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Borel Flows

A multidimensional Borel flow is a Borel action Rd ↷ Ω on a standard Borel space.

The action of r⃗ ∈ Rd upon x ∈ Ω will be denoted additively: x + r⃗ .

Irrational rotation on the torus is a classical example of an R flow.
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Irrational Rotation on a Torus
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Orbit Equivalence

An orbit equivalence between flows Rd ↷ Ω1 and Rd ↷ Ω2 is a Borel bijection

ϕ : Ω1 → Ω2 that sends orbits onto orbits:

ϕ
(
x + Rd

)
= ϕ(x) + Rd .
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Strengthening of Orbit Equivalence

When the flow is free

• any orbit of the action can be identified with the affine space Rd ;

• one can transfer any translation-invariant structure from the Euclidean space

onto every orbit of the flow;

• each point considers itself to be the origin, and transfers the structure via the

corresponding bijection.
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Smooth Structure on Orbits

Transferring topology:

For x ∈ Ω

Ox =
{
A ⊆ x+Rd : {r⃗ ∈ Rd | x+r⃗ ∈ A} is open

}
.

Note that Ox = Oy whenever x + Rd = y + Rd . x

r⃗

A

Two flows are smoothly equivalent if there exists an orbit equivalence between the

phase spaces which is an orientation preserving diffeomorphism between orbits.
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Smooth Equivalence in Ergodic Theory

Smooth equivalence of one dimensional flows is known under the name of time

change equivalence.

It has been studied extensively in ergodic theory, where

• phase space Ω is endowed with a probability measure;

• flows are assumed to be (quasi) measure preserving;

• all orbit equivalence maps must be (quasi) measure preserving;

• and may be defined up to a null set.
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Smooth Equivalence in Ergodic Theory

Theorem (Feldman–Rudolph, Ornstein–Weiss)

There are continuumly many pairwise time change inequivalent measure preserving

ergodic R flows.

Theorem (Rudolph)

All ergodic measure preserving Rd flows, d ≥ 2, are smoothly equivalent.

Theorem (Feldman)

All ergodic quasi measure preserving Rd flows, d ≥ 2, are smoothly equivalent.
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Smooth Equivalence in Descriptive Set Theory

Descriptive set theoretical framework is both more restrictive (one has to define

equivalence on each and every orbit, flows may not preserve any measure) and more

relaxed (orbit equivalence maps don’t need to be measure preserving).

Recall that a flow Rd ↷ Ω is tame if it admits a Borel transversal — a Borel set

S ⊂ Ω that chooses one point from each orbit.

Theorem (Miller–Rosendal)

All free non tame R flows are time change equivalent.
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Summary of Results on Smooth Equivalence

Dimension d = 1 d ≥ 2

Ergodic Theory Many One

Borel Dynamics One

Theorem (S.)

All free non tame Rd flows, d ≥ 2, are smoothly equivalent.
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Metric on Orbits

Transferring metric:

For x , y ∈ Ω within the same orbit there exists a

unique ρ(x , y) ∈ Rd such that x + ρ(x , y) = y .

d(x , y) = ||ρ(x , y)|| x

y

r⃗ = ρ(x , y)
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Cross Sections

A cross section for an action Rd ↷ Ω is a Borel set C ⊆ Ω which intersects all orbits

of the action and is lacunary: for some open ball Br ⊆ Rd around the origin

(x + Br ) ∩ (y + Br ) = ∅ whenever x , y ∈ C, x ̸= y .

r
x

x + Br
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Suspension Flow

With a (bi-infinite, lacunary) cross section C of an R flow one associates a suspension

flow.

Gap function fC(x) = min{r > 0 : x + r ∈ C}
Induced automorphism T : C → C given by T (x) = x + fC(x)
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Suspension Flow

The flow can be modeled on the space Ω under the graph of the gap function, by

flowing upward within a fiber, and then jumping to the next one as determined by T .

x T (x)

Ω

Ω = {(x , t) ∈ X × R : 0 ≤ x < f (x)}
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Irrational Rotation as a Suspension Flow

The following cross section for the irrational rotation has a constant gap function.

