** the x-axis, whose endpoints are Cantor points, and whose center is the midpoint of the interval [²/_{3ⁿ}, ³/_{3ⁿ}]. Finally, form the Knaster continuum by taking the union of all of these sets, K = ⋃_{n=0}[∞] C_n.

Introduction t Knaster Continua

History

The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïss Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

The Brouwer-Janiszewski-Knaster continuum

The Knaster Continuum

The Knaster Continuum first presented in 1922 (which we will denote K_2 from now on) is homeomorphic to the inverse limit space of a certain tent map on the unit interval. We will call this particular tent map $f_2 : I \rightarrow I$, and it is defined as follows (See example 22, pg 15 of Ingram and Mahavier's *Inverse Limits*):

$$f_2(x) = egin{cases} 2x ext{ if } x \in [0, rac{1}{2}] \ 2(1-x) ext{ if } x \in [rac{1}{2}, 1] \end{cases}$$

The Brouwer-Janiszewski-Knaster continuum

Introduction to Knaster Continua

History

The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

The Knaster Continuum

There exists a whole class of mutually non-homeomorphic Knaster continua. Each are homeomorphic to an inverse limit space of a sequence of tent maps on the unit interval.

$$K_2 = \varprojlim(I, f_2) = \{(..., x_2, x_1, x_0) \in I^{:} x_i = f_2(x_{i-1})\}$$

K_2 and K_3

Introduction Knaster Continua

History

The Lattice Abstract Characterizatio

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Image from K. Kuratowski's 1968 Textbook *Topology II*, page 205

 $\downarrow_{2,2,5} \longrightarrow \not{\downarrow}_{2,3}$

Debski's Classification, 1985

Two Knaster Continua K_{π} and K_{ρ} are homeomorphic if and only if for all but finitely many primes p, p occurs in the sequences π and ρ the same number of times. In the exceptional cases, the number of occurences of p in each sequence is finite. $K_{\pi} \subset K_{\pi} \subset \mathcal{F}_{\pi} \subset \mathcal{F}_{\pi} \subset \mathcal{F}_{\pi}$

Theorem, Eberhart, Fugate, & Schumann, 2002

There exists a lattice ordering on the equivalence class of Knaster continua with K_{τ} at the top (where τ is the sequence with infinitely many occurrences of every prime), K_1 at the bottom, where (1) is any sequence of primes with all but finitely many 1's.

Let $\rho = (2, 3, 2, 3, 5, 2, 3, 5, 7, ...)$ be the sequence of primes where every prime occurs infinitely many times. Then K_{ρ} is universal in the class of Knaster continua, in that it maps openly onto every other Knaster continuum.

Introduction to Knaster Continua

History

The Lattice

Abstract Characterizatio

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Abstract Characterization of a Knaster Continuum

Introduction t Knaster Continua

The Lattice

Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Theorem, Krupski 1984

The class of all Knaster continua is equal to the class of all arc-like continua with one or two endpoints having the **Property of Kelley** and arcs as non-degenerate subcontinua and which themselves are not arcs. In particular, all of them are indecomposable.

Property of Kelley

A continuum X has the Property of Kelley if for all $x \in X$ and for each subcontinuum K of X containing x and for each sequence of points (x_n) with $x_n \to x$, there exists a sequence of subcontinua K_n of X containing x_n and converging to K.

Homeo(K)

Introduction to Knaster Continua

History

The Lattice

Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïsse Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow There is much known about the homeomorphism group of the Knaster continuum (K_2) , in particular, the types of homeomorphisms that exist, and the number of fixed points they must have, and the fact that the homeomorphism group is indeed a topological group (Ssembatya, 2001 under Keesling). However, several questions remained, many of which can be answered using projective Fraïssé theory:

- What kind of subgroups does the homeomorphism group have?
- Is the group locally compact? $\sqrt{0}$
- Can the homeomorphism group be generated by neighborhoods of the identity?
- What is the universal minimal flow?

