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Smale & The Horseshoe Map

® Stephen Smale, 1960 in Rio: So maybe chaos DOES exist

® Mary Cartwright & L. J. Littlewood worked on analyzing equations that arose
in the study of radio waves in World War Il

® Norman Levinson (MIT) found in their work an example of a chaotic system

® Smale then worked to represent this example in as simple a manner as possible,
and came up with the Horseshoe map (Won Fields Medal 1966)

® The attractor of the Smale horseshoe map is an indecomposable continuum.

Ky = ﬁ f"(D?)
n=0

“A system is chaotic if the future is determined by the present, but the
approximate present does not approximate the future.”
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Indecomposable Continuua

Indecomposable Continuum

i Say a continuum is decomposable if it can be written as a union of two proper
e subcontinua. Otherwise, say the continuum is indecomposable.

e |n 1910, L. E. J. Brouwer was the first to describe an indecomposable
continuum.

® The Buckethandle example first appeared in Kuratowski's 1922 continuum
theory paper.

® |n the paper he attributed the construction to Knaster, who in turn obtained
his definition by simplifying Janiszewski's definition from his thesis
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The Geometric Description

This description comes from Kuratowski's 1968 textbook Topology II:

® Form a set Cg which is defined to be the set of all semi-circles in 2 that lie
above the x-axis, whose endpoints are elements of the Cantor (middle-third)
set, and whose center is (%,0)

® Next, form the set C; which is defined to be the set of all semi-circles in 2
that lie below the x-axis, whose endpoints are elements of the Cantor set,
and whose center is the midpoint of the interval [3, 3

©® Continue so that each C,, is the set of semi-circles Iylng below the x-axis,
whose endpoints are Cantor points, and whose center is the midpoint of the
interval [3n, 3,,] FmaIIy, form the Knaster continuum by taking the union of

all of these sets, K = U Ch.
n=0
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The Brouwer-Janiszewski-Knaster continuum

The Knaster Continuum

The Knaster Continuum first presented in 1922 (which we will denote K3 from
now on) is homeomorphic to the inverse limit space of a certain tent map on the

Histry unit interval. We will call this particular tent map f, : [ — [, and it is defined as
o follows (See example 22, pg 15 of Ingram and Mahavier's Inverse Limits):

2x if x € [0, 3]

. B = {2(1 X ifx e [41]

> Tent Mo | 3-Tent Map
D ® o sfesed) X
‘ @ y=2—3x{l;$xs%} 0:5
\ Vs coc)




The Brouwer-Janiszewski-Knaster continuum

The Knaster Continuum

There exists a whole class of mutually non-homeomorphic Knaster continua. Each

The Lattce are homeomorphic to an inverse limit space of a sequence of tent maps on the
Abstract
Characterization Unlt |nterva|

Ko = lim(1, ) = {(--.. 20,31, %0) € I'x; = fa(xi-1)}

Ra \ AC_lo %z < ggo
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Image from K. Kuratowski's 1968 Textbook Topology I, page 205



The Latti
e Lattice . \L”

Y/fz 1S
Debski's Classification, 1985

Two Knaster Continua K; and K, are homeomorphic if and only if for all but
finitely many primes p, p occurs in the sequences m and p the same number of

History

e times. In the exceptional cases, the number of occurences of p in each sequence is
e i, v

(LC"V@ [é; ﬁ"
Theorem, Eberhart, Fugate, & Schumann, 2002

fife There exists a lattice ordering on the equivalence class of Knaster continua with
K, at the top (where 7 is the sequence with infinitely many occurrences of every
prime), Ky at the bottom, where (1) is any sequence of prirEes with all but finitely
many 1's. F

A .
Let p=(2,3,2,3,5,2,3,5,7,...) be the sequence of primes where every prime
occurs infinitely many times. Then K, is universal in the class of Knaster
continua, in that it maps openly onto every other Knaster continuum.



Abstract Characterization of a Knaster Continuum

Theorem, Krupski 1984

The class of all Knaster continua is equal to the class of all arc-like continua with

History

e one or two endpoints having the Property of Kelley and arcs as non-degenerate

Abstract
Characterization

subcontinua and which themselves are not arcs. In particular, all of them are
indecomposable.

