Isomorphism of locally compact Polish metric structures

Maciej Malicki

Institute of Mathematics, Polish Academy of Sciences

April 20, 2022

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Structures

A **structure** is a set M equipped with relations R_i , $i \in I$, functions f_j , $j \in J$, and constants c_k , $k \in K$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Examples:

- graphs (R, E),
- ▶ Boolean algebras $(B, \land, \lor, -, 0, 1)$,
- metric spaces $(M, \{d_r\}_{r \in R}), R \subseteq \mathbb{R}^+$.

The space of countable structures and the logic action

Let *L* be a relational signature *L*, with n_i the arity of relational symbol R_i , $i \in I$. Then $Mod(L) = \prod_{i \in I} 2^{\mathbb{N}^{n_i}}$ is the space of codes of all countable *L*-structures with universe \mathbb{N} .

The space of countable structures and the logic action

Let *L* be a relational signature *L*, with n_i the arity of relational symbol R_i , $i \in I$. Then $Mod(L) = \prod_{i \in I} 2^{\mathbb{N}^{n_i}}$ is the space of codes of all countable *L*-structures with universe \mathbb{N} .

The group S_{∞} , acting on Mod(L) by permuting the universe, induces the isomorphism equivalence relation \cong on Mod(L). In particular, Vaught transforms can be used:

The space of countable structures and the logic action

Let *L* be a relational signature *L*, with n_i the arity of relational symbol R_i , $i \in I$. Then $Mod(L) = \prod_{i \in I} 2^{\mathbb{N}^{n_i}}$ is the space of codes of all countable *L*-structures with universe \mathbb{N} .

The group S_{∞} , acting on Mod(L) by permuting the universe, induces the isomorphism equivalence relation \cong on Mod(L). In particular, Vaught transforms can be used:

For open $U \subseteq S_{\infty}$, and $A \subseteq Mod(L)$

$$M \in A^{*U} \Leftrightarrow \forall^* g \in U g. M \in A.$$

A D N A 目 N A E N A E N A B N A C N

$\mathcal{L}_{\omega_1\omega}$ and its fragments

We will work in the setting of infinitary logic $\mathcal{L}_{\omega_1\omega}$, i.e., an extension of the finitary logic $\mathcal{L}_{\omega\omega}$ allowing for countably infinite conjunctions $\bigwedge_i \phi_i$, and disjunctions $\bigvee_i \phi_i$.

$\mathcal{L}_{\omega_1\omega}$ and its fragments

We will work in the setting of infinitary logic $\mathcal{L}_{\omega_1\omega}$, i.e., an extension of the finitary logic $\mathcal{L}_{\omega\omega}$ allowing for countably infinite conjunctions $\bigwedge_i \phi_i$, and disjunctions $\bigvee_i \phi_i$.

A (countable) **fragment** *F* is a countable set of $\mathcal{L}_{\omega_1\omega}$ -formulas containing all $\mathcal{L}_{\omega\omega}$ -formulas, and closed under \land , \lor , \neg , and \exists . We can talk about *F*-theories, *F*-types, type spaces $S_n(T)$, spaces $\operatorname{Mod}(T) \subseteq \operatorname{Mod}(L)$ of models of a theory *T*, isomorphism relations \cong_T on $\operatorname{Mod}(T)$, etc.

$\mathcal{L}_{\omega_1\omega}$ and its fragments

We will work in the setting of infinitary logic $\mathcal{L}_{\omega_1\omega}$, i.e., an extension of the finitary logic $\mathcal{L}_{\omega\omega}$ allowing for countably infinite conjunctions $\bigwedge_i \phi_i$, and disjunctions $\bigvee_i \phi_i$.

A (countable) **fragment** *F* is a countable set of $\mathcal{L}_{\omega_1\omega}$ -formulas containing all $\mathcal{L}_{\omega\omega}$ -formulas, and closed under \land , \lor , \neg , and \exists . We can talk about *F*-theories, *F*-types, type spaces $S_n(T)$, spaces $\operatorname{Mod}(T) \subseteq \operatorname{Mod}(L)$ of models of a theory *T*, isomorphism relations \cong_T on $\operatorname{Mod}(T)$, etc.