Outline

Introduction Knaster Continua History The Lattice Abstract

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow Introduction to Knaster Continua History The Lattice Abstract Characterization

Projective Fraïssé Theory Projective Fraïssé Classes Projective Fraïssé Limits, Quotients of Projective Fraïssé Limits Examples

3 Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

4 Extreme Amenability

The Universal Minimal Flow KPT, 2005

Procedure

Epimorphisms Instead of Embeddings

Irwin & Solecki, 2006

The Lattice

Projective Fraïssé Classes

Fraïssé Limits

Quotient of a Approximating Class

The Universal Minimal Flow

Let \mathcal{L} be a language consisting of relation symbols R_i , $i \in I$, with arity $m_i \in I$, and function symbols $f_i, j \in J$ with arity $n_i \in A$ topological \mathcal{L} -structure is a zero-dimensional, compact, second countable space A together with closed sets $R_i^A \subseteq A^{m_i}$ and continuous functions $f_i^A : A^{n_j} \to A$ for all $i \in I$ and $j \in J$.

Irwin & Solecki, 2006

An epimorphism from A to B is a surjective, continuous function $\varphi : A \rightarrow B$ such that for any $j \in J$ and $x_1, ..., x_{n_i} \in A$ we have:

$$f_j^B(\varphi(x_1),...,\varphi(x_{n_j})) = \varphi(f_j^A(x_1,...,x_{n_j}))$$

and for any $i \in I$ and any $y_1, ..., y_{m_i} \in B$ we have:

 $(y_1,...,y_{m_i}) \in R_i^B \Leftrightarrow \exists x_1,...,x_{m_i} \in A \ (\varphi(x_p) = y_p \text{ for all } p \leq m_i \text{ and } (x_1,...,x_{m_i}) \in R_i^A$

Projective Fraïssé Classes

Projective Fraïssé Classes

Projective Fraïssé Class, Irwin & Solecki

Let \mathcal{D} be a family of topological \mathcal{L} -structures. We say that \mathcal{D} is a projective Fraïssé class if the following two conditions hold:

(F1) For any $D, E \in \mathcal{D}$, there is an $F \in \mathcal{D}$ and epimorphisms from F onto D and onto E.

1000

(F2) For any $C, D, E \in \mathcal{D}$ and any epimorphisms $\varphi_1 : D \to C, \varphi : E \to C$, there exists an $F \in \mathcal{D}$ with epimorphisms $\psi_1 : F \to D$ and $\psi_2 : F \to E$ such that $\varphi_1 \circ \psi_1 = \varphi_2 \circ \psi_2$

Approximating Class

Quotient of a

Extreme Amenabilit

The Universal Minimal Flow

Projective Fraïssé Classes

Fraïssé Limits

Quotient of a

Approximating Class

Projective Fraïssé Class

Projective Fraïssé Class, Charatonik & Roe, 2020

Let \mathcal{F} be a class of finite graphs with a fixed family of morphisms among the structures in \mathcal{F} . We assume that each morphism is an epimorphism with respect to \mathcal{F} . We say that \mathcal{F} is a projective Fraïssé class if:

- 1 \mathcal{F} is countable up to isomoprhism, that is, any sub-collection of pairwise non-isomoprhic structures of \mathcal{F} is countable;
- 2 morphisms are closed under composition and each identity map is a morphism;
- **3** for $B, C \in \mathcal{F}$ there exists $D \in \mathcal{F}$ and morphisms $f : D \rightarrow B$ and $g : D \rightarrow C$; and
- 4 for every two morphisms $f : B \to A$ and $g : C \to A$, there exist morphisms $f_0 : D \to B$ and $g_0 : D \to C$ such that $f \circ f_0 = g \circ g_0$.

Extreme Amenability

The Universal Minimal Flow

Projective Fraïssé

Projective Fraïssé Limits

Fraïssé Limits

Quotient of a

Projective Fraïssé Limits

Projective Fraïssé Limit, Irwin & Solecki

Let \mathcal{D} be a family of topological \mathcal{L} -structures. We say that a topological \mathcal{L} -structure \mathbb{D} is a projective Fraïssé limit of D if the following three conditions hold:

(L1) (projective universality) for any $D \in \mathcal{D}$, there is an epimorphism from \mathbb{D} to D.

