
UNIFORM AMENABILITY

UNIFORM
HYPERFINITENESS

Amenability and hyperfinite-
ness for infinite graphs.

LetG be an infinite, connected graph
with vertex degree bound d. What
does it mean that G is hyperfinite?

Følner-property seems to be a good
candidate.

G is Følner if for any ϵ > 0 there
exists some finite subset F ⊂ V (G)
such that

|∂(F )|
|F |

≤ ϵ .
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Consequences of the definition

1. IfG is the Cayley graph of a group
Γ, then G is Følner if and only if it
is amenable.

2. A regular tree can be made Følner
by substituting its edges with longer
and longer paths very, very sparsely.
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The definition should be made more
”local”.

LetG be uniformly locally Følner
(ULF) if for every ϵ > 0 there exists
some K > 0 such that for any fi-
nite subset H , there exists a subset
F ⊂ H such that the size of F is at
most K and

|∂H(F )|
|F |

≤ ϵ ,

where ∂H(F ) denotes the boundary
of F relative to H not the infinite
set V (G). (Brodzki, Niblo, Spakula,
Willett and Wright, 2013)
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Consequences of the new def-
inition

1. All trees, regular or not, are ULF.

2. So, the Cayley graphs of the free
groups are ULF. The Cayler graphs
of all hyperbolic groups are ULF. The
direct product, free product and even
extensions of ULF-groups are still ULF.
(explained a bit later)

3. There are non-ULF graphs! One
consider an expander sequence of fi-
nite graphs and connect them to ob-
tain an infinite graph.
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There are non-ULF Cayley-graphs!!
The Gromov-Osajda non-exact
groups.
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The Property A of Guoliang
Yu.

Let G be an infinite graph. Then,
Prob(G) is the set of all probability
measures on the vertices of G. If f :
V (G) → R and g : V (G) → R
are two real functions on the vertices
then their l1-distance is defined as
∥f−g∥1 :=

∑
x∈V (G) |f (x)−g(x)|,

also ∥f∥ :=
∑

x∈V (G) |f (x)| .

Definition 1. The graph G pos-
sesses Property A if for any ϵ > 0
there exists R > 0 and for each
x ∈ V (G) a probability measure
P (x) supported on the R-neighbourhood
of x, such that for all adjacent pairs
x, y ∈ V (G)

∥P (x)− P (y)∥1 ≤ ϵ.
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Figure 1. The 3-regular tree is of Property A.
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(Brodzki et. al.,2013): Property A
implies Uniform Local Følner. Con-
jecture: ULF implies Property A.

(E. 2020): ULF implies Property A.

Idea of the proof: Strong Hyper-
finiteness and Weighted Hyperfinite-
ness.

A K-separator Y in G is a set of
vertices such that the complement of
Y is a union of subsets of size at most
K.

G is strongly hyperfinite if for
any ϵ > 0 there exists K > 0 such
that there exists a probability mea-
sure on the set of allK-separators in
such a way that for any x ∈ V (G)
the probability of K-separators con-
taining x is less than ϵ > 0. (Wrochna,
Zivny, Romero 2019 for finite graphs)
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G is weighted hyperfinite if for
any ϵ > 0 there exists K > 0 such
that for any probability measure w
on V (G) one can delete a subset S ⊂
V (G) of w-measure less than ϵ in
such a way that the resulting graph
has components of size at most K.
(E.-Timár, 2011)

Property A is equivalent to weighted
hyperfiniteness. (Sako, 2012)

ULF=> Strong Hyperfiniteness =>
Weighted hyperfiniteness.
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Borel graphs, measured graphs

Let Γ be a finitely generated group
with a symmetric generating set Σ
and let α : Γ ↷ X be a Borel action.
The associated Borel graph α

Γ,Σ
G

is defined in the following way. The
vertex set is X and (x, y) is an edge

of α
Γ,Σ
G for x ̸= y if and only if there

is a generator σ ∈ Σ such that y =
α(σ)(x).
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Let µ be a probability measure non-
singular (quasi-invariant) with respect
to the action α and G be the asso-
ciated Borel graph. Then, we call
the system (G, X, µ) a measured
graph.

Hyperfiniteness:

Let G be a Borel graph. Let EG the
associated orbit equivalence relation.
We call G hyperfinite, if

E = E1 ⊂ E2 ⊂ ...

where {En}∞n=1 are finite equivalence
relations.
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Amenability:

Let G be a Borel graph and E = EG.
If there exist Borel functions (the Re-
iter functions) pn : E → [0, 1] such
that

• for any x ∈ X and n ≥ 1,∑
z,z≡Ex

pn(x, z) = 1,
• for any pair x ≡E y,

lim
n→∞

∑
z,z≡Ex

|pn(x, z)−pn(y, z)| = 0.

