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I A couple recent open problems in descriptive set theory (e.g. the
decomposability conjecture, and the new dichotomy proved in this
talk) have required complicated priority arguments to solve.

I Some of these types of priority argument proofs can be made simpler
using recent ideas from computability theory. In particular we show
that Montalbán’s recent (2020) “game metatheorem” can be
adapted to descriptive set theory. This “topological metatheorem” is
about the existence of a strategy in certain game so that result of
playing the game for every input yields a continuous function.
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Piecewise continuous functions
A function f : X → Y between topological spaces is σ-continuous iff
there is a countable partition X =

⋃
n∈N An of X so that for every n,

f � An is continuous.

The An may be arbitrary sets.

Question (Lusin, 1920s)

Is every Borel function between Polish spaces σ-continuous?

No! Consider the Turing jump j : 2ω → 2ω where j(x) = x ′. j is a Borel
function and we will show that it is not σ-continuous.

Assume for a contradiction j is σ-continuous. Then there are partial
continuous functions (gn)n∈N so that for every x ∈ 2ω, j(x) = gn(x) for
some n. Recall a partial function g : 2ω ⇀ 2ω is continuous iff g(x) is
uniformly computable from x relative to some oracle z ∈ 2ω. Let zn ∈ 2ω

be an oracle relative to which gn is uniformly computable.

Let x =
⊕

n zn. Then for every n, x ≥T gn(x). Since x ′ = j(x) = gn(x)
for some n, we therefore have x ≥T x ′. Contradiction!
Historically, the first counterexample was given by Keldǐs (1934).
It is a theorem of Solecki-Zapletal that the Turing jump is a basis for all
non σ-continuous Borel functions.
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It is a theorem of Solecki-Zapletal that the Turing jump is a basis for all
non σ-continuous Borel functions.



Piecewise continuous functions
A function f : X → Y between topological spaces is σ-continuous iff
there is a countable partition X =

⋃
n∈N An of X so that for every n,

f � An is continuous. The An may be arbitrary sets.

Question (Lusin, 1920s)

Is every Borel function between Polish spaces σ-continuous?

No! Consider the Turing jump j : 2ω → 2ω where j(x) = x ′. j is a Borel
function and we will show that it is not σ-continuous.

Assume for a contradiction j is σ-continuous. Then there are partial
continuous functions (gn)n∈N so that for every x ∈ 2ω, j(x) = gn(x) for
some n. Recall a partial function g : 2ω ⇀ 2ω is continuous iff g(x) is
uniformly computable from x relative to some oracle z ∈ 2ω. Let zn ∈ 2ω

be an oracle relative to which gn is uniformly computable.

Let x =
⊕

n zn. Then for every n, x ≥T gn(x). Since x ′ = j(x) = gn(x)
for some n, we therefore have x ≥T x ′. Contradiction!
Historically, the first counterexample was given by Keldǐs (1934).
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Continuous reducibility (Hertling-Weihrauch ’94)
If f : X → Y and g : Z →W , say that g is continuously reducible to f
noted g ≤c f if there are a continuous φ : Z → X and partial continuous
ψ : Y ⇀W so that g = ψ ◦ f ◦ φ.

X Y

Z W

f

ψ

g

φ

I If g ≤c f and f is σ-continuous, then g is σ-continuous.
I Any continuous function from X → X is continuously reducible to

the identity function id : X → X .
I If f : X → X is a Borel function with uncountable range, then

id : 2ω → 2ω is continuously reducible to X . (Apply Silver’s theorem
to the equivalence relation where x E y if f (x) = f (y))

I Any Σ0
n+1-measurable function g on 2ω is continuously reducible to

the nth Turing jump jn(x) = x (n). Let z ∈ 2ω be so that g(x) is
uniformly ∆0,z

n+1 definable from x . Let φ(x) = x ⊕ z and let ψ(x)

witness that (x ⊕ z)(n) ≥T g(x) uniformly.
I Say a function f : 2ω → 2ω is complete Σ0

α-measurable iff it is
Σ0
α-measurable and every Σ0

α measurable function g is continuously
reducible to it.

Continuous reducibility is sometimes called continuous strong Weihrauch reducibility

in the literature. It was introduced by Hertling and Weihrauch in 1994 and its study

was revived by Carroy in 2013
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The Solecki-Zapletal dichotomy

The Turing jump is the basis for all non σ-continuous functions!

Theorem (Solecki 98, Zapletal 04)

Suppose f : X → Y is a Borel function between Polish spaces. Then
exactly one of the following holds:

I f is σ-continuous, or

I j ≤c f where j is the Turing jump.

