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An equivalence relation E is called finite (countable) if each of its
classes is finite (countable).
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Proposition. A CBER E is hyperfinite if and only if £ <g Eg,
where xEqy iff {n: x(n) # y(n)} is finite.
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Non-hyperfiniteness

For a graph G, denote by Eg the connected component
equivalence relation of G.

Proposition. Assume that G is a locally finite acyclic Borel graph
with the following properties:
m G = [J;c3 H; so that every vertex is adjacent to some edge in
H; for each i,
m For some Borel probability measure p on V(G), XZ’(G) > 3.

Then Eg is not hyperfinite. Here xf](G) > 3 means that if B is
Borel with 1(B) = 1 and B = | ;3 B; then for some i we have
B? N H; # 0 for each ;.
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A sketch
Let Eg = U,en Fn with F, finite.

Define f(x)(i) = %, where D; , is the i colored direction

in G from x.

Mazur's lemma: Let 1 be a Borel probability measure on X. For
any sequence of Borel functions f, : X — [0, 1] there is a Borel set
B with u(B) =1 and g, € conv(fy, fot1,...) such that (gn)nen
pointwise converges on B.
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Questions

Question

Which o-ideals T have the property that for any sequence of Borel
functions f, : X — [0, 1] there is a Borel set B ¢ 7 and

gn € conv(fy, fot1,...) such that (g,)nen pointwise converges on
B?

Question

Assume that f, g : X — X are countable-to-1, G is acyclic,
XGBJ(Gﬂg) = RVo. Is Ef g necessarily not hyperfinite?

Question
Are there such functions?
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The shift graph

Let us denote by [S]N the collection of countably infinite subsets of
the set S.

Theorem. (Galvin-Prikry) Let [N]N = By U --- U B, be a Borel
covering. Then there exists some i < n and x C N infinite with
[X]N C B;.

Let So : [N]N — [N]N be the shift-map, defined by

So({x0,x1,-..}) ={x1,x2,... }.

Define the shift-graph Gs, by letting xGs,y iff y = So(x).
Theorem. (Kechris-Solecki-Todor¢evi¢) xg(Gs,) = No.

Question
Are there f, g : [N]N — [N]N Borel, countable-to-1, such that Gr 4
is acyclic and for every x we have x&(Gr g | [x]N) = Rg?
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Theorem (Mathias, Soare; Kanovei-Sabok-Zapletal)

Let (gn)nen : [N]N — [N]N be a collection of Borel functions.
There exists an x € [N]N such that for every y € [x]N and for every
n € N we have that g,(y) € [x]N implies that g,(y) \ y is finite.



Ramsey and hyperfiniteness of CBERs

Theorem (Mathias, Soare; Kanovei-Sabok-Zapletal)

Let (gn)nen : [N]N — [N]N be a collection of Borel functions.
There exists an x € [N]N such that for every y € [x]N and for every
n € N we have that g,(y) € [x]N implies that g,(y) \ y is finite.

Corollary. Assume that E is a CBER on [N]N. Then there is some
x € [N]N with E | [x]N C Eq.
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Hypersmooth equivalence relations

A BER E is smooth if E <p=)n.

E is hypersmooth if there are smooth equivalence relations
Fo CFL CFy... such that E = UneN Fn.

Proposition. If E is a CBER, then E is hyperfinite iff E is
hypersmooth.

Proposition. If £ is a BER, then E is hypersmooth iff E <g E;,
where Ej is defined on (2¥)N by xE1y <= {n: x, # y,} is finite.
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Theorem. Assume that E is an equivalence relation on [N]N such
that for every x € [N]N

m there exist disjoint y, z € [x]N such that yEzEx and

m E | [x]N has uncountably many equivalence classes.

Then E is not hypersmooth.
Let Sp, S1 be maps on [N]N defined by

50({X07X17X2a cee }) = {X17X27X3 o }7

S1({x0,x1,---}) = {x1,x3,x5,... }.
Let Es, s, be the connected component equivalence relation of
Gs,,5, -
Corollary. Es s, is not hypersmooth.



Theorem

Assume that (f,)nen : [N]N — (2N)N are Borel. There exist an
x € [N]N and a countable set C such that for every y,z € [x]N
almost disjoint and n € N we have that f,(z) = f,(y) implies
fa(y) € C.



Theorem

Assume that (f,)nen : [N]N — (2N)N are Borel. There exist an
x € [N]N and a countable set C such that for every y,z € [x]N
almost disjoint and n € N we have that f,(z) = f,(y) implies
fa(y) € C.

This implies the main theorem: assume that f reduces E to Ej,
and let f, =S"of.
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Theorem (Promel-Voigt)

Assume that f : [N]N — 2N is a Borel function. There exist an
x € [N]N and a function T : [x]N — [N]=N with the following
properties:

for every y € [x]N we have [ (y) C y,

for every y,z € [x]N we have

fly) =f(2) < T(y)=T(2)

either for every y € [x]N we have that ['(y) is finite or for
every y € [x|N it is infinite,

for every y,z € [x]N we have that ['(y) is not a proper initial
segment of I'(z),

[ is continuous
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More questions

Question
Characterize measure hypersmoothness!

Question

Is the increasing union of measure hypersmooth BERs measure
hypersmooth?

Question
Let K be compact. Is Es, s, | K hypersmooth?
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Even more questions

Question
Is Hom( T3, Gs,us,) hyperfinite?

Question
Does AD imply x(Gs) > Ng?



Thank you for your attention!