Proposition: Hyperfiniteness im-
plies amenability.

Conjecture: [Jackson-Kechris-Louveau]
Amenability implies Borel-hyperfiniteness.
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Ameasured graph (G, X, µ) is µ-amenable
if there exists a Borel set Y ⊂ X of
full measure consisting of G-orbits,
such that GY is amenable.

A measured graph (G, X, µ) is µ-hyperfinite
if there exists a Borel set Y ⊂ X of
full measure consisting of G-orbits,
such that GY is hyperfinite.

Alternatively, (G, X, µ) is µ-hyperfinite
if for any ϵ > 0 there exists K > 0
such that we have Z ⊂ X , µ(Z) < ϵ
so that all the components of GX\Z
are of size at most K.
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Theorem:[Connes, Feldman, Weiss]
µ-amenability is equivalent to µ-hyperfiniteness.

If Γ is amenable and α : Γ ↷ (X,µ)
is a non-singular action, then the as-
sociated measured graph is µ-hyperfinite.

On the other hand, any non-amenable
group has free, ergodic, non-singular
action (necessarily not measure-preserving)
such that the associated measured
graph is µ-hyperfinite.
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Uniform amenability:

(Anantharaman-Delaroche and
Renault) Let G be a Borel graph
of bounded vertex degrees as above
ϵ > 0 and R ≥ 1. Then, G is (ϵ, R)-
amenable, if there exists a Borel func-
tion p : Y → Prob(Y ) such that

• for all x ∈ Y

Supp(p(x)) ⊂ BR(x,G) ,
• and∑

x∼Gy
∥p(x)− p(y)∥1 ≤ ϵ .
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G isBorel-amenable if for any ϵ >
0 there exists R ≥ 1 such that G is
(ϵ, R)-amenable.

So, Borel-amenability is much stronger
than amenability, it is a sort of uni-
form amenability.

By definition, all the orbits of G are
of Property A. Basically, Borel-amenability
is the dynamical version of Property
A. So, if Γ is non-exact then no free
action of Γ can be Borel-amenable,
but it is well-known that all groups
have amenable(hyperfinite) actions.

I do not know what would be the
right notion of Borel uniform hyper-
finiteness, which might be equivalent
to Borel-amenability.
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Key definition:The measured graph
(G, X, µ) is µ-uniformly amenable if
there exists an invariant set Y ⊂ X
of full measure such that GY is Borel-
amenable.

So, µ-uniform amenability is the mea-
sured group theoretic analogue of Prop-
erty A.

The measured graph (G, X, µ) is (ϵ,K)-
uniformly hyperfinite, if any subgraph
of G of positive measure is (ϵ,K)-
hyperfinite. Again, (G, X, µ) is µ-
uniformly hyperfinite if any for
any ϵ > 0 there exists K > 0 such
that it is (ϵ,K)-uniformly hyperfi-
nite.
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It is tempting to conjecture that uni-
form hyperfiniteness and uniform amenabil-
ity are equivalent. But...
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Figure 2. Example 1.
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Figure 3. Example 2.
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So, there are non-uniformly amenable
uniformly hyperfinite measured graphs.
But...

Some Radon-Nikodym derivatives in
the case of Example 2. are really
large.

If (G, X, µ) is measured graph, by
quasi-invariance we can assume that
on all directed edges the Radon-Nikodym
derivatives exist (and form a cocy-
cle).

If all the Radon-Nikodym derivatives
are bounded by some constant M ,
then we say that (G, X, µ) is of bounded
type.
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(Elek, 2020) For measured
graph (G, X, µ) of bounded type
uniform amenability and uni-
form hyperfiniteness are equiva-
lent. (AMS Transactions)

Note that there exists topological min-
imal, non-free actions of the free group
with the following property. (Elek-
Ceccherini)

1. For an ergodic, invariant measure
µ1 the action is hyperfinite.

2. For an ergodic, invariant measure
µ2 the action is not hyperfinite.
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Then µ1 is not uniformly hyperfinite.

Also, it is known that all groups have
free continuous actions with hyperfi-
nite non-singular measures of bounded
Radon-Nikodym derivative. For the
Gromov-Osajda groups these actions
cannot be uniformly hyperfinite.

For exact groups all free hyperfinite
actions are non-uniformly hyperfinite.

For non-exact groups all free hyper-
finite actions are uniformly hyperfi-
nite (E.- Krolicki)


