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Generalizing edges

▶ An edge e = (u, v) in a graph G can be associated to a pair
of filters: namely the principal ultrafilters Uu and Uv

determined by the vertices u, v on each side of the edge.

▶ e is on the boundary of a set of vertices X ⊆ V (G ) when one
of u, v is in X and the other is not.

▶ . . . or, in the language of these filters: when X is measure 1
with respect to one of Uu, Uv and null with respect to the
other.



Generalizing graphs

▶ Thinking of a usual graph as a network of edges e = (u, v),
we’ll define a filter graph to be a network of filter pairs (F ,G).

▶ We can make sense of what it means for such an “edge”
(F ,G) to be on the boundary of a set of vertices.

▶ Our goal is to describe how filter graphs resemble graphs in at
least one way: the max-flow/min-cut theorem holds for filter
graphs.



Outline

1. Flows in graphs

2. Submodular functions

3. Flows in hypergraphs

4. Flows in filter graphs



Flows in Graphs



A prototype flow: König’s lemma

Theorem (edge-path version of König’s lemma)

Suppose that G is a locally finite graph and x is vertex in G
belonging to an infinite connected component of G . There is a
neighbor y of x such that if e is the edge connecting x and y , then
y belongs to an infinite connected component of G − e.



Flows

The usual statement of König’s lemma follows: every x belonging
to an infinite component of G is the initial vertex in some infinite
edge-path through G .

Our goal is to generalize König’s lemma to produce systems of
disjoint paths, in graphs and generalizations of graphs.



Mass assignments

▶ Suppose G is a locally finite graph.

▶ A mass assignment is a function u : V (G ) → N

Two mass assignments of total mass 2.



Mass assignments are measures

▶ We may view a mass assignment u as a function on sets of
vertices by defining u(X ) =

∑
x∈X u(x) for X ⊆ V (G ).

▶ So extended, u is a measure on V (G ).

▶ The finite additivity of u is equivalent to another condition
called modularity:

u(X ∪ Y ) + u(X ∩ Y ) = u(X ) + u(Y )

for all X ,Y ⊆ V (G ).



Feasible mass assignments

Question: Which mass assignments allow us to send the units of
mass along pairwise edge-disjoint paths?



Boundaries

▶ Given a set of vertices X ⊆ V (G ), the edge boundary function
is defined by:

∂G (X ) = # of edges on the boundary of X
= |{e ∈ E (G ) : exactly one end of e is in X}|

▶ If u is a mass assignment, and for some X we have
u(X ) > ∂G (X ), we can’t possibly send the units of mass in X
along edge-disjoint paths out of X .

▶ The max-flow/min-cut theorem says this is the only restriction
to finding such a system of paths.



Feasible mass assignments

▶ A mass assignment is called feasible if for every X ⊆ V (G ) we
have u(X ) ≤ ∂G (X ).



Push and burn

Theorem (max-flow/min-cut)

Suppose that G is locally finite graph and u is a feasible mass
assignment for G .

Fix x ∈ V (G ) with u(x) ≥ 1. There is a neighbor y of x to which
we can push a unit of mass from x and burn the connecting edge.

That is, if e is the edge connecting x and y and we define a new
mass assignment u′ by:

u′(x) = u(x)− 1
u′(y) = u(y) + 1
u′(v) = u(v) for all v ̸= x , y ,

Then u′ is a feasible mass assignment for G ′ = G − e.





Submodular Functions



The key for flows: submodularity of ∂G

The proof of max-flow/min-cut depends crucially on the
submodularity of the boundary function ∂G .

Let’s forget about graphs for the moment and approach
submodularity abstractly.

We’ll see that certain simple submodular functions resemble edges
in a graph.



Submodularity

Suppose that V is a set, and let 2V denote its powerset.

Definition
A function f : 2V → R is called submodular if for all X ,Y ⊆ V we
have

f (X ∪ Y ) + f (X ∩ Y ) ≤ f (X ) + f (Y ).

▶ All submodular functions we consider will be non-negative
integer valued, i.e. we’ll have f : 2V → N.

▶ We will often have f (∅) = 0.



