Most(?) theories have Borel complete reducts and expansions

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

23 February, 2022

Chris Laskowski University of Maryland

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix L a countable language. Let

$$Str_L = \{L$$
-structures M with universe $\omega\}$

Topologize: Basic open sets

$$U_{\varphi(n_1,\ldots,n_k)} = \{M \in Str_L : M \models \varphi(n_1,\ldots,n_k)\}$$

Str_L is a standard Borel space (separable, completely metrizable of size continuum).

For $\Phi \in L_{\omega_1,\omega}$, $Mod(\Phi) = \{M \in Str_L : M \models \Phi\}$ is a Borel subset.

 $Sym(\omega)$ acts on Str_L by $\sigma.M =$ the *L*-structure *M'* formed by permuting ω . Note: $(Mod(\Phi), \cong)$ is invariant under this action. Lopez-Escobar: The only invariant Borel subsets of a standard Borel space are $Mod(\Phi)$ for some $\Phi \in L_{\omega_1,\omega}$.

Chris Laskowski University of Maryland

Friedman-Stanley Given two sentences Φ, Ψ (possibly in different countable languages L, L') we say $(Mod(\Phi), \cong)$ is Borel reducible to $(Mod(\Psi), \cong), \Phi \leq_B \Psi$, if there is a Borel $f : Str_L \to Str_{L'}$ such that for all $M, N \in Mod(\Phi), f(M), f(N) \in Mod(\Psi)$ and

$$M \cong N \iff f(M) \cong f(N)$$

There is a maximal \equiv_B -class, containing graphs, linear orders, RCF, DCF. Φ is Borel complete if $(Mod(\Phi),\cong)$ is in this maximal class.

Most(?) theories have Borel complete reducts and expansions

For any $\Phi \in L_{\omega_1,\omega}$ the equivalence relation \cong on $Mod(\Phi)$ is always analytic, but sometimes is Borel.

Fact: If Φ is Borel complete, then \cong is not Borel.

Example

T = "Independent unary predicates" (model completion of empty theory in $L = \{U_n : n \in \omega\}$) has Borel isomorphism relation. So does $Th(\mathbb{Z}, +)$.

Hjorth-Kechris-Louveau, building on Friedman-Stanley, give a good understanding to the possible behaviors of $(Mod(\Phi),\cong)$ when \cong is Borel.

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

For many years, little was known about non-Borel complete theories with \cong properly analytic [no first order examples were known].

Ulrich-Rast-L: REF(bin) 'binary splitting, refining equivalence relations' is not Borel complete, but \cong is not Borel.

Thesis: This region is vast.

Will see: There are reducts of 'Independent unary predicates' and $Th(\mathbb{Z}, +)$ that are Borel complete, and reducts that are not Borel complete, yet \cong is not Borel.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Let
$$L = \{E_n : n \in \omega\}$$
 and $h : \omega \to (\omega \setminus \{0, 1\})$.

CC(h) asserts:

- Each E_n is an equivalence relation with h(n) classes; and
- The $\{E_n\}$ cross-cut: For any finite $F \subseteq \omega$, $E_F := \bigwedge_{n \in F} E_n$ has $\prod_{n \in F} h(n)$ classes.

CC(h) is complete, admits QE, is weakly minimal, trivial (i.e., mutually algebraic).

There is a unique 1-type, but 2^{\aleph_0} 2-types.

Chris Laskowski University of Maryland

(日) (同) (三) (

- CC(2) (binary splitting, cross-cutting) has Borel isomorphism; BUT
- CC(3) (tertiary splitting, cross-cutting) does not.
- If h(n) ≥ 3 for infinitely many n, then Mod(CC(h)) has non-Borel isomorphism.

However, there are major differences between Mod(CC(h)), even among ones without Borel isomorphism.

ADE A ADE A

Most(?) theories have Borel complete reducts and expansions

The complexity of Mod(CC(h)) is built into the group G(h) of elementary permutations of $acl^{eq}(\emptyset)$, namely

$$G(h) := \prod_{n \in \omega} \mathbb{Z} / h(n)\mathbb{Z}$$

One first observation: The group G(h) has bounded exponent if and only if $\{h(n)\}$ is bounded.

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

On one hand:

Theorem (L-Ulrich)

If h is unbounded, (i.e., for all m, $h(n) \ge m$ for some n) then CC(h) is Borel complete.

Proof.

