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Structures

A structure is a set M equipped with relations Ri , i ∈ I , functions
fj , j ∈ J, and constants ck , k ∈ K .

Examples:

▶ graphs (R,E ),

▶ Boolean algebras (B,∧,∨,−, 0, 1),
▶ metric spaces (M, {dr}r∈R), R ⊆ R+.



The space of countable structures and the logic action

Let L be a relational signature L, with ni the arity of relational
symbol Ri , i ∈ I . Then Mod(L) =

∏
i∈I 2

N
ni is the space of codes

of all countable L-structures with universe N.

The group S∞, acting on Mod(L) by permuting the universe,
induces the isomorphism equivalence relation ∼= on Mod(L). In
particular, Vaught transforms can be used:

For open U ⊆ S∞, and A ⊆ Mod(L)

M ∈ A∗U ⇔ ∀∗g ∈ U g .M ∈ A.
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Lω1ω and its fragments

We will work in the setting of infinitary logic Lω1ω, i.e., an
extension of the finitary logic Lωω allowing for countably infinite
conjunctions

∧
i ϕi , and disjunctions

∨
i ϕi .

A (countable) fragment F is a countable set of Lω1ω-formulas
containing all Lωω-formulas, and closed under ∧, ∨, ¬, and ∃. We
can talk about F -theories, F -types, type spaces Sn(T ), spaces
Mod(T ) ⊆ Mod(L) of models of a theory T , isomorphism
relations ∼=T on Mod(T ), etc.

The space Sn(T ) of all n-F -types is equipped with the logic
topology τn with basis consisting of sets [ϕ], defined by tp(ā) ∈ [ϕ]
iff ϕM(ā) = 1, where ϕ ∈ F , M ∈ Mod(T ), ā is a tuple in M.

In a similar fashion, we can define a topology tF on Mod(L).
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Complexity of equivalence relations

An equivalence relation E on a Polish space X is (Borel)
reducible to an equivalence relation F on a Polish space Y if there
is a Borel mapping f : X → Y such that, for any x1, x2 ∈ X ,

x1 E x2 ↔ f (x1) F f (x2).

Important types of equivalence relations:

▶ smooth, i.e., reducible to the identity,

▶ essentially countable, i.e., reducible to a relation with
countable classes,

▶ classifiable by countable structures, i.e., reducible to the
isomorphism relation on a Borel class of countable structures.
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Lω1ω and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set
A ⊆ Mod(L) is of the form Mod(T ) for some countable theory
T ⊆ Lω1ω.

Theorem (Hjorth-Kechris)

Let T be a countable theory, and let ∼=T be the isomorphism
relation on Mod(T ). TFAE:

1. ∼=T is essentially countable,

2. there exists a fragment F such that for every M ∈ Mod(T ),
there is a tuple ā such that ThF (M, ā) is ℵ0-categorical.

Corollary

Isomorphim of finitely generated countable groups is essentially
countable.
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Corollary

Isomorphim of finitely generated countable groups is essentially
countable.



Lω1ω and descriptive set theory

Theorem (Lopez-Escobar)

Let L be a signature. Every isomorphism-invariant Borel set
A ⊆ Mod(L) is of the form Mod(T ) for some countable theory
T ⊆ Lω1ω.

Theorem (Hjorth-Kechris)

Let T be a countable theory, and let ∼=T be the isomorphism
relation on Mod(T ). TFAE:

1. ∼=T is essentially countable,

2. there exists a fragment F such that for every M ∈ Mod(T ),
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Metric structures

A metric structure is a complete and bounded metric space
(M, d) equipped with bounded uniformly continuous functions
Ri : M

ni → R, i ∈ I (relations), uniformly continuous functions
fj : M

nj → M, j ∈ J, and constants ck , k ∈ K .

A metric signature consists of relation (including the metric),
function, and constant symbols, as well as arities, moduli of
continuity ∆ : [0,+∞)n → [0,+∞), and bounds I ⊆ R for
relation symbols. Each of the relations and functions of a metric
structure in a given signature must respect its modulus of
continuity. Each of the relations must respect its bound.

Examples:

▶ Complete metric spaces (M, d);

▶ Measure algebras (B, d ,∧,∨, 0, 1);
▶ Banach spaces, C ∗-algebras, etc.
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The space of Polish metric structures

Let L be a countable relational signature L, with ni the arity of
relation Ri , i ∈ I , where R0 = d . Then Mod(L) ⊆

∏
i∈I R

N
ni is

the space of codes of all Polish metric structures with universe
containing N as a (tail-)dense subset of M.