The space $S_n(T)$ of all *n*-*F*-types is equipped with the logic topology τ_n with basis consisting of sets $[\phi]$, defined by $\operatorname{tp}(\bar{a}) \in [\phi]$ iff $\phi^M(\bar{a}) = 1$, where $\phi \in F$, $M \in \operatorname{Mod}(T)$, \bar{a} is a tuple in M.

In a similar fashion, we can define a topology t_F on Mod(L).

Complexity of equivalence relations

An equivalence relation E on a Polish space X is (**Borel**) **reducible** to an equivalence relation F on a Polish space Y if there is a Borel mapping $f : X \to Y$ such that, for any $x_1, x_2 \in X$,

 $x_1 \mathrel{E} x_2 \leftrightarrow f(x_1) \mathrel{F} f(x_2).$

Complexity of equivalence relations

An equivalence relation E on a Polish space X is (**Borel**) **reducible** to an equivalence relation F on a Polish space Y if there is a Borel mapping $f : X \to Y$ such that, for any $x_1, x_2 \in X$,

$$x_1 \mathrel{E} x_2 \leftrightarrow f(x_1) \mathrel{F} f(x_2).$$

Important types of equivalence relations:

- smooth, i.e., reducible to the identity,
- essentially countable, i.e., reducible to a relation with countable classes,
- classifiable by countable structures, i.e., reducible to the isomorphism relation on a Borel class of countable structures.

 $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set $A \subseteq Mod(L)$ is of the form Mod(T) for some countable theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set $A \subseteq Mod(L)$ is of the form Mod(T) for some countable theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Theorem (Hjorth-Kechris)

Let T be a countable theory, and let \cong_T be the isomorphism relation on Mod(T). TFAE:

- 1. \cong_T is essentially countable,
- 2. there exists a fragment F such that for every $M \in Mod(T)$, there is a tuple \bar{a} such that $Th_F(M, \bar{a})$ is \aleph_0 -categorical.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set $A \subseteq Mod(L)$ is of the form Mod(T) for some countable theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Theorem (Hjorth-Kechris)

Let T be a countable theory, and let \cong_T be the isomorphism relation on Mod(T). TFAE:

- 1. \cong_T is essentially countable,
- 2. there exists a fragment F such that for every $M \in Mod(T)$, there is a tuple \bar{a} such that $Th_F(M, \bar{a})$ is \aleph_0 -categorical.

Corollary

Isomorphim of finitely generated countable groups is essentially countable.

Metric structures

A **metric structure** is a complete and bounded metric space (M, d) equipped with bounded uniformly continuous functions $R_i : M^{n_i} \to \mathbb{R}, i \in I$ (relations), uniformly continuous functions $f_j : M^{n_j} \to M, j \in J$, and constants $c_k, k \in K$.

A metric signature consists of relation (including the metric), function, and constant symbols, as well as arities, moduli of continuity $\Delta : [0, +\infty)^n \rightarrow [0, +\infty)$, and bounds $I \subseteq \mathbb{R}$ for relation symbols. Each of the relations and functions of a metric structure in a given signature must respect its modulus of continuity. Each of the relations must respect its bound.

Metric structures

A **metric structure** is a complete and bounded metric space (M, d) equipped with bounded uniformly continuous functions $R_i : M^{n_i} \to \mathbb{R}, i \in I$ (relations), uniformly continuous functions $f_j : M^{n_j} \to M, j \in J$, and constants $c_k, k \in K$.

A metric signature consists of relation (including the metric), function, and constant symbols, as well as arities, moduli of continuity $\Delta : [0, +\infty)^n \rightarrow [0, +\infty)$, and bounds $I \subseteq \mathbb{R}$ for relation symbols. Each of the relations and functions of a metric structure in a given signature must respect its modulus of continuity. Each of the relations must respect its bound.

Examples:

- Complete metric spaces (M, d);
- Measure algebras $(B, d, \land, \lor, 0, 1)$;
- ▶ Banach spaces, *C**-algebras, etc.

The space of Polish metric structures

Let *L* be a countable relational signature *L*, with n_i the arity of relation R_i , $i \in I$, where $R_0 = d$. Then $Mod(L) \subseteq \prod_{i \in I} \mathbb{R}^{\mathbb{N}^{n_i}}$ is the space of codes of all Polish metric structures with universe containing \mathbb{N} as a (tail-)dense subset of *M*.

