Logic Seminar (Caltech)

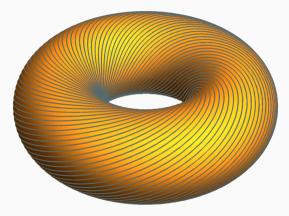
Orbit equivalences of multidimensional Borel flows

Konstantin Slutsky

Feb 16th, 2022

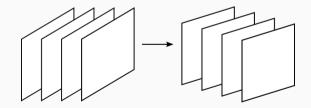
Iowa State University

Irrational Rotation on a Torus



An **orbit equivalence** between flows $\mathbb{R}^d \curvearrowright \Omega_1$ and $\mathbb{R}^d \curvearrowright \Omega_2$ is a Borel bijection $\phi : \Omega_1 \to \Omega_2$ that sends orbits onto orbits:

$$\phi(\mathbf{x} + \mathbb{R}^d) = \phi(\mathbf{x}) + \mathbb{R}^d.$$



When the flow is $\ensuremath{\textit{free}}$

• any orbit of the action can be identified with the affine space \mathbb{R}^d ;

When the flow is free

- any orbit of the action can be identified with the affine space \mathbb{R}^d ;
- one can **transfer any translation-invariant structure** from the Euclidean space onto every orbit of the flow;

When the flow is free

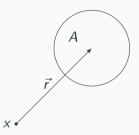
- any orbit of the action can be identified with the affine space \mathbb{R}^d ;
- one can **transfer any translation-invariant structure** from the Euclidean space onto every orbit of the flow;
- each point considers itself to be the origin, and transfers the structure via the corresponding bijection.

Transferring topology:

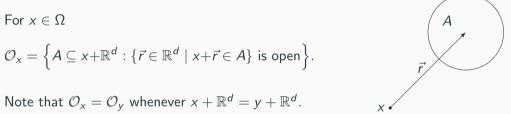
For $x \in \Omega$

$$\mathcal{O}_{x} = \Big\{ A \subseteq x + \mathbb{R}^{d} : \{ \vec{r} \in \mathbb{R}^{d} \mid x + \vec{r} \in A \} \text{ is open} \Big\}.$$

Note that $\mathcal{O}_x = \mathcal{O}_y$ whenever $x + \mathbb{R}^d = y + \mathbb{R}^d$.



Transferring topology:



Two flows are **smoothly equivalent** if there exists an orbit equivalence between the phase spaces which is an *orientation preserving diffeomorphism* between orbits.

It has been studied extensively in ergodic theory, where

• phase space Ω is endowed with a **probability measure**;

It has been studied extensively in ergodic theory, where

- phase space Ω is endowed with a **probability measure**;
- flows are assumed to be (quasi) measure preserving;

It has been studied extensively in ergodic theory, where

- phase space Ω is endowed with a **probability measure**;
- flows are assumed to be (quasi) measure preserving;
- all orbit equivalence maps must be (quasi) measure preserving;

It has been studied extensively in ergodic theory, where

- phase space Ω is endowed with a **probability measure**;
- flows are assumed to be (quasi) measure preserving;
- all orbit equivalence maps must be (quasi) measure preserving;
- and may be defined up to a null set.

Theorem (Feldman–Rudolph, Ornstein–Weiss)

There are continuumly many pairwise time change inequivalent measure preserving ergodic \mathbb{R} flows.

Theorem (Feldman-Rudolph, Ornstein-Weiss)

There are continuumly many pairwise time change inequivalent measure preserving ergodic \mathbb{R} flows.

Theorem (Rudolph)

All ergodic measure preserving \mathbb{R}^d flows, $d \ge 2$, are smoothly equivalent.

Theorem (Feldman)

All ergodic **quasi** measure preserving \mathbb{R}^d flows, $d \ge 2$, are smoothly equivalent.

Descriptive set theoretical framework is both **more restrictive** (one has to define equivalence on each and every orbit, flows may not preserve any measure) and **more relaxed** (orbit equivalence maps don't need to be measure preserving).

Descriptive set theoretical framework is both **more restrictive** (one has to define equivalence on each and every orbit, flows may not preserve any measure) and **more relaxed** (orbit equivalence maps don't need to be measure preserving).

Recall that a flow $\mathbb{R}^d \curvearrowright \Omega$ is **tame** if it admits a Borel transversal — a Borel set $S \subset \Omega$ that chooses one point from each orbit.

