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Continuous reducibility, also known as Wadge reducibility

Let X and Y be two topological spaces.

Definition
For A ⊆ X and B ⊆ Y , we say that A continuously reduces to B
if there is a continuous function f : X → Y such that f −1(B) = A.
We also say that A Wadge reduces to B, and we write it
A ≤X ,Y

W B.

Note that this is reflexive and transitive, it is a quasi-order.
When X = Y we write ≤X

W instead of ≤X ,X
W , and ≡X

W stands for
the associated equivalence relation, so A ≡X

W B iff A ≤X
W B and

B ≤X
W A.

Note that ≤X
W induces a partial order on P(X )/ ≡X

W .



Wadge’s Lemma

A motivation for looking at continuous reducibility originally was:

Question
Let ξ be a countable ordinal, and assume that A is a Σ0

ξ \∆0
ξ

subset of a Polish space X .
Is A Σ0

ξ-complete, that is: does it reduce continuously all Σ0
ξ

subsets of X?

Continuous reducibility became associated to Wadge’s name
because of:

Lemma (Wadge’s Lemma)
Assume that A and B are Borel subsets of the Baire space NN.
Then we have A ≤NN

W B or B ≤NN
W NN \ A := Ac .

This solves positively the problem for X = NN.
We call this the semi-linear ordering principle, or SLO for ≤NN

W .



Consequences of Wadge’s lemma
Pointclass versus Wadge pointclass:

A pointclass is only supposed to be closed under continuous
reducibility, Σ0

ξ(NN) admits a complete set, we call it a
Wadge pointclass.
for A ⊆ X , A ↓X is the Wadge pointclass generated by A, and
[A]X is the Wadge degree of A in X (i.e. all B ≡X

W A).
By considering Wadge pointclasses, we can relate pointclasses
to complete sets.

≤NN
W on Borel sets has antichains (for comparability) of size at

most 2:
If A ≡NN

W Ac then all Borel sets of NN are comparable with A.
Otherwise, if B Borel is incomparable with A then B ≡NN

W Ac .
In the first case, we say that A is self-dual, in the second that
it is non-self-dual, or NSD.



Martin-Monk’s Theorem: put ordinals in the mix!

Theorem (Martin-Monk)
The quasi-order ≤NN

W is well-founded on Borel subsets of NN.

So, look at coarse degrees: [A]NN ∪ [Ac ]NN .
Since antichains are witnesses by NSD sets, ≤NN

W induces a
well-order on coarse degrees.
There is thus an interplay between classes of sets (coarse degrees),
sets, and ordinals.

Many possible directions of research involving this interplay have
been explored, we focus on

Which Wadge pointclasses can we construct from other ones
strictly below in the Wadge order? How?
Can we describe the partial order on Wadge degrees up to
isomorphism?



Framing the question: spaces
On which class of spaces can we work?
Using universality of NN among Polish 0-dimensional spaces,

Theorem (Wadge, Martin-Monk)
Assume Z is a Polish 0-dimensional space. Then ≤Z

W satisfies SLO
and is well-founded on Borel subsets of Z .

What about other spaces?

Theorem
The Wadge quasi-order has infinite antichains and is
ill-founded:

(Schlicht-Ikegami-Tanaka) On the real line R,
(Duparc-Vuilleumier) On the Scott domain P(ω).

(Schlicht) ≤Z
W has infinite antichains for any Z Polish non

0-dimensional.

So we focus on Polish 0-dimensional spaces.



Framing the question: classes of subsets
Wadge’s Lemma and the Martin-Monk Theorem relies on
determinacy of the Wadge game.
But if Λ is a pointclass in NN among:

the pointclass of Borel sets,
one the projective classes Σ1

n or Π1
n (n ∈ N),

The projective sets
⋃

n∈N Σ1
n,

all subsets of NN,
then determinacy of Λ ensures the determinacy of the Wadge
game for pairs of sets in Λ.
In the second case, this is using recent results of Müller, Schindler,
and Woodin.