The space of Polish metric structures

Let *L* be a countable relational signature *L*, with n_i the arity of relation R_i , $i \in I$, where $R_0 = d$. Then $Mod(L) \subseteq \prod_{i \in I} \mathbb{R}^{\mathbb{N}^{n_i}}$ is the space of codes of all Polish metric structures with universe containing \mathbb{N} as a (tail-)dense subset of *M*.

Remark: No Vaught transforms. However, for $M \in Mod(L)$, let $D \subseteq M^{\mathbb{N}}$ be the Polish space of all tail-dense sequences in M, and $\pi : D \to [M]$ a natural projection from D onto the isomorphism class [M] of M. For $A \subseteq Mod(L)$, $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, and $u \in \mathbb{Q}^+$, put

$$M \in A^{*\bar{a},u} \Leftrightarrow \forall^* y \in B^{D(M)}_{< u}(\bar{a})(\pi(y) \in A),$$

< (1)< (1)<

Continuous $\mathcal{L}_{\omega\omega}$ and $\mathcal{L}_{\omega_1\omega}$

Formulas of continuous finitary logic $\mathcal{L}_{\omega\omega}$ are defined using

► continuous functions s : [a, b]ⁿ → [a, b] as connectives. Alternatively: polynomials or just {0, 1, ^x/₂, ·, +, -},

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

inf and sup as quantifiers.

Continuous $\mathcal{L}_{\omega\omega}$ and $\mathcal{L}_{\omega_1\omega}$

Formulas of continuous finitary logic $\mathcal{L}_{\omega\omega}$ are defined using

- ► continuous functions s : [a, b]ⁿ → [a, b] as connectives. Alternatively: polynomials or just {0, 1, x/2, ·, +, -},
- inf and sup as quantifiers.

Analogs of infinite conjunctions and disjunctions in the continuous infinitary logic $\mathcal{L}_{\omega_1\omega}$ are defined with $\inf_i \phi_i$, $\sup_i \phi_i$ as infinitary connectives, provided that all ϕ_i respect a single modulus of continuity and bound.

For a given fragment F, and F-theory T, the type $p = \operatorname{tp}(\bar{a})$ of \bar{a} in $M \in \operatorname{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$.

For a given fragment F, and F-theory T, the type $p = \operatorname{tp}(\bar{a})$ of \bar{a} in $M \in \operatorname{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$. The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some s < r. We can also define t_F on $\operatorname{Mod}(L)$.

For a given fragment F, and F-theory T, the type $p = \operatorname{tp}(\bar{a})$ of \bar{a} in $M \in \operatorname{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$. The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some s < r. We can also define t_F on $\operatorname{Mod}(L)$.

There is also a natural (complete) metric ∂ on $S_n(T)$. For $F = \mathcal{L}_{\omega\omega}$, it can be defined by

$$\partial(p,q) = \inf\{d^M(\bar{a},\bar{b}): M\models T, \ \bar{a},\bar{b}\in M^n, \ \mathrm{tp}(\bar{a})=p, \mathrm{tp}(\bar{b})=q \}$$

For a given fragment F, and F-theory T, the type $p = \operatorname{tp}(\bar{a})$ of \bar{a} in $M \in \operatorname{Mod}(T)$ is the family of all conditions of the form $\phi(\bar{x}) = r$ such that $\phi^M(\bar{a}) = r$. We write $p(\phi) = r$. The (Polish) logic topology τ on $S_n(T)$ is defined by sets $[\phi < r]$ of all the types p such that $p(\phi) = s$ for some s < r. We can also define t_F on $\operatorname{Mod}(L)$.

There is also a natural (complete) metric ∂ on $S_n(T)$. For $F = \mathcal{L}_{\omega\omega}$, it can be defined by

$$\partial(p,q) = \inf\{d^M(ar{a},ar{b}): M\models \mathcal{T}, \ ar{a},ar{b}\in M^n, \ ext{tp}(ar{a})=p, ext{tp}(ar{b})=q\,\}$$

In general,

$$\partial(p,q) = \sup_{\phi \in F_1} \left| p(\phi) - q(\phi) \right|,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

where F_1 are 1-Lipschitz formulas.