This theorem can be sharpened so that the continuous reduction
becomes a topological embedding. The dichotomy in Solecki and
Zapletal is stated in terms of the Pawlikowski function, but the
Pawlikowski function is continuously equivalent to the Turing jump.

Kihara has applied this dichotomy to some problems surrounding
Martin’s conjecture on Turing invariant functions. Kihara’s results were
recently generalized by Lutz-Siskind
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A proof sketch of Solecki-Zapletal
Assume f : ωω → ωω. By relativization, we may assume that f is
lightface ∆1

1. By a standard reflection argument
C =

⋃
{A : A is Σ1

1 and f � A is continuous} is a Π1
1 set. Hence, its

complement C c is a Σ1
1 set and f � A is not continuous for any Σ1

1 set
A ⊆ C c

If C c is empty, then f is σ-continuous.
If C c is nonempty we can perform a finite injury priority construction to
continuously reduce the Turing jump to f . We’ll build φ by associating to
each string s ∈ 2<N a Σ1

1 set As and a basic open set Bs with As ⊆ Bs ,
so that the s ⊆ t implies Bs ⊇ Bt . We’ll then let φ(x) be the unique y so
that {y} =

⋂
s⊆x Bs ,

The key idea is that if f � A is not continuous, we can find a basic open
neighborhood Nt so that (f � A)−1(Nt) is not relatively open in A. Let
A∗ = (f � A)−1(Nt) \ {Nr : f (A ∩ Nr ) ⊆ Nt}. Suppose we are building
some φ(x) ∈ 2ω to be inside A∗ so that f (φ(x)) ⊆ Nt . The point is that
even if we have committed to φ(x) ⊆ Nr for an arbitrarily long r , since
Nr ∩ (f � A)−1(2N \ Nt) is nonempty we can at any point switch to
building an element of this set instead so that φ(x) ⊆ 2N \ Nt .
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The key idea is that if f � A is not continuous, we can find a basic open
neighborhood Nt so that (f � A)−1(Nt) is not relatively open in A. Let
A∗ = (f � A)−1(Nt) \ {Nr : f (A ∩ Nr ) ⊆ Nt}. Suppose we are building
some φ(x) ∈ 2ω to be inside A∗ so that f (φ(x)) ⊆ Nt . The point is that
even if we have committed to φ(x) ⊆ Nr for an arbitrarily long r , since
Nr ∩ (f � A)−1(2N \ Nt) is nonempty we can at any point switch to
building an element of this set instead so that φ(x) ⊆ 2N \ Nt .
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Generalizing the Solecki-Zapletal dichotomy

A function is Baire class 0 iff it is continuous and f is Baire class α if f is
the pointwise limit of a sequence of functions fn where each fn is Baire
class αn for some αn < α. In terms of the Borel hierarchy, f is Baire
class α if the preimage of every open set is Σ0

α+1.

Recall for every α there is a complete Baire class α function under
continuous reducibility, and any complete Baire class α + 1 function is
not σ-Baire class α (a countable union of Baire class α partial functions).

Theorem (M.-Montalbán)

Suppose f : X → Y is a Borel function between Polish spaces. Then
exactly one of the following holds:

I f is σ-Baire class α, or

I There is a continuous reduction of a complete Baire class α + 1
function to f .

The proof is similar in spirit to the α = 0 (Solecki-Zapletal) case, except
it uses a 0(α+1)-injury priority argument.
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Priority arguments in descriptive set theory

Recently the field of descriptive set theory has been making some serious
use of priority arguments. Computability theory uses priority arguments
to construct simple objects (e.g. c.e. sets) with complicated properties
(e.g. controlling what they can compute). Likewise the uses of priority
arguments in descriptive set theory build simple objects (e.g. continuous
functions) with complicated properties (e.g. being a Wadge reduction
between two complicated sets).

These new uses are more than simply relativizing constructions from
computability. These arguments often construct a tree of
“approximations” like in the Solecki-Zapletal argument and along each
branch a priority argument is taking place. However, additional
complexity comes from how the outcomes along different branches now
interact with each other (the construction is more “global”). These
constructions also use deep results of effective descriptive set theory (e.g.
Louveau’s analysis of Σ1

1 ∩Π0
α) to find the correct types of

approximations that can appropriately respond to the flow of the
construction.



Priority arguments in descriptive set theory

Recently the field of descriptive set theory has been making some serious
use of priority arguments. Computability theory uses priority arguments
to construct simple objects (e.g. c.e. sets) with complicated properties
(e.g. controlling what they can compute). Likewise the uses of priority
arguments in descriptive set theory build simple objects (e.g. continuous
functions) with complicated properties (e.g. being a Wadge reduction
between two complicated sets).