Q t Property of Kelley
A continuum X has the Property of Kelley if for all x € X and for each
subcontinuum K of X containing x and for each sequence of points (x,) with

Xn, — X, there exists a sequence of subcontinua K, of X containing x, and
converging to K.

Foley  (ovnsipusim



Homeo(K)

There is much known about the homeomorphism group of the Knaster continuum
(K2), in particular, the types of homeomorphisms that exist, and the number of
fixed points they must have, and the fact that the homeomorphism group is indeed
et et a topological group (Ssembatya, 2001 under Keesling). However, several questions
remained, many of which can be answered using projective Fraissé theory:

® What kind of subgroups does the homeomorphism group have?
® |s the group locally compact? QD

® Can the homeomorphism group be generated by neighborhoods of the
identity?

e \What is the universal minimal flow?}”
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Epimorphisms Instead of Embeddings

lrwin & Solecki, 2006

Let £ be a language consisting of relation symbols R;, i € I, with arity m; €, and
function symbols f;, j € J with arity n; €. A topological L-structure is a

Hisory zero-dimensional, compact, second countable space A together with closed sets
?Ib RA C A™ and continuous functions GA : A% — Aforall i€/ and € J.
e lrwin & Solecki, 2006
An epimorphism from A to B is a surjective, continuous function ¢ : A — B such
ceearecesthat for any j € J and xq, cos Xn; € A we have: C \‘\b

B

£2(0(x1); e (3 )) = D(£7 (X1, -0y X))
and for any / € [ and any yi, ..., ym, € B we have:

Apr nating Cl b\

(Viy s Ym;) € RP © 3x1, ooy xm; € A((xp) = yp for all p < m;and (x1, ..., Xm.) € R
T~ /\/\/\/'



Projective Fraissé Classes

vV \ﬂ?/ LN

Projective Fraissé Class, Irwin & Solecki

Let D be a family of topological L-structures. We say that D is a projective
Fraissé class if the following two conditions hold:

(F1) For any D, E € D, there is an F € D and epimorphisms from F onto D and
onto E.

(F2) For any C, D, E € D and any epimorphisms 1 : D — C, ¢ : E — C, there
exists an F € D with epimorphisms 11 : F — D and 5 : F — E such that

101 = P20 p\,/if\

l
4
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Projective Fraissé Class

Projective Fraissé Class, Charatonik & Roe, 2020

Let F be a class of finite graphs with a fixed family of morphisms among the
structures in F. We assume that each morphism is an epimorphism with respect
to F. We say that F is a projective Fraissé class if: T

@ F is countable up to isomoprhism, that is, any sub-collection of pairwise

Prjcive ri non-isomoprhic structures of F is countable;
® morphisms are closed under composition and each identity/map is a
morphism;
© for B, C € F there exists D € F and morphisms f : D —- B and g : D — C;
and

O for every two morphisms f : B — A and g : C — A, there exist morphisms
fo: D — B and gy: D— C such that f o fy = g o go.



Projective Fraissé Limits

gD

Projective Fraissé Limit, Irwin & Solecki

Let D be a family of topological L£-structures. We say that a topological
L-structure D is a projective Fraissé limit of D if the following three conditions
hold:

(L1) (projective universality) for any D € D, there is an epimorphism from D to D.

(L2) for any finite discrete topological space A and any continuous function
f:D — A, there is a D € D an epimorphism ¢ : D — D, and a function
D — A such that f = f o ¢.

7
(L3) projective ultrahomogeneity for any D € D and any epimorphisms
w1 :D — D and ¢y : D — D, there exists an isomorphism ¢ : D — D such that

w2 = 1 0.
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The Family of Finite Linear Graphs

Let £ = R, the language consisting of one binary relation R. Let A be the class
of all finite (reflextive) linear graphs, i.e. the class of all finite sets A with at least
two elements so that R” has the following properties:

* RAis reflexive;

* RAis symmetric;

* Every element of A has at most three (including itself) R”-neighbors;
® There are exactly two elements of A with less than three R” neighbors;

® RAis connected, i.e. for every a, b € A there exists ay, ..., a, € A such that
a=ap,b=a,and (aj,ai;1) € RA for0 < i < n.