Continuous $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory Theorem (Ben Yaacov-Doucha-Nies-Tsankov) Every isomorphism-invariant Borel set $A \subseteq Mod(L)$ is of the form Mod(T) for some (countable) theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Continuous $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Ben Yaacov-Doucha-Nies-Tsankov)

Every isomorphism-invariant Borel set $A \subseteq Mod(L)$ is of the form Mod(T) for some (countable) theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Theorem (Hallbäck, M., Tsankov)

Let T be a theory with locally compact Polish models. TFAE:

- 1. \cong_T is essentially countable,
- 2. there exists a fragment F such that for every $M \in Mod(T)$, there is $k \in \mathbb{N}$ such that the set

$$\{\bar{a} \in M^k : \operatorname{Th}_F(M, \bar{a}) \text{ is } \aleph_0\text{-rigid}\}$$

has non-empty interior in M^k .

Continuous $\mathcal{L}_{\omega_1\omega}$ and descriptive set theory

Theorem (Ben Yaacov-Doucha-Nies-Tsankov)

Every isomorphism-invariant Borel set $A \subseteq Mod(L)$ is of the form Mod(T) for some (countable) theory $T \subseteq \mathcal{L}_{\omega_1\omega}$.

Theorem (Hallbäck, M., Tsankov)

Let T be a theory with locally compact Polish models. TFAE:

- 1. \cong_T is essentially countable,
- 2. there exists a fragment F such that for every $M \in Mod(T)$, there is $k \in \mathbb{N}$ such that the set

 $\{\bar{a} \in M^k : \operatorname{Th}_F(M, \bar{a}) \text{ is } \aleph_0\text{-rigid}\}$

has non-empty interior in M^k .

Corollary (Kechris)

Every orbit equivalence relation induced by a locally compact Polish group is essentially countable. Isomorphism of locally compact Polish metric structures

Theorem (M.)

Let T be a countable theory with locally compact models. Then \cong_T is classifiable by countable structures.

Let $\beta = 0$ or a limit ordinal.

Let $\beta = 0$ or a limit ordinal.

• An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.

Let $\beta = 0$ or a limit ordinal.

- An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.
- a β-AE family P(x̄) is a collection of γ-AE families p_k(x̄), k ∈ N, γ < β.

Let $\beta = 0$ or a limit ordinal.

- An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.
- a β-AE family P(x̄) is a collection of γ-AE families p_k(x̄), k ∈ N, γ < β.
- a (β + 1)-AE family P(x̄) is a collection of γ-AE families p_{k,l}(x̄_{k,l}), γ < β, k, l ∈ N, x̄ ⊆ x̄_{k,l},

Let $\beta = 0$ or a limit ordinal.

- An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.
- a β-AE family P(x̄) is a collection of γ-AE families p_k(x̄), k ∈ N, γ < β.
- a (β + 1)-AE family P(x̄) is a collection of γ-AE families p_{k,l}(x̄_{k,l}), γ < β, k, l ∈ N, x̄ ⊆ x̄_{k,l},
- a (β + n)-AE family P(x̄), 2 ≤ n < ω, is a collection of (β + n − 2)-AE families p_{k,l}(x̄_{k,l}), k, l ∈ N, x̄ ⊆ x̄_{k,l}.

α -AE families

Let $\beta = 0$ or a limit ordinal.

- An (-1)-AE family $P(\bar{x})$ is a formula $\phi(\bar{x})$ in F.
- a β-AE family P(x̄) is a collection of γ-AE families p_k(x̄), k ∈ N, γ < β.
- a (β + 1)-AE family P(x̄) is a collection of γ-AE families p_{k,l}(x̄_{k,l}), γ < β, k, l ∈ N, x̄ ⊆ x̄_{k,l},
- ▶ a $(\beta + n)$ -AE family $P(\bar{x})$, $2 \le n < \omega$, is a collection of $(\beta + n 2)$ -AE families $p_{k,l}(\bar{x}_{k,l})$, $k, l \in \mathbb{N}$, $\bar{x} \subseteq \bar{x}_{k,l}$.

Moreover, every α -AE family $P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}, \alpha \ge 1$, comes equipped with a fixed $u_P \ge 0$ such that $u_P \ge u_{p_{k,l}}, k, l \in \mathbb{N}$.