Vear

(L2) for any finite discrete topological space A and any continuous function $f : \mathbb{D} \to A$, there is a $D \in \mathcal{D}$ an epimorphism $\varphi : \mathbb{D} \to D$, and a function $\overline{f} : D \to A$ such that $f = \overline{f} \circ \varphi$.

(L3) projective ultrahomogeneity for any $D \in \mathcal{D}$ and any epimorphisms $\varphi_1 : \mathbb{D} \to D$ and $\varphi_2 : \mathbb{D} \to D$, there exists an isomorphism $\varphi : \mathbb{D} \to \mathbb{D}$ such that $\varphi_2 = \varphi_1 \circ \psi$.

The Universal Minimal Flow

Approximating Class

DED e charatonik Éleve 2020 $\mathcal{F}: \mathcal{A} \rightarrow \mathcal{A}^{\circ}$

The Family of Finite Linear Graphs

Introduction Knaster Continua History

The Lattice

Abstract Characterizatio

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Let $\mathcal{L} = R$, the language consisting of one binary relation R. Let Δ be the class of all finite (reflextive) linear graphs, i.e. the class of all finite sets A with at least two elements so that R^A has the following properties:

- *R^A* is reflexive;
- *R^A* is symmetric;
- Every element of A has at most three (including itself) R^A -neighbors;
- There are exactly two elements of A with less than three R^A neighbors;
- R^A is connected, i.e. for every $a, b \in A$ there exists $a_0, ..., a_n \in A$ such that $a = a_0, b = a_n$ and $(a_i, a_{i+1}) \in R^A$ for $0 \le i < n$.

Theorem (Irwin & Solecki, 2006)

The Family of Finite Linear Graphs forms a Projective Fraïssé Class.

$$\Delta / \sim - ($$

Compact Spaces & Quotients of PF Limits

Introduction Knaster Continua

History

The Lattice

Abstract Characterization

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow Every compact space is homeomorphic to a quotient of a projective Fraïssé limit $\sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}}$

Theorem (Panagiotopoulos, 2017)

Let G be a closed subgroup of Homeo(Y) for some compact, metrizable space Y. Then there is a projective Fraïssé pre-space \mathbb{K} such that $\mathbb{K}/R^{\mathbb{K}}$ is homeomorphic to Y, and the quotient projection

 $\mathbb{K}\mapsto Y$

induces a continuous group embedding $Aut(\mathbb{K}) \hookrightarrow G$ with dense image in G.

Homes $(x)^2 [n]^k$ $\int \mathcal{O}_i^n : i \in \mathbb{I}^n$

Easier Any compact space
$$K = G/F$$
 this is a graph.
F: $\{0,1\}^N \rightarrow K$
 $f : \{0,1\}^N \rightarrow K$
 $(a,b) \in K$
 $(b,b) \in K$
 $(b,b$

Projective Fraïssé

Examples

Quotient of a

Approximating Class

The Universal Minimal

Flow

All Possible Quotients

Below is a characterization of all possible quotients from a language with one binary relation: Finisely representable [smp as space

Theorem (Camerlo, 2010)

Given a language $\mathcal{L} = R$ which consists of a single binary relation. The characterization of all spaces that can be obtained, up to homeomorphism, as quotients $\mathbb{P}/R^{\mathbb{P}}$, where $(\mathbb{P}, R^{\mathbb{P}})$ is the projective Fraïssé limit of a projective Fraïssé family of finite topological \mathcal{L} -structures, for \mathcal{L} as above and $R^{\mathbb{P}}$ an equivalence relation consists of the following list:

• Cantor space;

- Disjoint unions of *m* singletons and *n* pseudo-arcs, with m + n > 0
- Disjoint sums of *n* spaces each of the form $X = P \cup \bigcup Q_j$ where *P* is a

rightarrow pseudo-arc, and Q_j is a Cantor space which is clopen in X and $\bigcup_{j \in Q_j} Q_j$ is dense in X.