Theorem (Wadge, Martin-Monk)
Let Λ be one of the above classes. Assume determinacy of Λ.
Then ≤NN

W satisfies SLO and is well-founded on Λ.

For simplicity results are stated in ZF+DC or under AD.



On the first question: self-dual sets

So the first question becomes:
Under AD, which Wadge pointclasses of a Polish 0-dimensional
space can we construct from other ones strictly below in the
Wadge order? How?
This part is a joint work with Andrea Medini and Sandra Müller.

For A,B ⊆ Z note A <Z
W B when A ≤Z

W B but B 6≤Z
W A.

There is a direct answer for self-dual sets.

Theorem (Wadge, van Wesep)
Let Z be Polish 0-dimensional, A ⊆ Z be not clopen, and assume
AD.
Then A ⊆ Z is self-dual iff there is a clopen partition U of Z such
that for all U ∈ U we have A ∩ U <Z

W A.

So let’s focus on NSD sets and NSD Wadge pointclasses.
And first, Louveau’s analysis in the Baire space.



An intuition: Louveau’s trick.

For a pointclass Γ in Z , note Γ̌ = {Ac | A ∈ Γ}, and ∆(Γ) = Γ∩ Γ̌.
Suppose that A ⊆ NN is in ∆(D2(Σ0

2)).
Then A = B ∩ C = B′ ∪ C ′,with B,B′ in Σ0

2 and C ,C ′ in Π0
2.

There is a ∆0
2 set D separating C ′ from Bc .

Then A = (C ∩ D) ∪ (B′ \ D).

So, what did we do?
D can be of any complexity in ∆0

2, so any of the ω1 levels of
the difference hierarchy below Σ0

2.
A has a Π0

2 trace in D and a Σ0
2 trace outside, but anyway

strictly simpler.
This explains how to solve the question for Wadge pointclasses in
∆(D2(Σ0

2)). The same trick works more generally to construct
∆(D2(Γ)), for a class Γ with the separation property.
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What happens further up: ∆0
ω

How can we build sets and pointclasses describing ∆0
ω \

⋃
n Σ0

n?
First, directly inspired by the analysis of self-dual sets. Take a
clopen partition (Cn)n∈N of NN, and take An ⊆ Cn that is in
Σ0

n, and look at A =
⋃

n An =
⊔

n An.
Second idea: we could fix a closed set F ⊆ NN, and do the
same construction in the complement of F .
Third idea: same as before, adding a

⋃
n Σ0

n-subset of F .

Let’s generalize to depth η < ω1

For all ξ < η take (pairwise disjoint open) sets (Vξ,n)n

Sets (Aξ,n)ξ<η,n∈N and A∗ in
⋃

n Σ0
n, and look at

A =
(⋃

ξ,m Aξ,m ∩ (Vξ,m \
⋃
ξ′<ξ,n Vξ′,n)

)
∪ A∗ \ (

⋃
ξ,n Vξ,n)

We call this operation a separated difference, and write
A = SDη((Vξ,n), (Aξ,n),A∗).
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Separated differences and open vs full parametrizations
If ∆ and Γ∗ are pointclasses, SDη(∆,Γ∗) is the class of all possible
separated differences A = SDη((Vξ,n), (Aξ,n),A∗) with Aξ,n ∈ ∆
and A∗ ∈ Γ∗.
Observe that we did not parametrize the complexity of the sets
Vξ,n, they are always open.
Let’s call this an open parametrization (of SD).

So, why not parametrizing also the class of the sets Vξ,n?
Louveau’s original version was fully parametrized...
But it uses strongly that the classes Σ0

α are cofinal in Borel sets!
This is something that we cannot afford in general, so we need a
version that uses only open parametrization.