Theorem (Irwin & Solecki, 2006)

The Family of Finite Linear Graphs forms a Projective Fraissé Class.

Afo = §



Compact Spaces & Quotients of PF Limits

Every compact space is homeomorphic to a quotient of a projective Fraissé limit

\\/ - \\(‘ /KM

Theorem (Panagiotopoulos, 2017)

Let G be a closed subgroup of Homeo(Y') for some compact, metrizable space Y.
Then there is a projective Fraissé pre-space K such that K/F\’K iIs homeomorphic to
Y, and the quotient projection

K—Y

induces a continuous group embedding Aut(K) — G with dense image in G.

e omes ()2 T}
L= UL (" §0ieTny
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All Possible Quotients

Below is a characterization of all possible quotients from a language with one

binary relation: Finitely \(QW&(WVMOM W{V\W (S QBO(MC
Theorem (Camerlo, 2010)

Given a language £ = R which consists of a single binary relation. The
characterization of all spaces that can be obtained, up to homeomorphism, as
quotients P/RP, where (P, RF) is the projective Fraissé limit of a projective
Fraissé family of finite topological £-structures, for £ as above and R an
equivalence relation consists of the following list:

e Cantor space;

Examples

® Disjoint unions of m singletons and n pseudo-arcs, with m+n >0

® Disjoint sums of n spaces each of the form X = PU [ J Q; where P is a
JEN
/7pseudo—arc, and Q; is a Cantor space which is clopen in X and U Q; is dense
JE
in X.
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Class Epimorphisms Quotient of Limit Atftribution
Linear Graphs All Pseudo-arc Irwin & Solecki (2006)
ey (SWC” Order-Preserving Arc Basso & Camerlo (2016)

Finite Graphs Monotone Menger Curve Pangiatopoulos & Solecki (2020)
Connected Graphs All Does not amalgamate W. J. Charatonik & Roe (2020)
Connected Graphs Confluent Unnamed W. J. Charatonik & Roe (2020)

Trees All Does not amalgamate W. J. Charatonik & Roe (2020)
Trees Monotone Dy W. J. Charatonik & Roe (2020)
Trees Monotone Retractions A spePci_oll\‘geancgirtigncTolled W. J. Charatonik & Roe (2020)
Trees Confluent Does not amalgamate W. J. Charatonik & Roe (2020)

Rooted Trees Order-Preserving Lelak Fan BartoSovd & Kwiatkowsa (2013)

Rooted Trees Order—l::r:essirx%gg& Eles Cantor Fan W. J. Charatonik & Roe (2020)

Rooted Trees Confluent & Order-Preserving Unnamed W. J. Charatonik & Roe (2020)

Rooted Trees

Confluent & Order-Preserving
& End-Preserving

Mohler-Nikiel Dendroid

W. J. Charatonik & Roe (2020)

Hasse Diagrams of
Finite Partial Orders

Various*

Fences

Camerlo & Basso (2020)

Directed Linear Graphs

Open Wrapping
Epimorphisms

Universal Knaster
Continuum

W. & BartoSovd (2021)
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Future Results

&

T e Circle S!

o ® Objects: Singly Directed Cycles (every element has exactly one successor and
Histor exactly one predecessor)
;L ® Epimorphisms: Order-Preserving

poewdo - b\ Tj

\Q ® Universal Solenoid Z
SR ® Objects: Directed Cycles (every element has degree 3 including itself)
‘Qt of Projective ® Epimorphisms: All

Fraissé Limits

\{/e ® Universal Solenoid ¥,

® Objects: Directed Cycles (every element has degree 3 including itself)
® Epimorphisms: Order-Preserving, Open, Confluent
TN\

Oy £ N i o ¢ ey onnedd Subicr QEV(W)
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Describing the Approximating Class

The class of Finite Linear Singly Directed Graphs with Open Wrapping

Epimorphisms Conflathk T ot
Theorem, W. & Barto3ova, 2021

The following class together with open wrapping epimorphisms forms a projective
Fraissé class: Let £ = {<} be a first order language, where < is a binary relation
symbol. We consider a class K of finite L-structures A = (A, <) satisfying the

following properties: holy .
(1) SA is reflexive and antisymmetric. /\&/( f\ V R\Dwe

® A is connected. A
b

© Every element of A has degree one or’%(\}/\?o, and there are exactly two
elements of A which have degree one.