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in Mod(L)$ realizes a

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in Mod(L)$ realizes a

• (-1)-AE family
$$P(\bar{x}) = \phi(\bar{a})$$
 if $\phi^M(\bar{a}) = 0$,

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in Mod(L)$ realizes a

• (-1)-AE family
$$P(\bar{x}) = \phi(\bar{a})$$
 if $\phi^M(\bar{a}) = 0$,

• β -AE family $P(\bar{x})$ if it realizes every $p(\bar{x}) \in P(\bar{x})$,
α -AE families

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in \operatorname{Mod}(L)$ realizes a

• (-1)-AE family
$$P(\bar{x}) = \phi(\bar{a})$$
 if $\phi^{M}(\bar{a}) = 0$,

- β -AE family $P(\bar{x})$ if it realizes every $p(\bar{x}) \in P(\bar{x})$,
- $(\beta + n)$ -AE family $P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}, 1 \le n < \omega$, if it holds in M that

$$\forall \bar{b} \in B^{M^{<\omega}}_{u_P}(\bar{a}) \forall v > 0 \forall k \exists \bar{c} \in B^{M^{<\omega}}_v(\bar{b}) \exists l \, (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

α -AE families

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in \operatorname{Mod}(L)$ realizes a

• (-1)-AE family
$$P(\bar{x}) = \phi(\bar{a})$$
 if $\phi^M(\bar{a}) = 0$,

- β -AE family $P(\bar{x})$ if it realizes every $p(\bar{x}) \in P(\bar{x})$,
- $(\beta + n)$ -AE family $P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}, 1 \le n < \omega$, if it holds in M that

$$\forall \bar{b} \in B^{M^{<\omega}}_{u_P}(\bar{a}) \forall \nu > 0 \forall k \exists \bar{c} \in B^{M^{<\omega}}_{\nu}(\bar{b}) \exists l \ (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).$$

Remark: For a countable M,

$$\forall \bar{b} \supseteq \bar{a} \forall k \exists \bar{c} \supseteq \bar{b} \exists l(\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).$$

α -AE families

For $\beta = 0$ or a limit ordinal, a tuple \bar{a} in $M \in \operatorname{Mod}(L)$ realizes a

• (-1)-AE family
$$P(\bar{x}) = \phi(\bar{a})$$
 if $\phi^M(\bar{a}) = 0$,

- β -AE family $P(\bar{x})$ if it realizes every $p(\bar{x}) \in P(\bar{x})$,
- $(\beta + n)$ -AE family $P(\bar{x}) = \{p_{k,l}(\bar{x}_{k,l})\}, 1 \le n < \omega$, if it holds in M that

$$\forall \bar{b} \in B^{M^{<\omega}}_{u_P}(\bar{a}) \forall \nu > 0 \forall k \exists \bar{c} \in B^{M^{<\omega}}_{\nu}(\bar{b}) \exists l \ (\bar{c} \text{ realizes } p_{k,l}(\bar{x}_{k,l}) \text{ in } M).$$

Remark: For a countable M,

$$\forall \overline{b} \supseteq \overline{a} \forall k \exists \overline{c} \supseteq \overline{b} \exists l(\overline{c} \text{ realizes } p_{k,l}(\overline{x}_{k,l}) \text{ in } M).$$

If \emptyset in *M* realizes $P(\emptyset)$, we say that *M* models *P*.

AE families and Borel complexity

Let F be fragment in signature L, and let $2 \le \alpha < \omega_1$. Let m = 1 if $\alpha < \omega$, and m = 0 otherwise.

Theorem

Suppose that $A \in \Pi^0_{\alpha}(t_F)$ for some $A \subseteq Mod(L)$. For every $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, and $u \in \mathbb{Q}^+$, there exists an $(\alpha - m)$ -AE family $P(\bar{x})$ such that

$$A^{*\bar{a},u} = \{N \in \operatorname{Mod}(L) : \bar{a} \text{ realizes } P(\bar{x}) \text{ in } N\}.$$

Corollary

Suppose that $[M] \in \Pi^0_{\alpha}(t_F)$ for some $M \in Mod(L)$. There exists an $(\alpha - m)$ -AE family P_M such that

$$[M] = \{N \in \operatorname{Mod}(L) : N \text{ models } P_M\}.$$

For a theory T, locally compact $M \in Mod(T)$, $n \in \mathbb{N}$, and *n*-tuple \bar{a} in M, let

$$\rho(\bar{a}) = \sup\{r \in \mathbb{R} : \overline{B_{< r}^{M^n}(\bar{a})} \text{ is compact}\},$$
$$\Theta_n(M) = \{\operatorname{tp}(\bar{b}) : \bar{b} \in M^n\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For a theory T, locally compact $M \in Mod(T)$, $n \in \mathbb{N}$, and *n*-tuple \bar{a} in M, let

$$\rho(\bar{a}) = \sup\{r \in \mathbb{R} : \overline{B_{< r}^{M^n}(\bar{a})} \text{ is compact}\},$$
$$\Theta_n(M) = \{\operatorname{tp}(\bar{b}) : \bar{b} \in M^n\}.$$