Descriptive set theoretical framework is both **more restrictive** (one has to define equivalence on each and every orbit, flows may not preserve any measure) and **more relaxed** (orbit equivalence maps don't need to be measure preserving).

Recall that a flow $\mathbb{R}^d \curvearrowright \Omega$ is **tame** if it admits a Borel transversal — a Borel set $S \subset \Omega$ that chooses one point from each orbit.

Theorem (Miller-Rosendal)

All free non tame \mathbb{R} flows are time change equivalent.

Dimension	d = 1	$d \ge 2$
Ergodic Theory Borel Dynamics	Many One	One

Dimension	d = 1	$d \ge 2$
Ergodic Theory	Many	One
Borel Dynamics	One	?

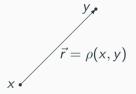
Dimension	d = 1	$d \ge 2$
Ergodic Theory	Many	One
Borel Dynamics	One	One

Theorem (S.)

All free non tame \mathbb{R}^d flows, $d \ge 2$, are smoothly equivalent.

Transferring metric:

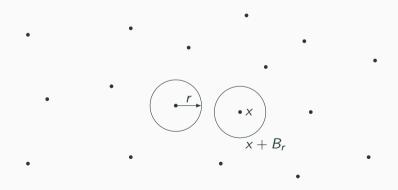
For $x, y \in \Omega$ within the same orbit there exists a unique $\rho(x, y) \in \mathbb{R}^d$ such that $x + \rho(x, y) = y$. $d(x, y) = ||\rho(x, y)||$



Cross Sections

A cross section for an action $\mathbb{R}^d \curvearrowright \Omega$ is a Borel set $\mathcal{C} \subseteq \Omega$ which intersects all orbits of the action and is **lacunary**: for some open ball $B_r \subseteq \mathbb{R}^d$ around the origin

 $(x + B_r) \cap (y + B_r) = \emptyset$ whenever $x, y \in \mathcal{C}, x \neq y$.



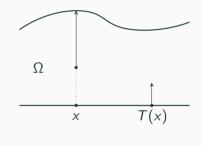
With a (bi-infinite, lacunary) cross section C of an \mathbb{R} flow one associates a **suspension** flow.

With a (bi-infinite, lacunary) cross section ${\cal C}$ of an ${\mathbb R}$ flow one associates a suspension flow.

With a (bi-infinite, lacunary) cross section C of an \mathbb{R} flow one associates a **suspension** flow.

With a (bi-infinite, lacunary) cross section C of an \mathbb{R} flow one associates a **suspension** flow.

The flow can be modeled on the space Ω under the graph of the gap function, by flowing upward within a fiber, and then jumping to the next one as determined by T.



 $\Omega = \{(x, t) \in X \times \mathbb{R} : 0 \le x < f(x)\}$

The following cross section for the irrational rotation has a constant gap function.

The following cross section for the irrational rotation has a constant gap function.

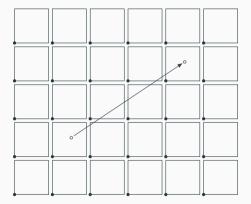
Such a representation is very special — many flows do not admit a cross section with a constant gap function.

Geometrically appealing suspension flow construction is one-dimensional.

An action $\mathbb{Z}^d \curvearrowright X$ can be turned into an \mathbb{R}^d flow on the space $\Omega = X \times [0,1)^d$. For $(x, \vec{s}) \in X \times [0,1)^d$ and $\vec{r} \in \mathbb{R}^d$ let $\vec{n} \in \mathbb{Z}^d$ be such that $\vec{s} + \vec{r} - \vec{n} \in [0,1)^d$; set $(x, \vec{s}) + \vec{r} = (x + \vec{n}, \vec{s} + \vec{r} - \vec{n})$.

Geometrically appealing suspension flow construction is one-dimensional.

An action $\mathbb{Z}^d \curvearrowright X$ can be turned into an \mathbb{R}^d flow on the space $\Omega = X \times [0,1)^d$. For $(x, \vec{s}) \in X \times [0,1)^d$ and $\vec{r} \in \mathbb{R}^d$ let $\vec{n} \in \mathbb{Z}^d$ be such that $\vec{s} + \vec{r} - \vec{n} \in [0,1)^d$; set $(x, \vec{s}) + \vec{r} = (x + \vec{n}, \vec{s} + \vec{r} - \vec{n})$.

