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Spaces of countable models

Fix L a countable language. Let

StrL = {L-structures M with universe !}

Topologize: Basic open sets

U'(n1,...,nk ) = {M 2 StrL : M |= '(n1, . . . , nk)}

StrL is a standard Borel space (separable, completely metrizable of
size continuum).
For � 2 L!1,!, Mod(�) = {M 2 StrL : M |= �} is a Borel subset.

Sym(!) acts on StrL by �.M = the L-structure M 0 formed by
permuting !. Note: (Mod(�),⇠=) is invariant under this action.
Lopez-Escobar: The only invariant Borel subsets of a standard
Borel space are Mod(�) for some � 2 L!1,!.
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How complicated is (Mod(�),⇠=)?

Friedman-Stanley Given two sentences �, (possibly in di↵erent
countable languages L, L0) we say (Mod(�),⇠=) is Borel reducible
to (Mod( ),⇠=), � B  , if there is a Borel f : StrL ! StrL0 such
that for all M,N 2 Mod(�), f (M), f (N) 2 Mod( ) and

M ⇠= N () f (M) ⇠= f (N)

There is a maximal ⌘B -class, containing graphs, linear orders,
RCF, DCF. � is Borel complete if (Mod(�),⇠=) is in this maximal
class.
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(Mod(�),⇠=) Borel or properly analytic?

For any � 2 L!1,! the equivalence relation ⇠= on Mod(�) is always
analytic, but sometimes is Borel.

Fact: If � is Borel complete, then ⇠= is not Borel.

Example

T = “Independent unary predicates” (model completion of empty
theory in L = {Un : n 2 !}) has Borel isomorphism relation. So
does Th(Z,+).

Hjorth-Kechris-Louveau, building on Friedman-Stanley, give a good
understanding to the possible behaviors of (Mod(�),⇠=) when ⇠= is
Borel.
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For many years, little was known about non-Borel complete theories
with ⇠= properly analytic [no first order examples were known].

Ulrich-Rast-L: REF (bin) ‘binary splitting, refining equivalence
relations’ is not Borel complete, but ⇠= is not Borel.

Thesis: This region is vast.

Will see: There are reducts of ‘Independent unary predicates’ and
Th(Z,+) that are Borel complete, and reducts that are not Borel
complete, yet ⇠= is not Borel.
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CC (h): Cross-cutting equivalence relations, indexed by h.

Let L = {En : n 2 !} and h : ! ! (! \ {0, 1}).

CC (h) asserts:

Each En is an equivalence relation with h(n) classes; and

The {En} cross-cut: For any finite F ✓ !, EF :=
V

n2F En has
⇧n2Fh(n) classes.

CC (h) is complete, admits QE, is weakly minimal, trivial (i.e.,
mutually algebraic).

There is a unique 1-type, but 2@0 2-types.
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Is ⇠= Borel in Mod(CC (h))?

CC (2) (binary splitting, cross-cutting) has Borel isomorphism;
BUT

CC (3) (tertiary splitting, cross-cutting) does not.

If h(n) � 3 for infinitely many n, then Mod(CC (h)) has
non-Borel isomorphism.

However, there are major di↵erences between Mod(CC (h)), even
among ones without Borel isomorphism.
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The complexity of Mod(CC (h)) is built into the group G (h) of
elementary permutations of acleq(;), namely

G (h) := ⇧n2! Z /h(n)Z

One first observation: The group G (h) has bounded exponent if
and only if {h(n)} is bounded.
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On one hand:

Theorem (L-Ulrich)

If h is unbounded, (i.e., for all m, h(n) � m for some n) then
CC (h) is Borel complete.

Proof.

Find a ‘su�ciently indiscernible’ countable subset Y ✓ G (h) and
use this to code graphs using “hybrids” ym ⇤ yn whose projections
on even coordinates is ym, and on odd coordinates by yn.
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Reducts

An L0-structure M 0 is a reduct of an L-structure M if they
have the same universes, and every L0-definable set in M 0 is
definable in M.

An L0-theory T 0 is a reduct of an L-theory T if some M |= T
has a reduct M 0 |= T 0.

Example

Both CC (2n) and CC (4) are reducts of CC (2). Hence CC (2) has a
Borel complete reduct.

Proof.

