Ramsey and Hypersmoothness

Zoltán Vidnyánszky

California Institute of Technology

Caltech Logic Seminar

Let X, Y be Polish spaces, assume that E is an equivalence relation on X and F is an equivalence relation on Y. A Borel reduction of E to F is a Borel map $f : X \to Y$ with

$$xEy \iff f(x)Ff(y).$$

Write $E \leq_B F$ if such a reduction exists.

Let X, Y be Polish spaces, assume that E is an equivalence relation on X and F is an equivalence relation on Y. A Borel reduction of E to F is a Borel map $f : X \to Y$ with

$$xEy \iff f(x)Ff(y).$$

Write $E \leq_B F$ if such a reduction exists.

An equivalence relation E is called *finite (countable)* if each of its classes is finite (countable).

Hyperfiniteness

A countable Borel equivalence relation (CBER) is *hyperfinite*, if there are finite Borel equivalence relations $F_0 \subseteq F_1 \subseteq F_2 \ldots$ such that $E = \bigcup_{n \in \mathbb{N}} F_n$.

A countable Borel equivalence relation (CBER) is *hyperfinite*, if there are finite Borel equivalence relations $F_0 \subseteq F_1 \subseteq F_2 \ldots$ such that $E = \bigcup_{n \in \mathbb{N}} F_n$.

Proposition. A CBER *E* is hyperfinite if and only if $E \leq_B E_0$, where xE_0y iff $\{n : x(n) \neq y(n)\}$ is finite.

For a graph G, denote by E_G the connected component equivalence relation of G.

For a graph G, denote by E_G the connected component equivalence relation of G.

Proposition. Assume that G is a locally finite acyclic Borel graph with the following properties:

• $G = \bigcup_{i \in 3} H_i$ so that every vertex is adjacent to some edge in H_i for each i,

For a graph G, denote by E_G the connected component equivalence relation of G.

Proposition. Assume that G is a locally finite acyclic Borel graph with the following properties:

- $G = \bigcup_{i \in 3} H_i$ so that every vertex is adjacent to some edge in H_i for each i,
- For some Borel probability measure μ on V(G), $\chi_{\mu}^{el}(G) > 3$.

Then E_G is not hyperfinite.

For a graph G, denote by E_G the connected component equivalence relation of G.

Proposition. Assume that G is a locally finite acyclic Borel graph with the following properties:

- $G = \bigcup_{i \in 3} H_i$ so that every vertex is adjacent to some edge in H_i for each i,
- For some Borel probability measure μ on V(G), $\chi_{\mu}^{el}(G) > 3$.

Then E_G is not hyperfinite. Here $\chi_{\mu}^{el}(G) > 3$ means that if B is Borel with $\mu(B) = 1$ and $B = \bigcup_{i \in 3} B_i$ then for some i we have $B_i^2 \cap H_j \neq \emptyset$ for each j.

A sketch

Let $E_G = \bigcup_{n \in \mathbb{N}} F_n$ with F_n finite. Define $f_n(x)(i) = \frac{|D_{i,x} \cap [x]_{F_n}|}{|[x]_{F_n}|}$, where $D_{i,x}$ is the *i* colored direction in *G* from *x*.

A sketch

Let $E_G = \bigcup_{n \in \mathbb{N}} F_n$ with F_n finite. Define $f_n(x)(i) = \frac{|D_{i,x} \cap [x]_{F_n}|}{|[x]_{F_n}|}$, where $D_{i,x}$ is the *i* colored direction in *G* from *x*.

Mazur's lemma: Let μ be a Borel probability measure on X. For any sequence of Borel functions $f_n : X \to [0, 1]$ there is a Borel set B with $\mu(B) = 1$ and $g_n \in conv(f_n, f_{n+1}, ...)$ such that $(g_n)_{n \in \mathbb{N}}$ pointwise converges on B.

Question

Which σ -ideals \mathcal{I} have the property that for any sequence of Borel functions $f_n : X \to [0, 1]$ there is a Borel set $B \notin \mathcal{I}$ and $g_n \in conv(f_n, f_{n+1}, ...)$ such that $(g_n)_{n \in \mathbb{N}}$ pointwise converges on B?