"Topological realization"

	Attribution	Quotient of Limit	Epimorphisms	Class	
	Irwin & Solecki (2006)	Pseudo-arc	All	Linear Graphs	
	Basso & Camerlo (2016)	Arc	Order-Preserving	Linear (Singly Directed) Graphs	έζ
))	Pangiatopoulos & Solecki (2020)	Menger Curve	Monotone	Finite Graphs	
	W. J. Charatonik & Roe (2020)	Does not amalgamate	All	Connected Graphs	
	W. J. Charatonik & Roe (2020)	Unnamed	Confluent	Connected Graphs	
	W. J. Charatonik & Roe (2020)	Does not amalgamate	All	Trees	
	W. J. Charatonik & Roe (2020)	D ₃	Monotone	Trees	
	W. J. Charatonik & Roe (2020)	A special dendrite called P – No quotient	Monotone Retractions	Trees	
	W. J. Charatonik & Roe (2020)	Does not amalgamate	Confluent	Trees	
)	Bartošová & Kwiatkowsa (2013)	Lelak Fan	Order-Preserving	Rooted Trees	
	W. J. Charatonik & Roe (2020)	Cantor Fan	Order-Preserving & End- Preserving	Rooted Trees	
	W. J. Charatonik & Roe (2020)	Unnamed	Confluent & Order-Preserving	Rooted Trees	
	W. J. Charatonik & Roe (2020)	Mohler-Nikiel Dendroid	Confluent & Order-Preserving & End-Preserving	Rooted Trees	
	Camerlo & Basso (2020)	Fences	Various*	Hasse Diagrams of Finite Partial Orders	フ
	W. & Bartošová (2021)	Universal Knaster Continuum	Open Wrapping Epimorphisms	Directed Linear Graphs	
- - -	Camerlo & Basso (2020) W. & Bartošová (2021) & Spalas Uhosa Lonn	Fences Universal Knaster Continuum	& End-Preserving Various* Open Wrapping Epimorphisms FEN(L 7 CDK	Hasse Diagrams of Finite Partial Orders Directed Linear Graphs	7

L= {K,

Future Results

Introduction Knaster Continua

History

The Lattice

Abstract Characterizatio

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

• Circle S¹

- Objects: Singly Directed Cycles (every element has exactly one successor and exactly one predecessor)
- Epimorphisms: Order-Preserving
- Universal Solenoid D

- Epimorphisms: All
- Universal Solenoid $\Sigma_{
 ho}^{\mu}$
 - Objects: Directed Cycles (every element has degree 3 including itself)
 - Epimorphisms: Order-Preserving, Open, Confluent

 $f: (G \to H)$ is confluent if every connected subset $Q \in V(H)$ and for every component $C \in f'(Q)$, have f(Q) = C

Introduction Knaster Continua History The Lattice

Abstract Characterization

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit

Approximating Class

Extreme Amenability

The Universal Minimal Flow

Outline

Introduction to Knaster Continua

History

The Lattice

Abstract Characterization

Projective Fraïssé Theory Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

3 Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

KPT, 2005

Procedure

Describing the Approximating Class

The class of Finite Linear Singly Directed Graphs with Open Wrapping Epimorphisms

Theorem, W. & Bartošová, 2021

The following class together with open wrapping epimorphisms forms a projective Fraïssé class: Let $\mathcal{L} = \{\leq\}$ be a first order language, where \leq is a binary relation symbol. We consider a class \mathcal{K} of finite \mathcal{L} -structures $\mathcal{A} = (A, \leq)$ satisfying the following properties:

- **1** $\leq^{\mathcal{A}}$ is reflexive and antisymmetric.
- **2** \mathcal{A} is connected.
- **3** Every element of \mathcal{A} has degree one or two, and there are exactly two elements of \mathcal{A} which have degree one.
 - If $x \in A$ has degree 1 and $\exists a \in A$ such that $a \leq^A x$, then say x is a **crown** of A.
 - If $x \in A$ has degree 1 and $\exists a \in A$ such that $x \leq^A a$, then say x is a **root** of A.