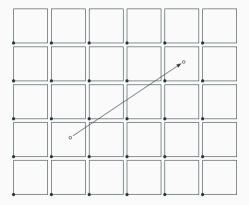


Geometrically appealing suspension flow construction is one-dimensional.

An action $\mathbb{Z}^d \curvearrowright X$ can be turned into an \mathbb{R}^d flow on the space $\Omega = X \times [0,1)^d$. For $(x, \vec{s}) \in X \times [0,1)^d$ and $\vec{r} \in \mathbb{R}^d$ let $\vec{n} \in \mathbb{Z}^d$ be such that $\vec{s} + \vec{r} - \vec{n} \in [0,1)^d$; set

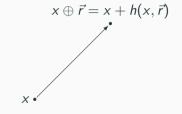
 $(x, \vec{s}) + \vec{r} = (x + \vec{n}, \vec{s} + \vec{r} - \vec{n}).$

Not every \mathbb{R}^d flow is of this form, just as not every \mathbb{R} flow has cross sections with constant gaps.



Let $x \mapsto x + \vec{r}$ and $x \mapsto x \oplus \vec{r}$ be two flows that have the same orbits. The associated cocycle $h : \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ is given by the condition

 $x \oplus \vec{r} = x + h(x, \vec{r})$ for all $x \in X$ and $\vec{r} \in \mathbb{R}^d$.



Theorem (Katok)

For every free ergodic measure preserving \mathbb{R}^d flow $x \mapsto x + \vec{r}$ and any $\epsilon > 0$ there exists a flow $\mathbb{R}^d \curvearrowright X \times [0,1)^d$ arising from an ergodic action $\mathbb{Z}^d \curvearrowright X$ such that the corresponding cocycle $h: \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ is $(1 - \epsilon, 1 + \epsilon)$ -bi-Lipschitz:

$$1-\epsilon \leq rac{||h(x, \vec{r})||}{||\vec{r}||} \leq 1+\epsilon.$$

Theorem (Katok)

For every free ergodic measure preserving \mathbb{R}^d flow $x \mapsto x + \vec{r}$ and any $\epsilon > 0$ there exists a flow $\mathbb{R}^d \curvearrowright X \times [0,1)^d$ arising from an ergodic action $\mathbb{Z}^d \curvearrowright X$ such that the corresponding cocycle $h : \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ is $(1 - \epsilon, 1 + \epsilon)$ -bi-Lipschitz:

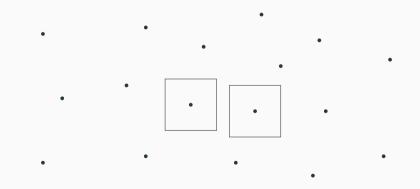
$$1-\epsilon \leq rac{||h(x,ec{r})||}{||ec{r}||} \leq 1+\epsilon.$$

Theorem (S.)

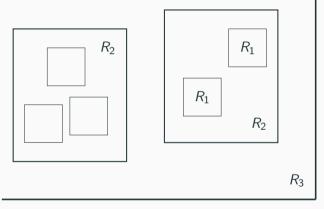
The statement of Katok's Theorem holds within the framework of Borel dynamics.

Layered and Unlayered Toasts

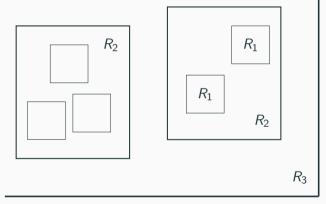
A common pattern is to start with a cross section $C \subseteq \Omega$ and run a construction within disjoint regions around the points of C.



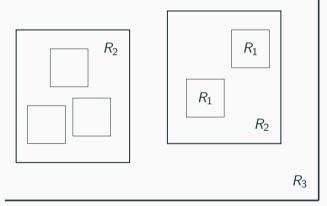
• **Exhaustive:** $\bigcup_n R_n = \Omega$.



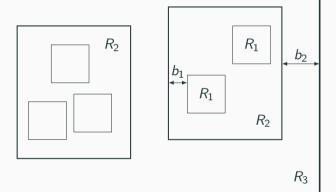
- **Exhaustive:** $\bigcup_n R_n = \Omega$.
- Layered: $R_n \subseteq R_{n+1}$.