Intersect to increase

Example

Fix A ⊆ V . Define a function 1A on 2V by

1A(X ) = 0 if A ∩ X = ∅,
1A(X ) = 1 if A ∩ X ̸= ∅.

Then 1A is submodular.





Contain to decrease

Example

Fix B ⊆ V . Define a function 1∗B on 2V by

1∗B(X ) = 1 if B ̸⊆ X ,
1∗B(X ) = 0 if B ⊆ X .

Then 1∗B is submodular.





Up then down

Example

Fix A,B ⊆ V , not both equal to the same singleton. Define a
function 1A→B on 2V by

1A→B(X ) = 0 if A ∩ X = ∅ or B ⊆ X ,
1A→B(X ) = 1 if A ∩ X ̸= ∅ and B ̸⊆ X .

Then 1A→B is submodular.





2-valued submodular functions

It turns out these are the only non-constant examples of 2-valued
submodular functions. . . on finite domains.

Theorem
Suppose that V is a finite set and f : 2V → {0, 1} is a submodular
function. Then exactly one of the following holds:

(i) f (X ) = 0 for all X ⊆ V ,

(ii) f (X ) = 1 for all X ⊆ V ,

(iii) f = 1A for some nonempty A ⊆ V ,

(iv) f = 1∗B for some nonempty B ⊆ V ,

(v) f = 1A→B for some nonempty A,B ⊆ V not both equal to
the same singleton.



More complicated submodular functions

Submodular functions with more than two output values are harder
to describe.

But the intuition from the 2-valued situation generalizes: if f is
submodular on a finite domain V , then f increases as the input set
X becomes incident to certain subsets of V , and decreases when X
finally contains certain subsets.



Flows in Hypergraphs



1A→B as an edge indicator

Let’s consider submodular functions of the form 1A→B .

▶ If A = {a} and B = {b} for some distinct a, b ∈ V , we can
think of the pair (a, b) as a directed edge from a to b.

▶ Then 1A→B indicates whether this edge is on the (outgoing)
edge boundary of the input set X .





1A→B as an edge indicator

▶ If A = B = {a, b} for some distinct a, b ∈ V , we can think of
the pair {a, b} as an undirected edge between a and b.

▶ Then 1A→B indicates whether this edge is on the edge
boundary of the input set X .





1A→B as an edge indicator

▶ In general we can think of a pair of subsets (A,B) as a
directed hyperedge from A to B, and the function 1A→B as
indicating whether this hyperedge is on the outgoing boundary
of the input set.





Directed hypergraphs

▶ We think of a collection of directed hyperedges
G = {(Ai ,Bi )} as a directed hypergraph.

▶ Then the function F =
∑

i 1Ai→Bi
is the outgoing edge

boundary function for G .



(Sources and sinks)

▶ (A lone subset A indicated by its associated function 1A can
be thought of as a sink, and a B indicated by 1∗B can be
thought of as a source.)

▶ (For simplicity, we won’t include sources and sinks in our
graphs, instead imagining all paths as flowing out to infinity.)



Sums of submodular functions are submodular

Fact: Given a collection of submodular functions fi and
non-negative real numbers ai , the function F =

∑
i ai fi is

submodular.

Hence if G = {(Ai ,Bi )} is a directed hypergraph and
F =

∑
i 1Ai→Bi

is its outgoing edge boundary function, then F is
submodular.

In particular, the edge boundary function ∂ of an undirected graph
G is submodular.



Max-flow/min-cut for hypergraphs

We can generalize the max-flow/min-cut theorem to directed
hypergraphs.

First we need to generalize the notion of a feasible mass
assignment.

If F : 2V → N is submodular (e.g. the edge boundary function for
a directed hypergraph), a mass assignment u : V → N is feasible if
u(X ) ≤ F (X ) for all X ⊆ V .



Saturated sets form a lattice

We need only one fact about submodularity in the proof.

If u is a feasible mass assignment for a submodular F , we call a set
X ⊆ V saturated if u(X ) = F (X ).

Fact. The collection of saturated sets {X ⊆ V : u(X ) = F (X )} is
closed under ∩ and ∪.