Question

Which σ -ideals \mathcal{I} have the property that for any sequence of Borel functions $f_n : X \to [0, 1]$ there is a Borel set $B \notin \mathcal{I}$ and $g_n \in conv(f_n, f_{n+1}, ...)$ such that $(g_n)_{n \in \mathbb{N}}$ pointwise converges on B?

Question

Assume that $f, g : X \to X$ are countable-to-1, $G_{f,g}$ is acyclic, $\chi_B^{el}(G_{f,g}) = \aleph_0$. Is $E_{f,g}$ necessarily not hyperfinite?

Question

Which σ -ideals \mathcal{I} have the property that for any sequence of Borel functions $f_n : X \to [0,1]$ there is a Borel set $B \notin \mathcal{I}$ and $g_n \in conv(f_n, f_{n+1}, ...)$ such that $(g_n)_{n \in \mathbb{N}}$ pointwise converges on B?

Question

Assume that $f, g : X \to X$ are countable-to-1, $G_{f,g}$ is acyclic, $\chi_B^{el}(G_{f,g}) = \aleph_0$. Is $E_{f,g}$ necessarily not hyperfinite?

Question

Are there such functions?

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set S.

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set *S*.

Theorem. (Galvin-Prikry) Let $[\mathbb{N}]^{\mathbb{N}} = B_0 \cup \cdots \cup B_n$ be a Borel covering. Then there exists some $i \leq n$ and $x \subset \mathbb{N}$ infinite with $[x]^{\mathbb{N}} \subset B_i$.

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set *S*.

Theorem. (Galvin-Prikry) Let $[\mathbb{N}]^{\mathbb{N}} = B_0 \cup \cdots \cup B_n$ be a Borel covering. Then there exists some $i \leq n$ and $x \subset \mathbb{N}$ infinite with $[x]^{\mathbb{N}} \subset B_i$. Let $S_0 : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ be the *shift-map*, defined by

$$S_0(\{x_0, x_1, \dots\}) = \{x_1, x_2, \dots\}.$$

Define the shift-graph \mathcal{G}_{S_0} by letting $x\mathcal{G}_{S_0}y$ iff $y = S_0(x)$. **Theorem.** (Kechris-Solecki-Todorčević) $\chi_B(G_{S_0}) = \aleph_0$.

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set *S*.

Theorem. (Galvin-Prikry) Let $[\mathbb{N}]^{\mathbb{N}} = B_0 \cup \cdots \cup B_n$ be a Borel covering. Then there exists some $i \leq n$ and $x \subset \mathbb{N}$ infinite with $[x]^{\mathbb{N}} \subset B_i$. Let $S_0 : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ be the *shift-map*, defined by

$$S_0(\{x_0, x_1, \dots\}) = \{x_1, x_2, \dots\}.$$

Define the shift-graph \mathcal{G}_{S_0} by letting $x\mathcal{G}_{S_0}y$ iff $y = S_0(x)$.

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_{S_0}) = \aleph_0$.

Question

Are there $f, g : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ Borel, countable-to-1, such that $G_{f,g}$ is acyclic and for every x we have $\chi_B^{el}(G_{f,g} \upharpoonright [x]^{\mathbb{N}}) = \aleph_0$?

Ramsey and hyperfiniteness of CBERs

Theorem (Mathias, Soare; Kanovei-Sabok-Zapletal) Let $(g_n)_{n \in \mathbb{N}} : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ be a collection of Borel functions. There exists an $x \in [\mathbb{N}]^{\mathbb{N}}$ such that for every $y \in [x]^{\mathbb{N}}$ and for every $n \in \mathbb{N}$ we have that $g_n(y) \in [x]^{\mathbb{N}}$ implies that $g_n(y) \setminus y$ is finite.

Ramsey and hyperfiniteness of CBERs

Theorem (Mathias, Soare; Kanovei-Sabok-Zapletal) Let $(g_n)_{n \in \mathbb{N}} : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ be a collection of Borel functions. There exists an $x \in [\mathbb{N}]^{\mathbb{N}}$ such that for every $y \in [x]^{\mathbb{N}}$ and for every $n \in \mathbb{N}$ we have that $g_n(y) \in [x]^{\mathbb{N}}$ implies that $g_n(y) \setminus y$ is finite.