Fix a countable basis $\mathcal{U}_n = \{U_{l,n}\}$ for each τ_n , and put $\mathcal{U} = \bigcup_n \mathcal{U}_n$. For $U \in \mathcal{U}_n$, and $\epsilon > 0$, (U, ϵ) is \bar{a} -good in M if

- ▶ $\operatorname{tp}(\bar{a}) \in U$,
- $2\epsilon <
 ho(ar{a})$,
- ▶ there is $\delta > 0$ such that $U \cap B_{<2\epsilon}(\operatorname{tp}(\bar{a})) \subseteq B_{<\epsilon-\delta}(\operatorname{tp}(\bar{a}))$.

- For every δ > 0 there exist U ∈ U and 0 < ε < δ such that (U, ε) is ā-good,
- if (U, ϵ) is \bar{a} -good, then

$$\overline{B_{<\epsilon}(\operatorname{tp}(\bar{a}))\cap U}^{\tau}\subseteq \Theta_{|\bar{a}|}(M),$$

If (U, ε) is ā-good, there is δ > 0 such that d(ā, ā') < δ implies that (U, ε) is ā'-good, and</p>

$$U \cap B_{<\epsilon}(\operatorname{tp}(\bar{a})) = U \cap B_{<\epsilon}(\operatorname{tp}(\bar{a}')).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

For
$$ar{a} \in \mathbb{N}^{<\mathbb{N}}$$
, $U \in \mathcal{U}_n$, and $\epsilon \in \mathbb{Q}^+$, define
 $T^0_{U,\epsilon}(ar{a}) = \overline{B_{<\epsilon}(\operatorname{tp}(ar{a})) \cap U}^{ au}$,

if (U,ϵ) is \bar{a} -good,

$$T^0_{U,\epsilon}(\bar{a}) = \emptyset,$$

otherwise, and

$$\begin{split} \mathcal{T}^{\alpha}_{U,\epsilon}(\bar{a}) &= \{ \mathcal{T}^{\beta}_{U',\epsilon'}(\bar{a}') : \beta < \alpha, |\bar{a}'| \ge |\bar{a}|, U' \in \mathcal{U}_{|\bar{a}'|}, U' \upharpoonright |\bar{a}| \subseteq U, \epsilon' \le \epsilon \} \\ \text{for } \alpha > 0. \text{ Also, for } u > 0, \text{ put} \\ \mathcal{T}^{\alpha}_{u}(\bar{a}) &= \{ \mathcal{T}^{\beta}_{U,v}(\bar{b}) : \beta < \alpha, \bar{b} \in \mathcal{B}^{M^{<\omega}}_{u}(\bar{a}), |\bar{b}| \ge |\bar{a}|, U \in \mathcal{U}_{|\bar{b}|}, v > 0 \}, \\ \mathcal{T}^{\alpha}(\mathcal{M}) &= \mathcal{T}^{\alpha}_{1}(\emptyset). \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Remark: For a countable M, and $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, put

$$egin{aligned} &\operatorname{tp}^{\mathbf{0}}(ar{a}) = \operatorname{tp}(ar{a}), \ &\operatorname{tp}^{lpha}(ar{a}) = \{\operatorname{tp}^{eta}(ar{b}) : eta < lpha, \ ar{b} \in \mathbb{N}^{<\mathbb{N}}, \ ar{a} \subseteq ar{b}\}, \ &\operatorname{Th}^{lpha}(M) = \operatorname{tp}^{lpha}(\emptyset). \end{aligned}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Theorem

Let F be a fragment, and let T be an F-theory. Suppose that $M, N \in Mod(T)$ are locally compact, and $T^{\alpha}_{u}(\bar{a}) = T^{\alpha}_{u'}(\bar{a}')$ for some tuples \bar{a}, \bar{a}' in M, N, respectively. Then every α -AE family $P(\bar{x})$ with $u_P \leq u$ realized by \bar{a}' , is also realized by \bar{a} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Let F be a fragment, and let T be an F-theory. Suppose that $M, N \in Mod(T)$ are locally compact, and $T^{\alpha}_{u}(\bar{a}) = T^{\alpha}_{u'}(\bar{a}')$ for some tuples \bar{a}, \bar{a}' in M, N, respectively. Then every α -AE family $P(\bar{x})$ with $u_P \leq u$ realized by \bar{a}' , is also realized by \bar{a} .