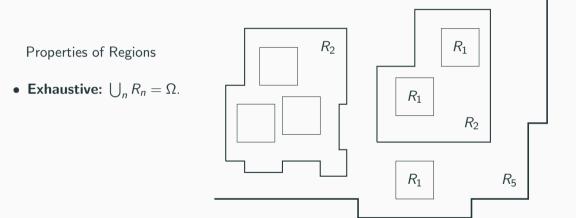


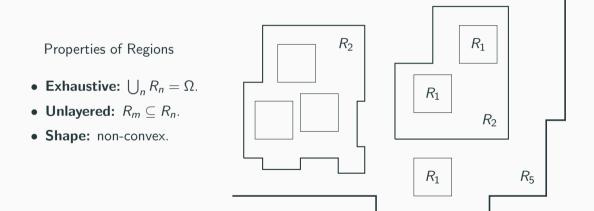
- **Exhaustive:** $\bigcup_n R_n = \Omega$.
- Layered: $R_n \subseteq R_{n+1}$.
- Shape: rectangles.

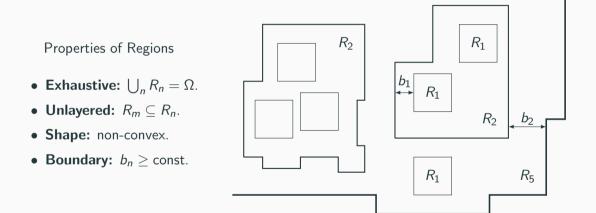


- **Exhaustive:** $\bigcup_n R_n = \Omega$.
- Layered: $R_n \subseteq R_{n+1}$.
- Shape: rectangles.
- Boundary: $b_n \to \infty$.



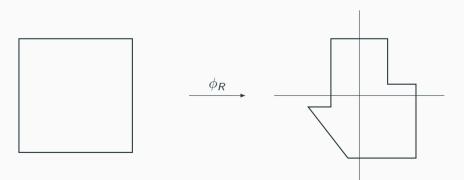






Let R be a region of an unlayered toast. A Borel injection $\phi_R : R \to \mathbb{R}^d$ defines a **partial** action on R

$$x\oplusec r=\phi_R^{-1}(\phi_R(x)+ec r).$$



Let R be a region of an unlayered toast. A Borel injection $\phi_R : R \to \mathbb{R}^d$ defines a **partial** action on R

 $x\oplus \vec{r}=\phi_R^{-1}(\phi_R(x)+\vec{r}).$

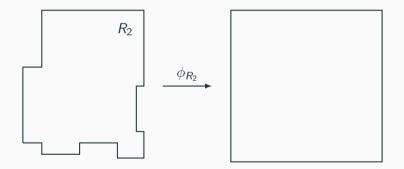


The action is **partial** in the sense that $x \oplus (\vec{r} + \vec{s}) = (x \oplus \vec{r}) \oplus \vec{s}$ whenever both sides are defined.

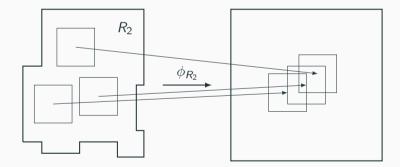
The action is **partial** in the sense that $x \oplus (\vec{r} + \vec{s}) = (x \oplus \vec{r}) \oplus \vec{s}$ whenever both sides are defined.

NB: Shifted map $x \mapsto \phi_R(x) + \vec{s}$ defines **the same** partial action for any $\vec{s} \in \mathbb{R}^d$.

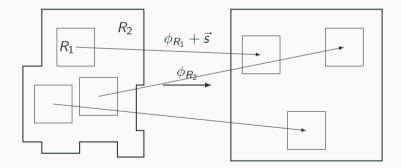
When constructing ϕ_{R_2} , we take into account partial actions given by ϕ_{R_1} for the regions $R_1 \subseteq R_2$.



When constructing ϕ_{R_2} , we take into account partial actions given by ϕ_{R_1} for the regions $R_1 \subseteq R_2$. However, ϕ_{R_2} is **not** an extension of ϕ_{R_1} .



When constructing ϕ_{R_2} , we take into account partial actions given by ϕ_{R_1} for the regions $R_1 \subseteq R_2$. However, ϕ_{R_2} is **not** an extension of ϕ_{R_1} . Instead, ϕ_{R_2} extends **shifts** of ϕ_{R_1} .