Find a 'sufficiently indiscernible' countable subset $Y \subseteq G(h)$ and use this to code graphs using "hybrids" $y_m * y_n$ whose projections on even coordinates is y_m , and on odd coordinates by y_n .

Chris Laskowski University of Maryland

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reducts

- An L'-structure M' is a reduct of an L-structure M if they have the same universes, and every L'-definable set in M' is definable in M.
- An L'-theory T' is a reduct of an L-theory T if some M ⊨ T has a reduct M' ⊨ T'.

Example

Both $CC(2^n)$ and CC(4) are reducts of CC(2). Hence CC(2) has a Borel complete reduct.

Proof.

For $CC(2^n)$, partition $\omega = \bigsqcup \{F_n : n \in \omega\}$ with $|F_n| = n$. Let $E_n^* := \bigwedge_{i \in F_n} E_i$. Then $\{E_n^*\}$ are cross-cutting, where E_n^* has 2^n classes. For CC(4), partition ω into 2-element sets.

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

Corollary

Let T be a complete theory in a countable language with $S_1(\emptyset)$ uncountable. Then Mod(T) has Borel complete reduct.

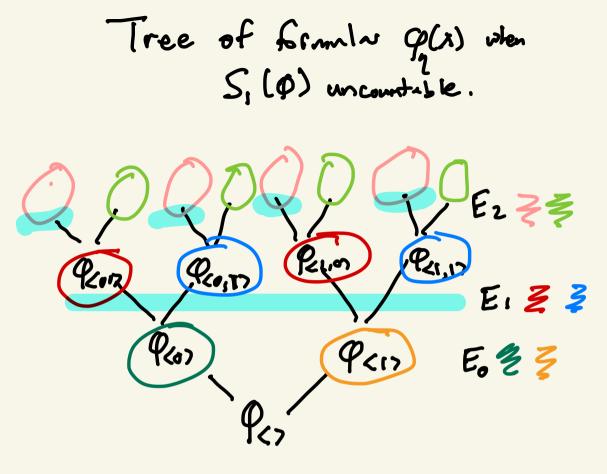
Proof.

It suffices to show CC(2) is a reduct of T. Choose consistent formulas $\{\varphi_{\eta}(x) : \eta \in 2^{<\omega}\}$ satisfying:

- For $\nu \trianglelefteq \eta$, $\varphi_{\eta}(x) \vdash \varphi_{\nu}(x)$;
- For each $n \in \omega$, $\{\varphi_\eta(x) : \eta \in 2^n\}$ are pairwise contradictory.
- For each $n \in \omega$, $T \models \forall x(\bigvee_{\eta \in 2^n} \varphi_{\eta}(x))$.

Let $\delta_n^0(x) := \bigwedge_{\eta \in 2^n} [\varphi_\eta(x) \to \varphi_{\eta \wedge 0}(x)], \delta_n^1(x) := \bigwedge_{\eta \in 2^n} [\varphi_\eta(x) \to \varphi_{\eta \wedge 1}(x)]$ and let $E_n(x, y) := [\delta_n^0(x) \leftrightarrow \delta_n^0(y)]$ { E_n } is a family of cross-cutting equivalence relations, each with 2 classes.

・ロト ・回ト ・回ト ・日



Each En Lo 2 classes, there construct: .: CC(2) is a reduct of MFT

Conclusions:

- Independent unary predicates' and Th(ℤ, +) have Borel complete reducts.
- If T is not ω -stable, then EIDiag(M) has a Borel complete reduct for some $M \models T$.
- If T is not small (i.e., $S_n(\emptyset)$ is uncountable for some n) then T^{eq} has a Borel complete reduct.

On the other hand: If h is uniformly bounded, then CC(h) is not Borel complete.

For any $\Phi \in L_{\omega_1,\omega}$, $CSS_{ptl}(\Phi)$ is the class (possibly proper) of potential canonical Scott sentences, i.e., sentences $\varphi \in L_{\infty,\omega}$ such that for some forcing extension $\mathbb{V}[G] \supseteq \mathbb{V}$, there is a countable $M \models \Phi$ whose canonical Scott sentence is φ .

Theorem (Ulrich, Rast, L)

If $\Phi \leq_B \Psi$, then $|CSS_{ptl}(\Phi)| \leq |CSS_{ptl}(\Psi)|$.

In practice, $CSS_{ptl}(\Phi)$ can be hard to count.