C

T : C → C

gap function

Ω = C × [0, c)

Such a representation is very special — many flows do not admit a cross section with a

constant gap function.
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Katok’s Representation Theorem

Geometrically appealing suspension flow construction is one-dimensional.

An action Zd ↷ X can be turned into an

Rd flow on the space Ω = X × [0, 1)d . For

(x , s⃗) ∈ X × [0, 1)d and r⃗ ∈ Rd let n⃗ ∈ Zd

be such that s⃗ + r⃗ − n⃗ ∈ [0, 1)d ; set

(x , s⃗) + r⃗ = (x + n⃗, s⃗ + r⃗ − n⃗).

Not every Rd flow is of this form, just as

not every R flow has cross sections with

constant gaps.
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Cocycle

Let x 7→ x + r⃗ and x 7→ x ⊕ r⃗ be two flows

that have the same orbits. The associated

cocycle h : Ω× Rd → Rd is given by the

condition

x⊕r⃗ = x+h(x , r⃗) for all x ∈ X and r⃗ ∈ Rd .
x

x ⊕ r⃗ = x + h(x , r⃗)
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Katok’s Representation Theorem

Theorem (Katok)

For every free ergodic measure preserving Rd flow x 7→ x + r⃗ and any ϵ > 0 there

exists a flow Rd ↷ X × [0, 1)d arising from an ergodic action Zd ↷ X such that the

corresponding cocycle h : Ω× Rd → Rd is (1− ϵ, 1 + ϵ)-bi-Lipschitz:

1− ϵ ≤ ||h(x , r⃗)||
||r⃗ ||

≤ 1 + ϵ.

Theorem (S.)

The statement of Katok’s Theorem holds within the framework of Borel dynamics.
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Layered and Unlayered Toasts



Toasts

A common pattern is to start with a cross section C ⊆ Ω and run a construction within

disjoint regions around the points of C.

19



Layered Toasts in Ergodic Theory

Properties of Regions

• Exhaustive:
⋃

n Rn = Ω.

• Layered: Rn ⊆ Rn+1.

• Shape: rectangles.

• Boundary: bn → ∞.

R1

R1

R2

R2

R3
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Unlayered Toasts in Borel Dynamics

Properties of Regions

• Exhaustive:
⋃

n Rn = Ω.

• Unlayered: Rm ⊆ Rn.

• Shape: non-convex.

• Boundary: bn ≥ const.

R1

R1

R1

R2

R2

R5
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Construction of an Orbit Equivalent Flow

Let R be a region of an unlayered toast. A Borel injection ϕR : R → Rd defines a

partial action on R

x ⊕ r⃗ = ϕ−1
R (ϕR(x) + r⃗).

ϕR
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Construction of an Orbit Equivalent Flow

x

x ⊕ r⃗

ϕR

ϕR(x)

ϕR(x) + r⃗

The action is partial in the sense that x ⊕ (r⃗ + s⃗) = (x ⊕ r⃗)⊕ s⃗ whenever both sides

are defined.

NB: Shifted map x 7→ ϕR(x) + s⃗ defines the same partial action for any s⃗ ∈ Rd .
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Construction of an Orbit Equivalent Flow

When constructing ϕR2 , we take into account partial actions given by ϕR1 for the

regions R1 ⊆ R2.

However, ϕR2 is not an extension of ϕR1 . Instead, ϕR2 extends shifts

of ϕR1 .