Proof of Borel Version of Katok's Theorem

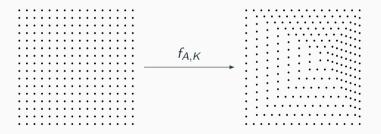
Let $\vec{v} \in \mathbb{R}^d$ be of norm $||\vec{v}|| \leq 1$, K > 1, and $A \subset \mathbb{R}^d$ be a closed bounded set. Define $f_{A,K} : A \to A$ by

$$f_{\mathcal{A},\mathcal{K}}(\vec{r}) = \vec{r} + rac{d(\vec{r},\partial\mathcal{A})}{\mathcal{K}}\vec{v}.$$



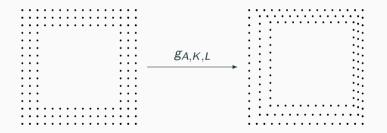
Let $\vec{v} \in \mathbb{R}^d$ be of norm $||\vec{v}|| \leq 1$, K > 1, and $A \subset \mathbb{R}^d$ be a closed bounded set. Define $f_{A,K} : A \to A$ by

$$f_{A,K}(\vec{r}) = \vec{r} + \frac{d(\vec{r},\partial A)}{K}\vec{v}.$$

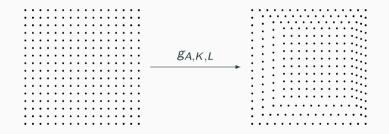


 $f_{A,K}$ is $(1 - K^{-1}, 1 + K^{-1})$ -bi-Lipschitz and $f_{A,K}(A) = A$.

Let $A^{L} = \{\vec{r} \in A : d(\vec{r}, \partial A) \ge L\}$ and observe that $f_{A,K}|_{\partial A^{L}} = \vec{r} + L/K \cdot \vec{v}$. Define $g_{A,K,L}(\vec{r}) = \begin{cases} f_{A,K}(\vec{r}) & \text{if } \vec{r} \in A \setminus A^{L}; \\ \vec{r} + L/K \cdot \vec{v} & \text{if } \vec{r} \in A^{L}; \end{cases}$



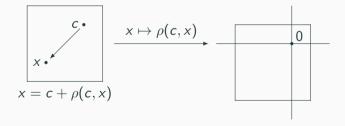
Let $A^{L} = \{\vec{r} \in A : d(\vec{r}, \partial A) \ge L\}$ and observe that $f_{A,K}|_{\partial A^{L}} = \vec{r} + L/K \cdot \vec{v}$. Define $g_{A,K,L}(\vec{r}) = \begin{cases} f_{A,K}(\vec{r}) & \text{if } \vec{r} \in A \setminus A^{L}; \\ \vec{r} + L/K \cdot \vec{v} & \text{if } \vec{r} \in A^{L}; \end{cases}$



 $g_{A,K,L}$ is $(1 - K^{-1}, 1 + K^{-1})$ -bi-Lipschitz and $g_{A,K,L}(A) = A$.

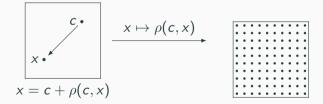
Pick a sequence of unlayered toasts whose boundaries are K-separated for some sufficiently large $K = K(\epsilon)$. We construct a grid that is bi-Lipschitz equivalent to the standard \mathbb{Z}^d grid.

The first step of the construction consists of "identity" maps.



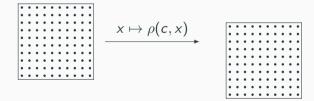
Pick a sequence of unlayered toasts whose boundaries are K-separated for some sufficiently large $K = K(\epsilon)$. We construct a grid that is bi-Lipschitz equivalent to the standard \mathbb{Z}^d grid.

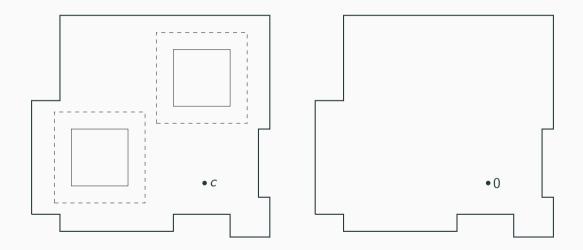
The first step of the construction consists of "identity" maps.