How to do without full parametrization on an example:
Let Γ be the unions of a Σ0

3 and a Π0
3 separated by a Σ0

2 set.
We have Γ0, the unions of Σ0

2 and Π0
2 separated by Σ0

1.
A set in Γ is the preimage of one in Γ0 by a Baire 1 function.



Expansions and Louveau’s theorem

Expansions
Given a pointclass Γ and a countable ordinal α, the α-expansion
Γ(α) is the class of all preimages of elements of Γ by
Σ0

1+α-measurable functions.

Theorem (Louveau)
The collection of all Wadge pointclasses of Borel sets in NN is
equal to Lo, where Lo is the smallest pointclass satisfying

{NN} and {∅} are in Lo,
Lo is stable by α-expansions for all α < ω1,
Lo is stable by separated differences.

Let us see now how the proof goes, and how we can generalize it.



A sketch of the proof of Louveau’s theorem
Let Γ be a NSD Wadge pointclass of Borel sets in NN.
Call PUα(Γ) the class of all sets of the form

⋃
An ∩ Bn, where

An ∈ Γ, and (Bn)n is a ∆0
1+α partition.

Definition (Louveau - Saint Raymond)
The level of a pointclass Γ is `(Γ) = sup{α < ω1 | Γ = PUα(Γ)}.

Using Louveau’s theorem with fully parametrized SD, we have:

Proposition (Louveau - Saint Raymond)
If Γ 6= {NN}, {∅}, then `(Γ) is a maximum.

Theorem (Expansion Theorem & Analysis of level 0 classes)

(Saint Raymond) If `(Γ) = α then Γ = Γ(α)
0 , with `(Γ0) = 0.

(Louveau) If `(Γ) = 0 then there is η < ω1, ∆ ( Γ, and
Γ∗ ⊆ ∆ satisfying Γ = SDη(∆,Γ∗).
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Generalizing naively won’t work directly...
Assume AD, and let Γ be a NSD Wadge pointclass in NN.
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Relativization
We found a proof of what we need, but it requires to be able to
talk about Γ(Z ), for Γ a NSD Wadge pointclass in NN, and Z
Borel 0-dimensional.

Definition (Louveau - Saint Raymond)
Γ(Z ) = {A ⊆ Z | g−1(A) ∈ Γ for every continuous g : NN → Z}.

Lemma (Louveau - Saint Raymond)
Assume AD, then A ∈ Γ(Z ) iff for all embeddings j : Z → NN

there is B ∈ Γ with A = j−1(B).

And the crucial

Lemma (Relativization Lemma)
Assume AD. If W is Borel subspace of Z then A ∈ Γ(W ) if and
only if there is Ã ∈ Γ(Z ) such that A = Ã ∩W .



Consequences

Call NSD(Z ) the set of NSD Wadge pointclasses of a
0-dimensional space Z . Using the relativization lemma,

Theorem (Carroy - Medini - Müller)
Assume AD. Let Z and W be Polish 0-dimensional spaces.

If Λ ∈ NSD(Z ), then there is a unique Γ ∈ NSD(NN) such
that Γ(Z ) = Λ.
If Z and W are uncountable, and Γ,Λ are in NSD(NN) then
Γ(Z ) ⊆ Λ(Z ) iff Γ(W ) ⊆ Λ(W ).
If Z is uncountable then NSD(Z ) = {Γ(Z ) | Γ ∈ NSD(NN)}.



The generalized Louveau analysis

Let Z be a Polish 0-dimensional space, and Γ ∈ NSD(Z ).

Proposition (Andretta-Martin)
If `(Γ) = ω1, then Γ is closed under preimages by Borel functions.

Let Lo(Z ) is the smallest collection satisfying
If `(Γ) = ω1 then Γ ∈ Lo(Z ),
Lo(Z ) is stable by α-expansions for all α < ω1,
if Lo(Z ) is stable by separated differences.

Theorem (Carroy - Medini - Müller)
Assume AD. Lo(Z ) is the collection of all Wadge pointclasses in Z.



An first application: Hausdorff operations

We also obtain another proof of a theorem of van Wesep
concerning Hausdorff operations.