Theorem

Let F be a fragment, and let T be an F-theory with locally compact models. Suppose that $[M] \in \Pi^0_{\alpha}(t_F)$, $\alpha \ge 2$, for some $M \in Mod(T)$. Let m = 1 if $\alpha < \omega$, and m = 0 otherwise. Then

$$[M] = \{N \in \operatorname{Mod}(T) : T^{\alpha-m}(N) = T^{\alpha-m}(M)\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Theorem

Let T be a countable theory with locally compact models. Then \cong_T is classifiable by countable structures.

For $M \in Mod(T)$, C_M consists of elements

$$x = (\overline{B_{\epsilon}(\operatorname{tp}(\bar{a}))} \cap \overline{U}^{\tau}, |\bar{a}|, U, \epsilon),$$

where $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, $U \in \mathcal{U}_{|\bar{a}|}$, $\epsilon \in \mathbb{Q}^+$, and (U, ϵ) is \bar{a} -good, and relations O_l , $R_{k,l,\delta}$, $k, l \in \mathbb{N}$, $\delta \in \mathbb{Q}^+$, and E, defined as follows:

- $O_l(x)$ iff $U_{l,|\bar{a}|} \cap \overline{B_{\epsilon}(\operatorname{tp}(\bar{a})) \cap U}^{\tau} = \emptyset$,
- $\blacktriangleright R_{k,l,\delta}(x) \text{ iff } k = |\bar{a}|, \ U = U_{l,n}, \ \delta = \epsilon,$
- xEx' iff $|\bar{a}'| \ge |\bar{a}|, U' \upharpoonright |\bar{a}| \subseteq U, \epsilon' \le \epsilon$.

Isometry of locally compact Polish metric spaces

Theorem (M.)

Isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Isometry of locally compact Polish metric spaces

Theorem (M.)

Isometry of locally compact Polish metric spaces is Borel reducible to graph isomorphism.

A locally compact Polish metric space (K, d), regarded as an element $\mathcal{K}(\mathbb{U})$ of the hyperspace of Urysohn space, can be coded in a Borel way as $M_K \in Mod(L)$ with the trivial signature L, and metric bounded by 1: using the Kuratowski–Ryll-Nardzewski theorem, pick a countable tail-dense subset of K, and replace d with 1/(1 + d).

A relation E on a standard Borel space X is **potentially** Π_{α}^{0} if there is a Polish topology t inducing the Borel structure of X, and such that $E \in \Pi_{\alpha}^{0}(t \times t)$.

For $\alpha < \omega_1$, $\mathcal{P}^0(\mathbb{N}) = \mathbb{N}$, $\mathcal{P}^{\alpha}(\mathbb{N}) =$ all countable subsets of $\mathcal{P}^{<\alpha}(\mathbb{N}) \cup \mathbb{N}$, where $\mathcal{P}^{<\alpha}(\mathbb{N}) = \bigcup_{\beta < \alpha} \mathcal{P}^{\beta}(\mathbb{N})$, and $=_{\alpha}$ is the equality on $\mathcal{P}^{\alpha}(\mathbb{N})$.

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical $\mathcal{L}_{\omega_1\omega}$, and let T be an F-theory. If \cong_T is potentially $\Pi^0_{\alpha+2}$, where $\alpha \ge 1$, then \cong_T is Borel reducible to $=_{\alpha+1}$.

A relation E on a standard Borel space X is **potentially** Π_{α}^{0} if there is a Polish topology t inducing the Borel structure of X, and such that $E \in \Pi_{\alpha}^{0}(t \times t)$.