These new uses are more than simply relativizing constructions from
computability.

These arguments often construct a tree of
“approximations” like in the Solecki-Zapletal argument and along each
branch a priority argument is taking place. However, additional
complexity comes from how the outcomes along different branches now
interact with each other (the construction is more “global”). These
constructions also use deep results of effective descriptive set theory (e.g.
Louveau’s analysis of Σ1

1 ∩Π0
α) to find the correct types of

approximations that can appropriately respond to the flow of the
construction.



Priority arguments in descriptive set theory

Recently the field of descriptive set theory has been making some serious
use of priority arguments. Computability theory uses priority arguments
to construct simple objects (e.g. c.e. sets) with complicated properties
(e.g. controlling what they can compute). Likewise the uses of priority
arguments in descriptive set theory build simple objects (e.g. continuous
functions) with complicated properties (e.g. being a Wadge reduction
between two complicated sets).

These new uses are more than simply relativizing constructions from
computability. These arguments often construct a tree of
“approximations” like in the Solecki-Zapletal argument and along each
branch a priority argument is taking place. However, additional
complexity comes from how the outcomes along different branches now
interact with each other (the construction is more “global”). These
constructions also use deep results of effective descriptive set theory (e.g.
Louveau’s analysis of Σ1

1 ∩Π0
α) to find the correct types of

approximations that can appropriately respond to the flow of the
construction.



Frameworks for priority arguments

The complexity of a priority argument is measured by how complicated it
is to compute how the requirements are satisfied.

As this complexity
grows, these constructions become quite complex. Methods have been
created for handling the level-by-level combinatorics of these
constructions in a more simple and uniform way (e.g. Harrington’s worker
method, Lempp and Lerman’s trees of strategies, Ash’s metatheorem,
Ash-Knight’s η-system, and Montalbán’s true stages) .

Recently, Day, Greenberg, and Turetsky have discovered that
Montalbán’s true stages framework has also arisen independently outside
of computability theory: an essentially equivalent framework was used by
Louveau and Saint-Raymond in set theory for proving Borel Wadge
determinacy in second order arithmetic in 1988. This independent
development of the same machinery is compelling evidence that true
stages are a natural tool.

We adapt a new tool for conducting priority arguments: we prove a
topological adaptation of Montalbán’s recent game metatheorem.
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Choquet games

Suppose A ⊆ P(X ). The strong Choquet game GA is the two player
game where the players alternate playing sets Ai ,Bi ∈ A:

I x0,A0 x1,A1 . . .
II B0 B1

where A0 ⊇ B0 ⊇ A1 ⊇ B1 . . . and xi ∈ Bi . We say that player II wins the
game if

⋂
i Ai =

⋂
i Bi 6= ∅.

A is strong Choquet if player II has a winning strategy in GA.

Examples of A that are strong Choquet

I The open sets in a Polish space.

I The Π0
α subsets of ωω.

I The Π0,hyp
α subsets of ωω.

I The Σ1
1 subsets of ωω (Gandy).
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A warning

We will not use any determinacy in this talk!

The point of Choquet games is to simplify dealing with issues of Baire
category, density arguments, etc.
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The game GA,B
Given sets A,B ⊆ P(ωω), consider the game:

I A0 A1

oracle n0 n1 · · ·
II B0 B1

We think of the moves of the oracle as fixed, and not responding to
players I and II.
So on turn i ,

I Player I plays Ai ∈ A where Ai ⊆ Bi−1

I The oracle plays ni ∈ N
I Player II plays Bi ∈ B where Bi ∩ Ai 6= ∅ and Bi ⊆ Bi−1.

Player II wins if
⋂

i Bi is a singleton.
Call this the game GA,B.

Winning strategies for II are easy to create assuming B is strong Choquet.

If σ is a strategy for I, y ∈ ωω are the moves of the oracle, and τ is a
winning strategy for II, let σ ∗ y ∗ τ be the outcome of the game when it
is played using these strategies. That is, the real z where {z} =

⋂
i Bi .
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Topological adaptation of Montalbán’s game metatheorem.
I A0 A1

GA,B : oracle n0 n1 · · ·
II B0 B1

Theorem (M.-Montalbán)

Fix α < ω1. Let A be all Σ1
1 sets and B be all Π0

α(HYP) sets. There is a
complete Baire class α function Tα : ωω → ωω so:
for every strategy σ for I, there is a winning strategy τ for II so
x 7→ σ ∗ Tα(x) ∗ τ is continuous.