Remark: No Vaught transforms. However, for M ∈ Mod(L), let
D ⊆ MN be the Polish space of all tail-dense sequences in M, and
π : D → [M] a natural projection from D onto the isomorphism
class [M] of M. For A ⊆ Mod(L), ā ∈ N<N, and u ∈ Q+, put

M ∈ A∗ā,u ⇔ ∀∗y ∈ B
D(M)
<u (ā)(π(y) ∈ A),
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M ∈ A∗ā,u ⇔ ∀∗y ∈ B
D(M)
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Continuous Lωω and Lω1ω

Formulas of continuous finitary logic Lωω are defined using

▶ continuous functions s : [a, b]n → [a, b] as connectives.
Alternatively: polynomials or just {0, 1, x2 , ·,+,−},

▶ inf and sup as quantifiers.

Analogs of infinite conjunctions and disjunctions in the continuous
infinitary logic Lω1ω are defined with inf i ϕi , supi ϕi as infinitary
connectives, provided that all ϕi respect a single modulus of
continuity and bound.
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Type spaces

For a given fragment F , and F -theory T , the type p = tp(ā) of ā
in M ∈ Mod(T ) is the family of all conditions of the form
ϕ(x̄) = r such that ϕM(ā) = r . We write p(ϕ) = r .

The (Polish) logic topology τ on Sn(T ) is defined by sets [ϕ < r ]
of all the types p such that p(ϕ) = s for some s < r . We can also
define tF on Mod(L).

There is also a natural (complete) metric ∂ on Sn(T ). For
F = Lωω, it can be defined by

∂(p, q) = inf{dM(ā, b̄) : M |= T , ā, b̄ ∈ Mn, tp(ā) = p, tp(b̄) = q }

In general,
∂(p, q) = sup

ϕ∈F1

|p(ϕ)− q(ϕ)| ,

where F1 are 1-Lipschitz formulas.
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Continuous Lω1ω and descriptive set theory

Theorem (Ben Yaacov-Doucha-Nies-Tsankov)

Every isomorphism-invariant Borel set A ⊆ Mod(L) is of the form
Mod(T ) for some (countable) theory T ⊆ Lω1ω.

Theorem (Hallbäck, M., Tsankov)

Let T be a theory with locally compact Polish models. TFAE:

1. ∼=T is essentially countable,

2. there exists a fragment F such that for every M ∈ Mod(T ),
there is k ∈ N such that the set

{ā ∈ Mk : ThF (M, ā) is ℵ0-rigid}

has non-empty interior in Mk .

Corollary (Kechris)

Every orbit equivalence relation induced by a locally compact
Polish group is essentially countable.
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Isomorphism of locally compact Polish metric structures

Theorem (M.)

Let T be a countable theory with locally compact models. Then
∼=T is classifiable by countable structures.



α-AE families

Let β = 0 or a limit ordinal.

▶ An (−1)-AE family P(x̄) is a formula ϕ(x̄) in F .

▶ a β-AE family P(x̄) is a collection of γ-AE families pk(x̄),
k ∈ N, γ < β.

▶ a (β + 1)-AE family P(x̄) is a collection of γ-AE families
pk,l(x̄k,l), γ < β, k , l ∈ N, x̄ ⊆ x̄k,l ,

▶ a (β + n)-AE family P(x̄), 2 ≤ n < ω, is a collection of
(β + n − 2)-AE families pk,l(x̄k,l), k , l ∈ N, x̄ ⊆ x̄k,l .

Moreover, every α-AE family P(x̄) = {pk,l(x̄k,l)}, α ≥ 1, comes
equipped with a fixed uP ≥ 0 such that uP ≥ upk,l , k , l ∈ N.
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α-AE families

For β = 0 or a limit ordinal, a tuple ā in M ∈ Mod(L) realizes a

▶ (−1)-AE family P(x̄) = ϕ(ā) if ϕM(ā) = 0,

▶ β-AE family P(x̄) if it realizes every p(x̄) ∈ P(x̄),

▶ (β + n)-AE family P(x̄) = {pk,l(x̄k,l)}, 1 ≤ n < ω, if it holds
in M that

∀b̄ ∈ BM<ω

uP
(ā)∀v > 0∀k∃c̄ ∈ BM<ω

v (b̄)∃l (c̄ realizes pk,l(x̄k,l) in M).