Given D ⊂ 2ω and a sequence of sets ~A = A0,A1, · · · in a Polish
0-dimensional space X , define a set HD(~A) as follows:

x ∈ HD(~A)↔ {i ∈ ω | x ∈ Ai} ∈ D

We call HD a Hausdorff operation, define ΓD(X ) as all subsets of
X that are the result of applying HD on open sets of X .

Theorem (Wadge, van Wesep)
(AD) Every non-self-dual set is the result of a Hausdorff operation
on open sets.



A second application: Homogeneity vs strong homogeneity

A space X is homogeneous if for all x and y in X there is a
homeomorphism f : X → X satisfying h(x) = y .
A 0-dimensional space X is strongly homogeneous if all
clopen subsets U,V of X are homeomorphic.

Theorem (Carroy - Medini - Müller)
(AD) A non-locally-compact subset of 2N is homogeneous if and
only if it is strongly homogeneous.



A third application: Describing Wadge partial orders
This part of the talk is a joint work with Luca Motto Ros and
Salvatore Scamperti.
Assuming AD, let Θ(Z ) (resp. Θ) be the length of the Wadge
hierarchy on Z (resp. NN). To describe up to isomorphism the
Wadge partial order on a Polish 0-dimensional space Z , it is
enough to know if for α < Θ the αth coarse Wadge class is
self-dual or not.

Note α ∈ SD(Z ) in the former case, α ∈ NSD(Z ) in the latter.
Here’s what we know so far:

(Wadge, Martin-Monk) If Z is Polish 0-dimensional, then ≤Z
W

satisfies SLO and is well-founded
If Z is Polish 0-dimensional and α < Θ(Z ) has uncountable
cofinality then α ∈ NSD(Z )
≤NN

W satisfies the alternating duality property: for all α < Θ,
α ∈ SD(NN) iff α + 1 ∈ NSD(NN).
For all α < Θ of countable cofinality we have α ∈ SD(NN).
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Alternating duality and non-compact perfect kernel

Theorem (Carroy - Motto Ros - Scamperti)
Assume AD, and let Z be Polish 0-dimensional. Then ≤Z

W satisfies
the alternating duality.

So, in order to describe ≤Z
W up to isomorphism of partial orders, it

is enough to determine when α ∈ SD(Z ) for α < Θ(Z ) of
countable cofinality.
The perfect kernel of a space Z is the set of its accumulation
points.

Theorem (Carroy - Motto Ros - Scamperti)
Assume AD, and let Z be Polish 0-dimensional with a
non-compact perfect kernel. Then for all α < Θ of countable
cofinality we have α ∈ SD(Z ).

So in all these cases the Wadge partial order is exactly the same as
on the Baire space.



Spaces with compact perfect kernel
What happens when the perfect kernel of a Polish 0-dimensional Z
is compact?
Then define an ordinal Comp(Z ) < ω1 as the least ordinal α such
that the αth Cantor-Bendixson derivative is compact.

Theorem (Carroy - Motto Ros - Scamperti)
Assume AD, and let Z be Polish 0-dimensional with a compact
perfect kernel. Let α < Θ(Z ) be of countable cofinality.
If α < Comp(Z ) then α ∈ SD(Z ), and
if α > Comp(Z ) then α ∈ NSD(Z ).

What about α = Comp(Z ) when it is of countable cofinality? We
can’t say!
There are two uncountable Polish 0-dimensional spaces with a
compact perfect kernel Z and W such that
α = Comp(Z ) = Comp(W ) has countable cofinality, α ∈ SD(Z )
and α ∈ NSD(W ).



Open questions
With Motto Ros and Scamperti we have started investigating:

Question
(AD) Is 1-1 continuous reducibility a well-quasi-order on P(NN)?

Question
What could be an ω1ary operation on Wadge pointclasses? What
does it even mean?

More precisely,

Question
Can we find a set in some Z that is the ≤Z

W -supremum of Dα(Σ1
1)

for all α < ω1?

Thank you!