4 A has at least one root (in which case we say A is **rooted**), and we will designate one root a_0 .

rojective raïssé Theor

The Lattice

Projective Fraïssé Classes

Projective Fraïss Limits,

Quotients of Projectiv Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit

Approximating Class

Extreme Amenability

The Universal Minimal Flow

Describing the Approximating Class

Open Wrapping Epimorphisms

In an object $(A, \leq^{\mathcal{A}}) \in \mathcal{K}$, say $C \subseteq A$ is a directed chain if there exists a labeling on C, i.e. $C = \{c_0, ..., c_n\}$ for some $n \in$ with $c_i \leq^{\mathcal{A}} c_{i+1}$ for $0 \leq i \leq n-1$. Additionally, say $C \subseteq A$ is a maximal directed chain if C is a directed chain, and for any $a \in A \setminus C$, $C \cup \{a\}$ is not a directed chain. Finally, say an epimorphism $\rho : A \rightarrow B$ is an **open wrapping epimorphism** if every maximal directed chain $C_A \subseteq A$ maps to a maximal directed chain in B and $\rho^{-1}(B) = A_1 \cup A_2 \cup ... \cup A_k$ for some $k \in$ where each A_i has the same number of maximal directed chains as B and $\rho(A_i) = B$.

Continua History The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit

Approximating Class

Extreme Amenabilit

The Universal Minimal Flow

Quotient of the PF Limit

Con-Theorem, W. & Bartošová, 2021

Let $(\mathbb{K}, \mathbb{R}^{\mathbb{K}})$ be the projective Fraïssé limit of \mathcal{K} , then:

- **1** $\mathbb{K}/R_S^{\mathbb{K}}$ is a continuum \checkmark
- **2** $\mathbb{K}/R_S^{\mathbb{K}}$ is arc-like, but not an arc \checkmark
- **3** Every proper subcontinuum of $\mathbb{K}/R_S^{\mathbb{K}}$ is an arc.

MART

50 IK.

- **4** $\mathbb{K}/R_S^{\mathbb{K}}$ satisfies the property of Kelley
- **5** $\mathbb{K}/R_S^{\mathbb{K}}$ has one end-point.

(b) For LVUry Ka 3 Ka St. S.t. |Ka|= Ka Corollary

-> is Ko

The Universal Minimal Flow

Quotient of a

Approximating Class

The Lattice Abstract

Projective Fraïssé

Quotient of a

Approximating Class

Extreme Amenability

The Universal Minimal Flow

Outline

Introduction to Knaster Continua

History

The Lattice

Abstract Characterization

2 Projective Fraïssé Theory **Projective Fraïssé Classes**

Approximating Class

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit

4 Extreme Amenability

The Universal Minimal Flow KPT, 2005

Procedure

Knaster

The Lattice

Fraïssé Limits

Extreme Amenability of a Group

GQM IF M is a minimal 6-Flow (has no proper invariant rubset) then M= 2*3

Definition

Let G be a topological group. We say G is extremely amenable if $M(G) = \{*\}$.

If the universal minimal G-flow is a single point, then that means every minimal G-flow must be a single point. Since every G-flow contains a minimal G-flow (Zorn), that means every G-flow X must contain a fixed point $x \in X$, i.e. $G \cdot x = x$.

Conversely, if every G-flow has a fixed point, then $M(G) = \{*\}$.

Amenability

Quotient of a

Approximating Class

The Universal Minimal Flow

Automorphism Groups of Fraïssé Limits

Kechris, Pestov, Todorocevic, 2005

Introduction Knaster Continua

History

The Lattice

Abstract Characterization

Projective Fraïssé Theor

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Let *L* be a signature with $L \subseteq \{<\}$ and let \mathcal{K} be a Fraïssé order class in *L*. Let $\mathbb{F} = \text{Flim}(\mathcal{K} \text{ be the Fraïssé limit of } \mathcal{K}, \text{ so that } \mathbf{F} \text{ is an order structure. Then the following are equivalent:$

- $G = \operatorname{Aut}(\mathbf{F})$ is extremely amenable.
- \mathcal{K} has the Ramsey property.