It is trivial to find a winning strategy for II so that x 7→ σ ∗ Tα(x) ∗ τ is
Baire class α. The magic of the theorem is making this map continuous.
Tα : ωω → ωω is a “Skolemized” version of an appropriate iterate of the
Turing jump. (It is the set of α-true stages of x).

Proving this theorem requires adapting Montalbán’s machinery to the
setting of descriptive set theory, and also Louveau’s theorems on Σ1

1∩Π0
α.

More generally, the topological metatheorem is true when B ⊆ A ⊆ P(X )
are countable collections of subsets of a Polish space X , B consists of Π0

α

sets, and A,B satisfy certain closure properties.
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An example application: Borel Wadge determinacy

The following theorem is a trivial consequence of Borel determinacy, but
it was a long open question whether this theorem was provable without
the full power of Borel determinacy.

Theorem (Louveau and Saint-Raymond ’88 in second order
arithmetic)

Suppose X is a Polish space and C ⊆ X is Borel and not Σ0
α+1. Then a

complete Π0
α+1 set is Wadge reducible to C .

Proof. By relativization, we may assume that C is ∆1
1. Let

A0 = C \ {B : B is Π0,hyp
α and B ⊆ C}.

Note that A0 is Σ1
1. We must have A0 6= ∅ since otherwise B would be

Σ0
α+1.



Let Tα(x) be the set of α-true stages of x . There is an index e for a c.e.

set so that {x : W
Tα(x)
e ↓} is Π0

α+1 complete.

We define a strategy for player I in the game metatheorem. On their first
turn I plays A0. We now define what player I plays on subsequent turns
of game after the oracle has played an initial segment s of Tα(x).
If W s

e ↑, then on turn n I plays a set An ⊆ Bn−1 ∩ An−1, using a winning
strategy for II in the Choquet game on Σ1

1 sets to ensure that if

W
Tα(x)
e ↑, then the moves of player I A0 ⊇ A1 ⊇ A2 . . . have nonempty

intersection. Hence, the outcome of the game is in
⋂

i Ai and hence in A0

and thus in C .
If W s

e ↓, and s is the string of shortest length so this is true, then player I
plays the set An = Bn−1 \ C . This set is nonempty since
Bn−1 ∩ An−1 6= ∅, An−1 ⊆ . . . ⊆ A0, and by the definition of A0. On
subsequent moves I plays according to a winning strategy for the Choquet
game on Σ1

1 sets so that An ⊇ An+1 ⊇ . . . have nonempty intersection.
By the game metatheorem there is a strategy for the II so the function
f : 2ω → X sending x to the outcome of this game where I plays the
above strategy is continuous. By our definition of the strategy,

W Tα(x)
e ↓ ⇐⇒ f (x) ∈ C .

Hence, f is a Wadge reduction from a complete Π0
α+1 set to C .
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Finishing the dichotomy for Baire class α functions
Our proof of the dichotomy for σ-Baire class α functions is done using
Montalbán’s full true stages machinery. The true stages machine
iteratively defines partial orders (≤β)β≤α which approximate the truth of
Σ0
β sentences by defining trees with unique branches through them.

We proved the game metatheorem to try and simply the proof of this
dichotomy. Our idea was that if f is ∆1

1 and not σ-Baire class α, let

C =
⋃
{A : A is Σ1

1 and f � A is Baire class α}, so C c is nonempty. Using the same

idea as in the proof of Solecki-Zapletal, write down an appropriate strategy for player I

in the topological metatheorem. The continuous function given by the metatheorem

will be φ, and we will be able to construct ψ from the winning strategy for II.

Unfortunately, we haven’t quite gotten this simplification to work; there
is a technical issue in adapting the proof of Solecki-Zapletal that is
related to how incompatible branches on the tree of approximations to
the continuous reduction affect each other.

So the full true stages proof is currently our best proof of the dichotomy
theorem. A hybrid approach which may work is a “tree” game
metatheorem that takes place more directly on a tree, instead of having
an oracle in the game.
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Open problems

I Find more applications of the metatheorem.

I (Carroy, 2013) Is continuous reducibility a well-quasi-order on all
Borel functions on 2ω? (Does it have infinite antichains or infinite
descending sequences?).
If the answer is positive, there is a deep structure inside Borel
functions we have been missing which should be useful to
understand and analyze them.

I Is continuous reducibility on all functions on 2N a well-quasi-order
assuming AD+?

I Are there versions of Montalbán’s game metatheorem beyond the
Borel?
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Thanks!