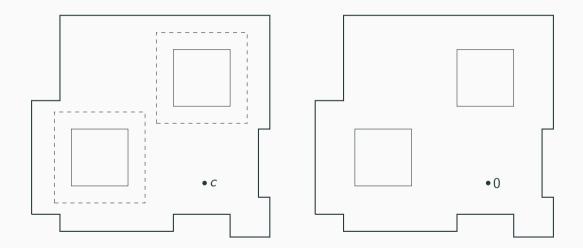


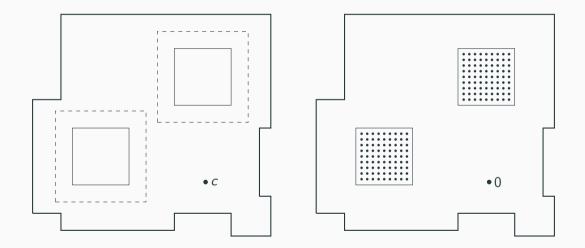
Pick a sequence of unlayered toasts whose boundaries are K-separated for some sufficiently large $K = K(\epsilon)$. We construct a grid that is bi-Lipschitz equivalent to the standard \mathbb{Z}^d grid.

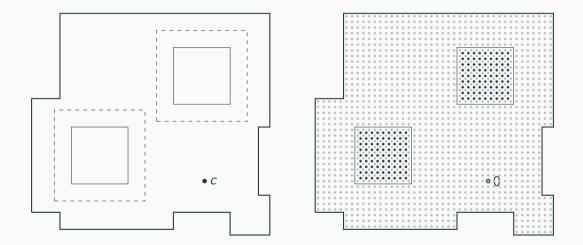
The first step of the construction consists of "identity" maps.

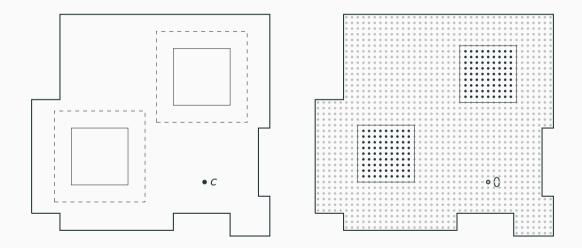


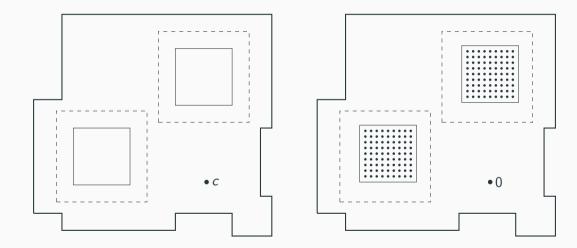


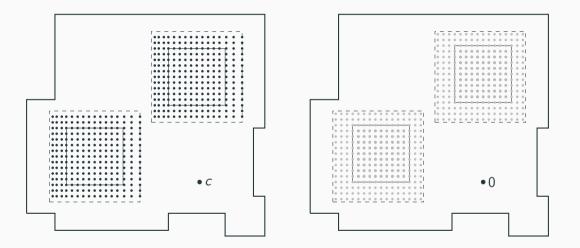


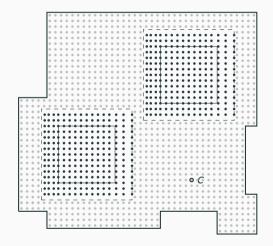


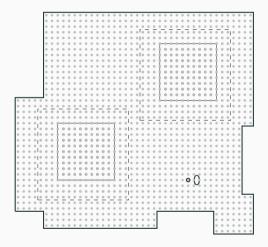












Proof of Borel Version of Rudolph's Theorem

The plan is to reduce the multidimensional case to d = 1 by proving the following.

Theorem (S.)