This will allow us to make a move akin to “the union of a finite
collection of finite sets is finite” that we make in the proof of
König’s lemma.



Max-flow/min-cut for hypergraphs

Theorem
Suppose that G = {(Ai ,Bi )} is a locally finite directed hypergraph
with vertex set V and edge boundary function F =

∑
i 1Ai→Bi

.
Suppose u : V → N is a feasible mass assignment for F .

Fix x ∈ V with u(x) ≥ 1. Then for some edge (A,B) ∈ G with
x ∈ A, there is a vertex y ∈ B such that if we define a new mass
assignment u′ by:

u′(x) = u(x)− 1
u′(y) = u(y) + 1
u′(v) = u(v) for all v ̸= x , y ,

Then u′ is feasible for F ′ = F − 1A→B .





Proof

Step 1: “Pick up one unit mass and burn the edge”

▶ List the edges (A1,B1), . . . , (An,Bn) for which x ∈ Ai .

▶ Let u∗ denote the mass assignment that removes a unit of
mass from x .

▶ Claim: There is i ≤ n s.t. u∗ is feasible for F ′ = F − 1Ai→Bi
.



Proof

▶ If not, can check: for every i ≤ n there is a saturated Xi that
intersects Ai but doesn’t contain x .

▶ Let X =
⋃

i≤n Xi . Then X is saturated, i.e. F (X ) = u(X ).

▶ Since X intersects every Ai containing x , we have
F (X ∪ {x}) = F (X ).

▶ Hence F (X ∪ {x}) = u(X ).

▶ But u(X ∪ {x}) > u(X ), since u assigns at least one unit of
mass to x .

▶ So then u(X ∪ {x}) > F (X ∪ {x}), contradicting feasibility.



Proof

Short version: If we can’t pick up a unit mass at x and burn one of
the edges incident to x , we find a saturated set X that stakes a
claim for all these edges along which the mass on x might escape,
but that doesn’t contain x — impossible.



Proof

Step 2: “Put the mass back down on the other side”

▶ Reordering if need be, suppose (A1,B1), . . . , (Am,Bm) are
those edges above which allow a “pick up and burn” move.

▶ Claim: there is j ≤ m and y ∈ Bj s.t. if we let u′ denote the
mass assignment which reassigns the deleted mass to y , then
u′ is feasible for F ′.



Proof

▶ If not, can check: for every j ≤ m and every y ∈ Bj there is a
Yj ,y containing y that is F ′-saturated wrt u∗.

▶ Then Yj =
⋃

y∈Bj
Yj ,y is also F ′-saturated wrt u∗.

▶ One can check: because Yj contains Bj , it follows Yj is
saturated in the original sense: that is, F -saturated wrt u.

▶ Hence so is Y =
⋃

j≤m Yj . We also have that Y cannot
contain x .



Proof

▶ Hence X ∪Y is also saturated, that is u(X ∪Y ) = F (X ∪Y ),
and moreover doesn’t contain x .

▶ X intersects some of the Ai to which x belongs. For the
remaining Aj , Y completely contains the corresponding Bj .

▶ Hence F (X ∪ Y ∪ {x}) = F (X ∪ Y ).

▶ But u(X ∪ Y ∪ {x}) > u(X ∪ Y ) since u assigns at least one
unit of mass to x .

▶ So u(X ∪ Y ∪ {x}) > F (X ∪ Y ∪ {x}), contradicting
feasibility.



Proof

Short version: If we can’t put down the unit mass we picked up at
x on some neighbor y , we find a new saturated set Y which
contains all of these potential landing spots and doesn’t contain x .
Then X ∪ Y either stakes a claim for the edges along which the
mass at x might escape, or contains those edges internally, and yet
doesn’t contain x — impossible.



Flows in Filter Graphs



Generalizing max-flow/min-cut

So far:

▶ Non-constant 2-valued submodular functions on a finite
domain must be of the form 1A, 1

∗
B or 1A→B .

▶ Max-flow/min-cut holds for networks of these functions
(directed hypergraphs).

What about 2-valued submodular functions on an infinite domain?



Filters

Suppose V is a set.