For $\alpha < \omega_1$, $\mathcal{P}^0(\mathbb{N}) = \mathbb{N}$, $\mathcal{P}^{\alpha}(\mathbb{N}) =$ all countable subsets of $\mathcal{P}^{<\alpha}(\mathbb{N}) \cup \mathbb{N}$, where $\mathcal{P}^{<\alpha}(\mathbb{N}) = \bigcup_{\beta < \alpha} \mathcal{P}^{\beta}(\mathbb{N})$, and $=_{\alpha}$ is the equality on $\mathcal{P}^{\alpha}(\mathbb{N})$.

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical $\mathcal{L}_{\omega_1\omega}$, and let T be an F-theory. If \cong_T is potentially $\Pi^0_{\alpha+2}$, where $\alpha \ge 1$, then \cong_T is Borel reducible to $=_{\alpha+1}$.

Theorem (M.)

Let F be a fragment in the continuous $\mathcal{L}_{\omega_1\omega}$, and let T be an F-theory with locally compact models. If \cong_T is potentially $\Pi^0_{\alpha+2}$, where $\alpha \geq 1$, then \cong_T is Borel reducible to $=_{\alpha+1}$.

Theorem

Let L be a signature, let t be a Polish topology on Mod(L) consisting of Borel subsets of the standard topology, and let $\alpha < \omega_1$. There exists a fragment F such that $A^{*\bar{a},1/k} \in \Pi^0_{\alpha}(t_F)$ for every $A \in \Pi^0_{\alpha}(t)$, $\bar{a} \in \mathbb{N}^{<\mathbb{N}}$, and k > 0.

Corollary

Let L be a signature, and let T be a theory such that \cong_T is potentially Π^0_{α} . There exists a fragment F such that $[M] \in \Pi^0_{\alpha}(t_F)$ for every $M \in Mod(T)$.

For a fragments F, F', and a formula ϕ ,

•
$$\operatorname{rk}_{F}(\phi) = 0$$
 if $\phi \in F$,

►
$$\operatorname{rk}_{F}(\phi) = \sup\{\operatorname{rk}_{F}(\phi_{i}) + 1\}$$
 if $\phi = \bigvee_{i} \phi_{i}$ or $\phi = \bigwedge_{i} \phi_{i}$,

• $\operatorname{rk}_F(\phi) = \operatorname{rk}_F(\psi)$ if ϕ is in the fragment gen. by F and ψ ,

•
$$\operatorname{rk}_{F}(F') = \sup\{\operatorname{rk}_{F}(\phi) : \phi \in F'\}.$$

Remark: ϕ can be coded as an element of $\mathcal{P}^{\alpha}(\mathbb{N})$ if $\operatorname{rk}_{\mathcal{F}}(\phi) \leq \alpha$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For a fragments F, F', and a formula ϕ ,

•
$$\operatorname{rk}_{F}(\phi) = 0$$
 if $\phi \in F$,

•
$$\operatorname{rk}_{F}(\phi) = \sup\{\operatorname{rk}_{F}(\phi_{i}) + 1\}$$
 if $\phi = \bigvee_{i} \phi_{i}$ or $\phi = \bigwedge_{i} \phi_{i}$,

• $\operatorname{rk}_{F}(\phi) = \operatorname{rk}_{F}(\psi)$ if ϕ is in the fragment gen. by F and ψ ,

$$\blacktriangleright \operatorname{rk}_{F}(F') = \sup\{\operatorname{rk}_{F}(\phi) : \phi \in F'\}.$$

Remark: ϕ can be coded as an element of $\mathcal{P}^{\alpha}(\mathbb{N})$ if $\operatorname{rk}_{\mathcal{F}}(\phi) \leq \alpha$.

Theorem

Let F be a fragment, and let T be an F-theory with locally compact models. Suppose that $[M] \in \Pi^0_{\alpha+2}(t_F)$ for some $M \in Mod(T)$, $\alpha \ge 1$. There is a fragment $F_M \supseteq F$ such that $[M] \in \Pi^0_2(t_{F_M})$, and $\operatorname{rk}_F(F_M) = \alpha$.

Theorem (Hallbäck, M., Tsankov)

Let F be a fragment and let T be an F-theory. For any $M \in Mod(T)$, [M] is G_{δ} in the topology t_F iff M is an atomic model of $Th_F(M)$.

Lemma (Tsankov)

Let L be a signature. For every fragment F, there exists a fragment $F' \supseteq F$ such that if $M \in Mod(L)$ is F-atomic, then $Th_{F'}(M)$ is \aleph_0 -categorical.

Thank You!