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

イロト イポト イヨト イヨト

On expansions

For $\Phi \in L_{\omega_1,\omega}$, an expansion of Φ is some $\Phi^* \in (L^*)_{\omega_1,\omega}$ with $L^* \supseteq L$ such that $\Phi^* \vdash \Phi$.

Theorem (L-Ulrich)

 $\Phi \in L_{\omega_1,\omega}$ has a Borel complete expansion if and only if S_{∞} divides Aut(M) for some countable $M \models \Phi$.

Corollary

Every first order theory T admitting an infinite model has a Borel complete expansion.

Not true for sentences $\Phi \in L_{\omega_1,\omega}$.

The first example(??) of a distinction between first order and infinitary sentences involving Borel completeness??

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

Let $M \models CC(h)$ be countable. Let $E_{\infty}(x, y) := \bigwedge_{n \in \omega} E_n(x, y)$. Let Φ assert

• $CC(h) + \forall x \forall y (E_{\infty}(x, y) \rightarrow x = y).$

Note: Every model $M \models \Phi$ has size $\leq 2^{\aleph_0}$, and Aut(M) is a subgroup of $ElPerm(\operatorname{acl}^{eq}(\emptyset)) \cong \prod_{n \in \omega} \mathbb{Z} / h(n)\mathbb{Z}$.

Since $\prod_{n \in \omega} \mathbb{Z} / h(n)\mathbb{Z}$ has bounded exponent (but S_{∞} does not), Φ does not have a Borel complete expansion.

< ロ > < 同 > < 回 > < 回 > < 回

Theorem

When h is uniformly bounded, CC(h) is not Borel complete.

Proof.

Given $M \models CC(h)$ countable, let $M^* := (M/E_{\infty}, E_n, U_m)_{n,m\in\omega}$, where for $m \ge 1$, $U_m(a/E_{\infty})$ iff $|a/E_{\infty}| = m$ and $U_0(a/E_{\infty})$ iff a/E_{∞} is infinite. This is a Borel embedding of CC(h) into an expansion of Φ . Since Φ has no Borel complete expansions, CC(h)is not Borel complete.

Corollary

If $S_1(T)$ is uncountable for some complete T, then T has a reduct that is not Borel complete, yet has non-Borel isomorphism.

Proof.

CC(4) is a reduct of CC(2), which is a reduct of Mod(T).

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

Idea: Given $\Phi \in L_{\omega_1,\omega}$, describe a language L^{\flat} and an $(L^{\flat})_{\omega_1,\omega}$ sentence Φ^{\flat} so that "Models of Φ^{\flat} code canonical Scott sentences of expansions of models of Φ ."

Real Theorem (L-Ulrich)

TFAE for $\Phi \in L_{\omega_1,\omega}$.

- **Ο** Φ has a Borel complete expansion.
- **2** Φ^{\flat} has arbitrarily large models.
- **3** Φ^{\flat} admits Ehrenfeucht-Mostowski models.
- S_{∞} divides Aut(M) for some countable $M \models \Phi$.

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

・ロン ・回 と ・ ヨ と ・

Thank you!

- M. C. Laskowski and D. Ulrich, Most(?) theories have Borel complete reducts, *Journal of Symbolic Logic* (to appear). arXiv:2103.09724
- M. C. Laskowski and D. Ulrich, Characterizing the existence of a Borel complete expansion (submitted) arXiv:2109.06140
- D. Ulrich, R. Rast, and M.C. Laskowski, Borel complexity and potential canonical Scott sentences, *Fundamenta Mathematicae* 239 (2017), no. 2, 101–147. arXiv:1510.05679

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich

M.F. (M, En)new En (2,6) # iff Pogra (Z)= (Lour) (M,J) & desirides an achima bet and the yeth on M. $M, E, J_{new} \rightarrow H$

Thank you!

- M. C. Laskowski and D. Ulrich, Most(?) theories have Borel complete reducts, *Journal of Symbolic Logic* (to appear). arXiv:2103.09724
- M. C. Laskowski and D. Ulrich, Characterizing the existence of a Borel complete expansion (submitted) arXiv:2109.06140
- D. Ulrich, R. Rast, and M.C. Laskowski, Borel complexity and potential canonical Scott sentences, *Fundamenta Mathematicae* 239 (2017), no. 2, 101–147. arXiv:1510.05679

Chris Laskowski University of Maryland

Caltech logic seminar Joint work with Douglas Ulrich