Remark: For a countable M,

∀b̄ ⊇ ā∀k∃c̄ ⊇ b̄∃l(c̄ realizes pk,l(x̄k,l) in M).

If ∅ in M realizes P(∅), we say that M models P.
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(ā)∀v > 0∀k∃c̄ ∈ BM<ω

v (b̄)∃l (c̄ realizes pk,l(x̄k,l) in M).

Remark: For a countable M,
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AE families and Borel complexity

Let F be fragment in signature L, and let 2 ≤ α < ω1. Let m = 1
if α < ω, and m = 0 otherwise.

Theorem
Suppose that A ∈ Π0

α(tF ) for some A ⊆ Mod(L). For every
ā ∈ N<N, and u ∈ Q+, there exists an (α−m)-AE family P(x̄)
such that

A∗ā,u = {N ∈ Mod(L) : ā realizes P(x̄) in N}.

Corollary

Suppose that [M] ∈ Π0
α(tF ) for some M ∈ Mod(L). There exists

an (α−m)-AE family PM such that

[M] = {N ∈ Mod(L) : N models PM}.



Locally compact structures

For a theory T , locally compact M ∈ Mod(T ), n ∈ N, and n-tuple
ā in M, let

ρ(ā) = sup{r ∈ R : BMn

<r (ā) is compact},

Θn(M) = {tp(b̄) : b̄ ∈ Mn}.

Fix a countable basis Un = {Ul ,n} for each τn, and put U =
⋃

n Un.
For U ∈ Un, and ϵ > 0, (U, ϵ) is ā-good in M if

▶ tp(ā) ∈ U,

▶ 2ϵ < ρ(ā),

▶ there is δ > 0 such that U ∩ B<2ϵ(tp(ā)) ⊆ B<ϵ−δ(tp(ā)).
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Locally compact structures

▶ For every δ > 0 there exist U ∈ U and 0 < ϵ < δ such that
(U, ϵ) is ā-good,

▶ if (U, ϵ) is ā-good, then

B<ϵ(tp(ā)) ∩ U
τ ⊆ Θ|ā|(M),

▶ if (U, ϵ) is ā-good, there is δ > 0 such that d(ā, ā′) < δ
implies that (U, ϵ) is ā′-good, and

U ∩ B<ϵ(tp(ā)) = U ∩ B<ϵ(tp(ā
′)).



Locally compact structures

For ā ∈ N<N, U ∈ Un, and ϵ ∈ Q+, define

T 0
U,ϵ(ā) = B<ϵ(tp(ā)) ∩ U

τ
,

if (U, ϵ) is ā-good,
T 0
U,ϵ(ā) = ∅,

otherwise, and

Tα
U,ϵ(ā) = {T β

U′,ϵ′(ā
′) : β < α, |ā′| ≥ |ā|,U ′ ∈ U|ā′|,U

′ ↾ |ā| ⊆ U, ϵ′ ≤ ϵ}

for α > 0. Also, for u > 0, put

Tα
u (ā) = {T β

U,v (b̄) : β < α, b̄ ∈ BM<ω

u (ā), |b̄| ≥ |ā|,U ∈ U|b̄|, v > 0},

Tα(M) = Tα
1 (∅).



Locally compact structures

Remark: For a countable M, and ā ∈ N<N, put

tp0(ā) = tp(ā),

tpα(ā) = {tpβ(b̄) : β < α, b̄ ∈ N<N, ā ⊆ b̄},

Thα(M) = tpα(∅).



Locally compact structures

Theorem
Let F be a fragment, and let T be an F -theory. Suppose that
M,N ∈ Mod(T ) are locally compact, and Tα

u (ā) = Tα
u′(ā

′) for
some tuples ā, ā′ in M, N, respectively. Then every α-AE family
P(x̄) with uP ≤ u realized by ā′, is also realized by ā.

Theorem
Let F be a fragment, and let T be an F -theory with locally
compact models. Suppose that [M] ∈ Π0

α(tF ), α ≥ 2, for some
M ∈ Mod(T ). Let m = 1 if α < ω, and m = 0 otherwise. Then

[M] = {N ∈ Mod(T ) : Tα−m(N) = Tα−m(M)}.
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Locally compact structures

Theorem
Let T be a countable theory with locally compact models. Then
∼=T is classifiable by countable structures.