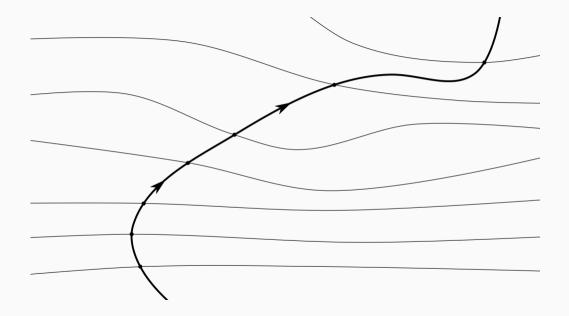
Every free \mathbb{R}^d flow on Ω is smoothly orbit equivalent to a flow $\mathbb{R} \times \mathbb{R}^{d-1} \frown L \times \mathbb{R}^{d-1}$, where $\mathbb{R} \frown L$ is one-dimensional, and $\mathbb{R}^{d-1} \frown \mathbb{R}^{d-1}$ acts by translation.

The plan is to reduce the multidimensional case to d = 1 by proving the following.

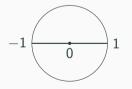
Theorem (S.)

Every free \mathbb{R}^d flow on Ω is smoothly orbit equivalent to a flow $\mathbb{R} \times \mathbb{R}^{d-1} \curvearrowright L \times \mathbb{R}^{d-1}$, where $\mathbb{R} \curvearrowright L$ is one-dimensional, and $\mathbb{R}^{d-1} \curvearrowright \mathbb{R}^{d-1}$ acts by translation.

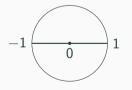
Note that $L \times \vec{0}$ picks a line out of every orbit upon which the \mathbb{R} flow acts.

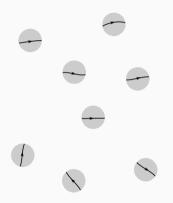


Regions R_1 can be chosen to be diffeomorphic to a unit disk $B_1 \subset \mathbb{R}^d$, so we may pick such a diffeomorphism and pull the line segment $[-1,1] \times \vec{0}$ into the region R_1 to be part of the line.

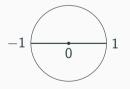


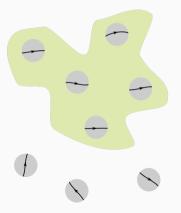
Regions R_1 can be chosen to be diffeomorphic to a unit disk $B_1 \subset \mathbb{R}^d$, so we may pick such a diffeomorphism and pull the line segment $[-1,1] \times \vec{0}$ into the region R_1 to be part of the line.





Regions R_1 can be chosen to be diffeomorphic to a unit disk $B_1 \subset \mathbb{R}^d$, so we may pick such a diffeomorphism and pull the line segment $[-1,1] \times \vec{0}$ into the region R_1 to be part of the line.





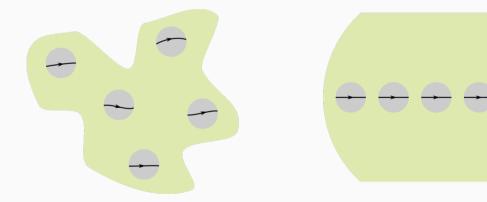
The following basic fact from differential topology is used in the construction.

Theorem

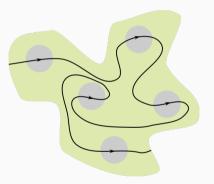
Let F, F' and $D_i \subset F$, $D'_i \subset F'$, $1 \le i \le n$, be smooth disks. Suppose that D_i are pairwise disjoint, and so are D'_i . Any family $\phi_i : D_i \to D'_i$ of orientation preserving smooth diffeomorphisms admits a common extension to a diffeomorphism $\psi : F \to F'$.

Equivalence of Product Flows: Extending Partial Actions

This lets us extend partial actions on R_1 regions to a R_2 region.



The result of such an extension is a partial action on R_2 , which extends partial actions on R_1 .



Let $\mathbb{R}^d \cap \Omega_1$ and $\mathbb{R}^d \cap \Omega_2$ be free non tame Borel flows. By the argument above, each of them is smoothly equivalent to a product flow on $L_i \times \mathbb{R}^{d-1}$. The "first coordinate flows" are time change equivalent by the Miller–Rosendal theorem. If $\xi : L_1 \to L_2$ is such a time change equivalence, then

$$L_1 imes \mathbb{R}^{d-1}
i (y, \vec{r}) \mapsto (\xi(y), \vec{r}) \in L_2 imes \mathbb{R}^{d-1}.$$

is a smooth equivalence of the multidimensional flows.

This concludes our sketch of the argument.

Dimension	d = 1	$d \ge 2$
Ergodic Theory	Many	One
Borel Dynamics	One	One

Thank you!