Structural Ramsey Property

Say that \mathcal{K} satisfies the **Ramsey Property** if for every $A, B \in \mathcal{K}$ with $A \leq B$, and $k \geq 2$, there is $C \in \mathcal{K}$ such that:

$$C o (B)^A_k$$

Homeo(K_{ρ}) is Extremely Amenable

Introduction Knaster Continua

History The Lattice Abstract

Abstract Characterizatio

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Theorem, W. & Bartošová, 2021

The class \mathcal{K} which approximates the universal Knaster continuum is Ramsey.

Corollary

The homeomorphism group of the universal Knaster continuum K_{ρ} , Homeo (K_{ρ}) is extremely amenable. $\mathcal{K}_{\alpha}\mathcal{K}$ is has infinitely many 2's \mathcal{K}_{2} \mathcal{K}_{2}

M (Homeo(K,)) = $\{0,1\}$

Procedure

Introduction Knaster Continua History The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïsse Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow Procedure For Model Theoretic Approach to Dynamics of a Compact Space:

- Begin with some compact space Y. Aim: discover properties of Y and Homeo(Y) using finite approximations of Y.
- **2** Find a projective Fraïssé family which "apprxoimates" Y, call it \mathcal{D} .
- **3** Compute the projective Fraïssé limit of \mathcal{D} , call it \mathbb{D} .
- **4** Symmeterize the relations to get an equivalence relation. Then show that $\mathbb{D}/R_S^{\mathbb{D}} \simeq Y$.
- **5** The quotient map $\mathbb{D} \to \mathbb{D}/R_S^{\mathbb{D}}$ induces a continuous group embedding $\operatorname{Aut}(\mathbb{D}) \hookrightarrow \operatorname{Aug}(Y)$ with dense image.
- **6** We can study Homeo(Y) via the combinatorial properties of the finite structures in \mathcal{D} .

ntroduction Knaster Continua History The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

References

D. Bartosova, A. Kwiatkowska, Universal minimal flow of the homeomorphism group of the Lelak fan, (2017) arXiv:1706.09154

R. Camerlo, Characterising quotients of projective Fraïssé limits, *Topology and its Applications*. **157** (2010) 1980-1989

Carl Eberhart, J.B. Fugate, Shannon Schumann, The Lattice of Knaster Continua, *Topology and its Applications*. **126.3** (2002), 343-349.

Y. Gutman, Minimal actions of homeomorphism groups, *Fund. Mathe.* **198** (2008), 191-215

Y. Gutman, T. Tsankov, & A. Zucker, Universal minimal flows of homeomorphism groups of high-dimensional manifolds are not metrizable, Preprint (2019)

Keesling, James, Attractors and Inverse Limits, *Revista de la Real Academia de Ciencias Exacts, Físicas y Natruales. Serie A: Matemáticas* **102.1** (2008), 21-38

Introduction Knaster Continua History The Lattice Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

References

Kuratowski, K., *Topology II* (1968), PWN - Polish Scientific Publishers Warszawa 198-210

Pangiatopoulos, Aristotelis, Compact Spaces as Quotients of Projective Fraïssé Limits, arXiv: 1601.04392 (2017)

V. Pestov, On free actions, minimal flows and a problem by Ellis, *Trans. Amer. Math. Soc.* [350(10)] (1998), 4149–4165.

V. Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, *Israel Journal of Mathematics* (2002)

A.S. Kechris, V.G. Pestov, S. Todorcevic. [2206] Fraisse Limits, Ramsey Theory, and Topological Dynamics of Automorphism Groups. arXiv: 0305241

A. Zucker, Topological dynamics of automorphism groups, ultrafilter combinatorics, and the Generic Point Problem. (2014)

References

Introduction Knaster Continua History The Lattice

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc. 30 (1930), 264-286

Introduction Knaster Continua History The Lattice

Abstract Characterization

Projective Fraïssé Theory

Projective Fraïssé Classes

Projective Fraïssé Limits,

Quotients of Projective Fraïssé Limits

Examples

Universal Knaster Continuum a Quotient of a Projective Fraïssé Limit Approximating Class

Extreme Amenability

The Universal Minimal Flow

Thank you!