ϕR2

R2
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Proof of Borel Version of Katok’s Theorem
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Lipschitz Maps

Let v⃗ ∈ Rd be of norm ||v⃗ || ≤ 1, K > 1, and A ⊂ Rd be a closed bounded set. Define

fA,K : A → A by

fA,K (r⃗) = r⃗ +
d(r⃗ , ∂A)

K
v⃗ .

fA,K

fA,K is (1− K−1, 1 + K−1)-bi-Lipschitz and fA,K (A) = A.
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Lipschitz Maps

Let AL = {r⃗ ∈ A : d(r⃗ , ∂A) ≥ L} and observe that fA,K |∂AL = r⃗ + L/K · v⃗ . Define

gA,K ,L(r⃗) =

fA,K (r⃗) if r⃗ ∈ A \ AL;

r⃗ + L/K · v⃗ if r⃗ ∈ AL;

gA,K ,L

gA,K ,L is (1− K−1, 1 + K−1)-bi-Lipschitz and gA,K ,L(A) = A.
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Construction of an Orbit Equivalent Flow

Pick a sequence of unlayered toasts whose boundaries are K -separated for some

sufficiently large K = K (ϵ). We construct a grid that is bi-Lipschitz equivalent to the

standard Zd grid.

The first step of the construction consists of “identity” maps.

c

x

x = c + ρ(c , x)

x 7→ ρ(c , x) 0

27



Construction of an Orbit Equivalent Flow

Pick a sequence of unlayered toasts whose boundaries are K -separated for some

sufficiently large K = K (ϵ). We construct a grid that is bi-Lipschitz equivalent to the

standard Zd grid.

The first step of the construction consists of “identity” maps.

c

x

x = c + ρ(c , x)

x 7→ ρ(c , x)

0

27



Construction of an Orbit Equivalent Flow

Pick a sequence of unlayered toasts whose boundaries are K -separated for some

sufficiently large K = K (ϵ). We construct a grid that is bi-Lipschitz equivalent to the

standard Zd grid.

The first step of the construction consists of “identity” maps.

c

x

x = c + ρ(c , x)

x 7→ ρ(c , x)

0

27



Step of Induction

c 0
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Step of Induction

c 0
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Proof of Borel Version of Rudolph’s Theorem
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Equivalence to Product Flows

The plan is to reduce the multidimensional case to d = 1 by proving the following.

Theorem (S.)

Every free Rd flow on Ω is smoothly orbit equivalent to a flow

R× Rd−1 ↷ L× Rd−1, where R ↷ L is one-dimensional, and Rd−1 ↷ Rd−1 acts by

translation.

Note that L× 0⃗ picks a line out of every orbit upon which the R flow acts.
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Equivalence to Product Flows: Base Step

Regions R1 can be chosen to be diffeomorphic to a

unit disk B1 ⊂ Rd , so we may pick such a

diffeomorphism and pull the line segment

[−1, 1]× 0⃗ into the region R1 to be part of the line.

0
−1 1
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Extending Diffeomorphisms Between Disks

The following basic fact from differential topology is used in the construction.

Theorem

Let F , F ′ and Di ⊂ F , D ′
i ⊂ F ′, 1 ≤ i ≤ n, be smooth disks. Suppose that Di are

pairwise disjoint, and so are D ′
i . Any family ϕi : Di → D ′

i of orientation preserving

smooth diffeomorphisms admits a common extension to a diffeomorphism

ψ : F → F ′.
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Equivalence of Product Flows: Extending Partial Actions

This lets us extend partial actions on R1 regions to a R2 region.
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Equivalence to Product Flows: Base Step

The result of such an extension is a partial action

on R2, which extends partial actions on R1.
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Smooth Equivalence of Flows

Let Rd ↷ Ω1 and Rd ↷ Ω2 be free non tame Borel flows. By the argument above,

each of them is smoothly equivalent to a product flow on Li × Rd−1. The “first

coordinate flows” are time change equivalent by the Miller–Rosendal theorem. If

ξ : L1 → L2 is such a time change equivalence, then

L1 × Rd−1 ∋ (y , r⃗) 7→
(
ξ(y), r⃗

)
∈ L2 × Rd−1.

is a smooth equivalence of the multidimensional flows.
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Summary of the Results on Smooth Equivalence

This concludes our sketch of the argument.

Dimension d = 1 d ≥ 2

Ergodic Theory Many One

Borel Dynamics One One
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Thank you!
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