® If x € A has degree 1 and Ja € A such that a <# x, then say x is a crown of A.
® If x € A has degree 1 and Ja € A such that x <* a, then say x is a root of A.

Approximating Class

O A has at least one root (in which case we say A is rooted), and we will
designate one root ag.



Describing the Approximating Class

Open Wrapping Epimorphisms

In an object (A, <) € K, say C C A is a directed chain if there exists a labeling
on C,ie. C=/{c,...,cp} for some n € with ¢; <A ¢ip1 for 0 <i<n—1.
Additionally, say C C A is a maximal directed chain if C is a directed chain, and
for any a € A\ C, CU{a} is not a directed chain. Finally, say an epimorphism
p: A — B is an open wrapping epimorphism if every maximal directed chain
Ca C A maps to a maximal directed chain in B and p~1(B) = Af U A, U ... U A,
for some k € where each A; has the same n mber of maximal directed chams as
B and p(Aj) =
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Quotient of the PF Limit

Con-Theorem, W. & Bartosova, 2021

Let (K, RX) be the projective Fraissé limit of K, then:

e ® K/RE is a continuum /
- ® K/RK is arc-like, but not an arc /
S © Every proper subcontinuum of K/F\’SK IS an arc./ \iﬂ
O K/RX satisfies the property of Kelley = . \g‘ o S
S K _poi SRS
o ® K/Rg has one end-point. \A 0y \ 0‘\\\\
. \(‘K/a,\ o D\Q .\
Corollary
SR

K - : RN

st Lt K/Rg is a Knaster Continuum @\{Q{\

2 i %tﬂ
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Extreme Amenability of a Group

[ winimal bk o _
Q?Q’ N\ A Las o proper nyaaank  rulger)

Xhin < Ik

Definition

T“ Let G be a topological group. We say G is extremely amenable if M(G) = {x}.

If the universal minimal G-flow is a single point, then that means every minimal
G-flow must be a single point. Since every G-flow contains a minimal G-flow
(Zorn), that means every G-flow X must contain a fixed point x € X, i.e.

G- x=x.

Conversely, if every G-flow has a fixed point, then M(G) = {x}.

Approximating Class

The Universal Minimal
Flow



Automorphism Groups of Fraissé Limits

Kechris, Pestov, Todorocevic, 2005

Let L be a signature with L C {<} and let KC be a Fraissé order class in L. Let
F = Flim(KC be the Fraissé limit of K, so that F is an order structure. Then the
following are equivalent:

® G = Aut(F) is extremely amenable.

° Ehas the Ramsey property.

st Structural Ramsey Property

Examples

|

Say that K satisfies the Ramsey Property if for every A, B € K with A < B, and
k > 2, there is C € K such that:

C— (B



Homeo(K)) is Extremely Amenable

History Theorem, W. & Barto%ova, 2021

The Lattice

Charsesrizatin The class K which approximates the universal Knaster continuum is Ramsey.

Projective Fraissé

Classes

Projective Fraiss Corollary

Quotients of Projective

e The homeomorphism group of the universal Knaster continuum K,, Homeo(K) is

extremely amenable.

= : Y
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Procedure

Procedure For Model Theoretic Approach to Dynamics of a Compact Space:
@ Begin with some compact space Y. Aim: discover properties of Y and
Homeo(Y') using finite approximations of Y.
® Find a projective Fraissé family which “apprxoimates” Y/, call it D.
©® Compute the projective Fraissé limit of D, call it D.

O Symmeterize the relations to get an equivalence relation. Then show that
D/R2 ~ Y.

® The quotient map D — D/RSD induces a continuous group embedding
Aut(D) — Aug(Y) with dense image.

® We can study Homeo(Y') via the combinatorial properties of the finite
structures in D.
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