Corollary. Assume that *E* is a CBER on $[\mathbb{N}]^{\mathbb{N}}$. Then there is some $x \in [\mathbb{N}]^{\mathbb{N}}$ with $E \upharpoonright [x]^{\mathbb{N}} \subseteq E_0$.

A BER *E* is smooth if $E \leq_{B=2^{\mathbb{N}}}$.

A BER *E* is smooth if $E \leq_{B=2^{\mathbb{N}}}$.

E is *hypersmooth* if there are smooth equivalence relations $F_0 \subseteq F_1 \subseteq F_2 \ldots$ such that $E = \bigcup_{n \in \mathbb{N}} F_n$.

A BER *E* is smooth if $E \leq_{B=2^{\mathbb{N}}}$.

E is *hypersmooth* if there are smooth equivalence relations $F_0 \subseteq F_1 \subseteq F_2 \dots$ such that $E = \bigcup_{n \in \mathbb{N}} F_n$.

Proposition. If E is a CBER, then E is hyperfinite iff E is hypersmooth.

A BER *E* is smooth if $E \leq_{B=2^{\mathbb{N}}}$.

E is *hypersmooth* if there are smooth equivalence relations $F_0 \subseteq F_1 \subseteq F_2 \ldots$ such that $E = \bigcup_{n \in \mathbb{N}} F_n$.

Proposition. If E is a CBER, then E is hyperfinite iff E is hypersmooth.

Proposition. If *E* is a BER, then *E* is hypersmooth iff $E \leq_B E_1$, where E_1 is defined on $(2^{\mathbb{N}})^{\mathbb{N}}$ by $xE_1y \iff \{n : x_n \neq y_n\}$ is finite.

• there exist disjoint $y, z \in [x]^{\mathbb{N}}$ such that *yEzEx* and

- there exist disjoint $y, z \in [x]^{\mathbb{N}}$ such that yEzEx and
- $E \upharpoonright [x]^{\mathbb{N}}$ has uncountably many equivalence classes.

- there exist disjoint $y, z \in [x]^{\mathbb{N}}$ such that yEzEx and
- $E \upharpoonright [x]^{\mathbb{N}}$ has uncountably many equivalence classes.

Then E is not hypersmooth.

- there exist disjoint $y, z \in [x]^{\mathbb{N}}$ such that *yEzEx* and
- $E \upharpoonright [x]^{\mathbb{N}}$ has uncountably many equivalence classes.

Then E is not hypersmooth.

Let S_0, S_1 be maps on $[\mathbb{N}]^{\mathbb{N}}$ defined by

$$S_0(\{x_0, x_1, x_2, \dots\}) = \{x_1, x_2, x_3 \dots\},\$$

$$S_1(\{x_0, x_1, \dots\}) = \{x_1, x_3, x_5, \dots\}.$$

Let E_{S_0,S_1} be the connected component equivalence relation of G_{S_0,S_1} .

- there exist disjoint $y, z \in [x]^{\mathbb{N}}$ such that *yEzEx* and
- $E \upharpoonright [x]^{\mathbb{N}}$ has uncountably many equivalence classes.

Then E is not hypersmooth.

Let S_0, S_1 be maps on $[\mathbb{N}]^{\mathbb{N}}$ defined by

$$S_0(\{x_0, x_1, x_2, \dots\}) = \{x_1, x_2, x_3 \dots\},\$$

$$S_1(\{x_0, x_1, \dots\}) = \{x_1, x_3, x_5, \dots\}.$$

Let E_{S_0,S_1} be the connected component equivalence relation of G_{S_0,S_1} .

Corollary. E_{S_0,S_1} is not hypersmooth.

Theorem

Assume that $(f_n)_{n \in \mathbb{N}} : [\mathbb{N}]^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$ are Borel. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a countable set C such that for every $y, z \in [x]^{\mathbb{N}}$ almost disjoint and $n \in \mathbb{N}$ we have that $f_n(z) = f_n(y)$ implies $f_n(y) \in C$.