For CC (2n), partition ! =
F
{Fn : n 2 !} with |Fn| = n. Let

E ⇤
n :=

V
i2Fn

Ei . Then {E ⇤
n } are cross-cutting, where E ⇤

n has 2n

classes. For CC (4), partition ! into 2-element sets.
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Corollary

Let T be a complete theory in a countable language with S1(;)
uncountable. Then Mod(T ) has Borel complete reduct.

Proof.

It su�ces to show CC (2) is a reduct of T . Choose consistent
formulas {'⌘(x) : ⌘ 2 2<!} satisfying:

For ⌫ E ⌘, '⌘(x) ` '⌫(x);

For each n 2 !, {'⌘(x) : ⌘ 2 2n} are pairwise contradictory.

For each n 2 !, T |= 8x(
W

⌘22n '⌘(x)).

Let �0n(x) :=
V

⌘22n ['⌘(x) ! '⌘^0(x)], �1n(x) :=
V

⌘22n ['⌘(x) !
'⌘^1(x)] and let En(x , y) := [�0n(x) $ �0n(y)] {En} is a family of
cross-cutting equivalence relations, each with 2 classes.
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Conclusions:

‘Independent unary predicates’ and Th(Z,+) have Borel
complete reducts.

If T is not !-stable, then ElDiag(M) has a Borel complete
reduct for some M |= T .

If T is not small (i.e., Sn(;) is uncountable for some n) then
T eq has a Borel complete reduct.
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On the other hand: If h is uniformly bounded, then CC (h) is not
Borel complete.

For any � 2 L!1,!, CSSptl(�) is the class (possibly proper) of
potential canonical Scott sentences, i.e., sentences ' 2 L1,! such
that for some forcing extension V[G ] ◆ V, there is a countable
M |= � whose canonical Scott sentence is '.

Theorem (Ulrich,Rast,L)

If � B  , then |CSSptl(�)|  |CSSptl( )|.

In practice, CSSptl(�) can be hard to count.
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On expansions

For � 2 L!1,!, an expansion of � is some �⇤ 2 (L⇤)!1,! with
L⇤ ◆ L such that �⇤ ` �.

Theorem (L-Ulrich)

� 2 L!1,! has a Borel complete expansion if and only if S1 divides
Aut(M) for some countable M |= �.

Corollary

Every first order theory T admitting an infinite model has a Borel
complete expansion.

Not true for sentences � 2 L!1,!.

The first example(??) of a distinction between first order and
infinitary sentences involving Borel completeness??
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CC (h) when h uniformly bounded

Let M |= CC (h) be countable. Let E1(x , y) :=
V

n2! En(x , y).
Let � assert

CC (h) + 8x8y(E1(x , y) ! x = y).

Note: Every model M |= � has size  2@0 , and Aut(M) is a
subgroup of ElPerm(acleq(;)) ⇠= ⇧n2! Z /h(n)Z.

Since ⇧n2! Z /h(n)Z has bounded exponent (but S1 does not), �
does not have a Borel complete expansion.
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Theorem

When h is uniformly bounded, CC (h) is not Borel complete.

Proof.

Given M |= CC (h) countable, let M⇤ := (M/E1,En,Um)n,m2!,
where for m � 1, Um(a/E1) i↵ |a/E1| = m and U0(a/E1) i↵
a/E1 is infinite. This is a Borel embedding of CC (h) into an
expansion of �. Since � has no Borel complete expansions, CC (h)
is not Borel complete.

Corollary

If S1(T ) is uncountable for some complete T , then T has a reduct
that is not Borel complete, yet has non-Borel isomorphism.

Proof.

CC (4) is a reduct of CC (2), which is a reduct of Mod(T ).
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How to prove the expansion theorem?

Idea: Given � 2 L!1,!, describe a language L[ and an (L[)!1,!

sentence �[ so that “Models of �[ code canonical Scott sentences
of expansions of models of �.”

Real Theorem (L-Ulrich)

TFAE for � 2 L!1,!.

1 � has a Borel complete expansion.

2 �[ has arbitrarily large models.

3 �[ admits Ehrenfeucht-Mostowski models.

4 S1 divides Aut(M) for some countable M |= �.

Chris Laskowski University of Maryland Caltech logic seminar Joint work with Douglas Ulrich

Most(?) theories have Borel complete reducts and expansions



Thank you!
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