For M ∈ Mod(T ), CM consists of elements

x = (Bϵ(tp(ā)) ∩ U
τ
, |ā|,U, ϵ),

where ā ∈ N<N, U ∈ U|ā|, ϵ ∈ Q+, and (U, ϵ) is ā-good, and
relations Ol , Rk,l ,δ, k , l ∈ N, δ ∈ Q+, and E , defined as follows:

▶ Ol(x) iff Ul ,|ā| ∩ Bϵ(tp(ā)) ∩ U
τ
= ∅,

▶ Rk,l ,δ(x) iff k = |ā|, U = Ul ,n, δ = ϵ,

▶ xEx ′ iff |ā′| ≥ |ā|, U ′ ↾ |ā| ⊆ U, ϵ′ ≤ ϵ.



Isometry of locally compact Polish metric spaces

Theorem (M.)

Isometry of locally compact Polish metric spaces is Borel reducible
to graph isomorphism.

A locally compact Polish metric space (K , d), regarded as an
element K(U) of the hyperspace of Urysohn space, can be coded
in a Borel way as MK ∈ Mod(L) with the trivial signature L, and
metric bounded by 1: using the Kuratowski–Ryll-Nardzewski
theorem, pick a countable tail-dense subset of K , and replace d
with 1/(1 + d).
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Borel isomorphism relations

A relation E on a standard Borel space X is potentially Π0
α if

there is a Polish topology t inducing the Borel structure of X , and
such that E ∈ Π0

α(t × t).

For α < ω1, P0(N) = N, Pα(N) = all countable subsets of
P<α(N) ∪N, where P<α(N) =

⋃
β<α Pβ(N), and =α is the

equality on Pα(N).

Theorem (Hjort, Kechris, Louveau)

Let F be a fragment in the classical Lω1ω, and let T be an
F -theory. If ∼=T is potentially Π0

α+2, where α ≥ 1, then ∼=T is
Borel reducible to =α+1.

Theorem (M.)

Let F be a fragment in the continuous Lω1ω, and let T be an
F -theory with locally compact models. If ∼=T is potentially Π0

α+2,
where α ≥ 1, then ∼=T is Borel reducible to =α+1.
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Borel isomorphism relations

Theorem
Let L be a signature, let t be a Polish topology on Mod(L)
consisting of Borel subsets of the standard topology, and let
α < ω1. There exists a fragment F such that A∗ā,1/k ∈ Π0

α(tF ) for
every A ∈ Π0

α(t), ā ∈ N<N, and k > 0.

Corollary

Let L be a signature, and let T be a theory such that ∼=T is
potentially Π0

α. There exists a fragment F such that
[M] ∈ Π0

α(tF ) for every M ∈ Mod(T ).



Borel isomorphism relations

For a fragments F , F ′, and a formula ϕ,

▶ rkF (ϕ) = 0 if ϕ ∈ F ,

▶ rkF (ϕ) = sup{rkF (ϕi ) + 1} if ϕ =
∨

i ϕi or ϕ =
∧

i ϕi ,

▶ rkF (ϕ) = rkF (ψ) if ϕ is in the fragment gen. by F and ψ,

▶ rkF (F
′) = sup{rkF (ϕ) : ϕ ∈ F ′}.

Remark: ϕ can be coded as an element of Pα(N) if rkF (ϕ) ≤ α.

Theorem
Let F be a fragment, and let T be an F -theory with locally
compact models. Suppose that [M] ∈ Π0

α+2(tF ) for some
M ∈ Mod(T ), α ≥ 1. There is a fragment FM ⊇ F such that
[M] ∈ Π0

2(tFM
), and rkF (FM) = α.
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Borel isomorphism relations

Theorem (Hallbäck, M., Tsankov)

Let F be a fragment and let T be an F -theory. For any
M ∈ Mod(T ), [M] is Gδ in the topology tF iff M is an atomic
model of ThF (M).

Lemma (Tsankov)

Let L be a signature. For every fragment F , there exists a
fragment F ′ ⊇ F such that if M ∈ Mod(L) is F -atomic, then
ThF ′(M) is ℵ0-categorical.



Thank You!