Theorem

Assume that $(f_n)_{n \in \mathbb{N}} : [\mathbb{N}]^{\mathbb{N}} \to (2^{\mathbb{N}})^{\mathbb{N}}$ are Borel. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a countable set C such that for every $y, z \in [x]^{\mathbb{N}}$ almost disjoint and $n \in \mathbb{N}$ we have that $f_n(z) = f_n(y)$ implies $f_n(y) \in C$.

This implies the main theorem: assume that f reduces E to E_1 , and let $f_n = S^n \circ f$.

Assume that $f : [\mathbb{N}]^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel function. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a function $\Gamma : [x]^{\mathbb{N}} \to [\mathbb{N}]^{\leq \mathbb{N}}$ with the following properties:

1 for every $y \in [x]^{\mathbb{N}}$ we have $\Gamma(y) \subseteq y$,

Assume that $f : [\mathbb{N}]^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel function. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a function $\Gamma : [x]^{\mathbb{N}} \to [\mathbb{N}]^{\leq \mathbb{N}}$ with the following properties:

1 for every $y \in [x]^{\mathbb{N}}$ we have $\Gamma(y) \subseteq y$,

2 for every
$$y, z \in [x]^{\mathbb{N}}$$
 we have

$$f(y) = f(z) \iff \Gamma(y) = \Gamma(z)$$

Assume that $f : [\mathbb{N}]^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel function. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a function $\Gamma : [x]^{\mathbb{N}} \to [\mathbb{N}]^{\leq \mathbb{N}}$ with the following properties:

- 1 for every $y \in [x]^{\mathbb{N}}$ we have $\Gamma(y) \subseteq y$,
- 2 for every $y, z \in [x]^{\mathbb{N}}$ we have

$$f(y) = f(z) \iff \Gamma(y) = \Gamma(z)$$

either for every y ∈ [x]^N we have that Γ(y) is finite or for every y ∈ [x]^N it is infinite,

Assume that $f : [\mathbb{N}]^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel function. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a function $\Gamma : [x]^{\mathbb{N}} \to [\mathbb{N}]^{\leq \mathbb{N}}$ with the following properties:

- 1 for every $y \in [x]^{\mathbb{N}}$ we have $\Gamma(y) \subseteq y$,
- 2 for every $y, z \in [x]^{\mathbb{N}}$ we have

$$f(y) = f(z) \iff \Gamma(y) = \Gamma(z)$$

- either for every y ∈ [x]^N we have that Γ(y) is finite or for every y ∈ [x]^N it is infinite,
- 4 for every $y, z \in [x]^{\mathbb{N}}$ we have that $\Gamma(y)$ is not a proper initial segment of $\Gamma(z)$,

Assume that $f : [\mathbb{N}]^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel function. There exist an $x \in [\mathbb{N}]^{\mathbb{N}}$ and a function $\Gamma : [x]^{\mathbb{N}} \to [\mathbb{N}]^{\leq \mathbb{N}}$ with the following properties:

- 1 for every $y \in [x]^{\mathbb{N}}$ we have $\Gamma(y) \subseteq y$,
- 2 for every $y, z \in [x]^{\mathbb{N}}$ we have

$$f(y) = f(z) \iff \Gamma(y) = \Gamma(z)$$

- either for every y ∈ [x]^N we have that Γ(y) is finite or for every y ∈ [x]^N it is infinite,
- 4 for every y, z ∈ [x]^ℕ we have that Γ(y) is not a proper initial segment of Γ(z),
- **5** Γ is continuous

More questions

Question

Characterize measure hypersmoothness!

More questions

Question

Characterize measure hypersmoothness!

Question

Is the increasing union of measure hypersmooth BERs measure hypersmooth?

More questions

Question

Characterize measure hypersmoothness!

Question

Is the increasing union of measure hypersmooth BERs measure hypersmooth?

Question

Let K be compact. Is $E_{S_0,S_1} \upharpoonright K$ hypersmooth?

Even more questions

Question Is $Hom(T_3, \mathcal{G}_{S_0 \cup S_1})$ hyperfinite?

Even more questions

Question Is $Hom(T_3, \mathcal{G}_{S_0 \cup S_1})$ hyperfinite?

Question Does AD imply $\chi(\mathcal{G}_S) \geq \aleph_0$? Thank you for your attention!