Recall: a filter on V is a collection of subsets F ⊆ 2V such that

1. V ∈ F , ∅ ̸∈ F .

2. X ∈ F and Y ⊇ X implies Y ∈ F .

3. X ,Y ∈ F implies X ∩ Y ∈ F .

For X ⊆ V , we say X is F-null if X ∈ F ; X is F-positive if X ̸∈ F .

A filter F is an ultrafilter if for every X ⊆ V either X ∈ F or
X ∈ F .



Principal filters and ultrafilters

Example

Fix A ⊆ V .

▶ The collection F = {X ⊆ V : A ⊆ X} is a filter on V , called
a principal filter.

▶ The F-null sets are those X such that X ∩ A = ∅, the
F-positive sets are those X such that X ∩ A ̸= ∅.

▶ If A = {a} is a singleton, F is an ultrafilter.

▶ If V is finite, the principal filters are the only filters on V .



Extending a filter to an ultrafilter :: placing a unit of mass

A good picture to keep in mind:

▶ Suppose A is a subset of V and FA is the associated principal
filter.

▶ If we extend FA to an ultrafilter U , then U is a principal
ultrafilter determined by some x ∈ A.

▶ If A is one of the sets in a directed hyperedge (A,B),
extending FA to U is tantamount to placing a unit of mass on
the outgoing side of this edge.



Extending a filter to an ultrafilter :: placing a unit of mass



Become positive to increase

Suppose V is infinite. What are the 2-valued submodular functions
on V ?

Example

Fix a filter F on V . Define a function 1F on 2V by

1F (X ) = 0 if X ∈ F ,

1F (X ) = 1 if X ̸∈ F .

Then 1F is submodular.

Functions of this form generalize functions of the form 1A.



Become co-null to decrease

Example

Fix a filter G on V . Define a function 1∗G on 2V by

1∗G(X ) = 1 if X ̸∈ G,
1∗G(X ) = 0 if X ∈ G.

Then 1∗G is submodular.



Up then down

Example

Fix filters F ,G on V , not both equal to the same ultrafilter.
Define a function 1F→G by

1F→G(X ) = 0 if X ∈ F or X ∈ G,
1F→G(X ) = 1 if X ̸∈ F and X ̸∈ G.

Then 1F→G is submodular.



2-valued submodular functions

These are the only non-constant examples of 2-valued submodular
functions—full stop!

Theorem
Suppose that V is a set and f : 2V → {0, 1} is a submodular
function. Then exactly one of the following holds:

(i) f (X ) = 0 for all X ⊆ V ,

(ii) f (X ) = 1 for all X ⊆ V ,

(iii) f = 1F for some filter F on V ,

(iv) f = 1∗G for some filter G on V ,

(v) f = 1F→G for some filters F ,G on V , not both equal to the
same ultrafilter.



Filter graphs

▶ We can think of a pair of filters (F ,G) on V as a
generalization of a directed edge in a hypergraph.

▶ For X ⊆ V , we think of the value 1F→G(X ) as indicating
whether this edge is on the outgoing boundary of X .

▶ Let’s call a collection of these edges G = {(Fi ,Gi )} a filter
graph on V .

▶ Then the function F =
∑

i 1Fi→Gi
is the edge boundary

function for G (and is submodular too).



An example

Example

▶ Suppose A,B,C are infinite pairwise disjoint subsets of V .

▶ Let F ,G,H be, respectively, the cofinite filters on A,B,C ,
closed upward so as to be filters on V .

▶ Then G = {(F ,G), (G,H)} is a filter graph with two edges,
pointing sets that are infinite on A to sets infinite on B, and
these to sets infinite on C in turn.



Mass assignments are measures

▶ A mass assignment is a modular function u : 2V → R.
▶ All of our mass assignments will be finitely additive measures

(i.e. increasing and non-negative).

▶ Given an ultrafilter U on V , we define the usual associated
measure u : 2V → {0, 1} by u(X ) = 1 iff X ∈ U .

▶ Actually, our mass assignments will be of the form u =
∑

ui ,
where ui are the measures associated to a collection of
ultrafilters Ui .



A “point-mass” ready to cross over an “edge”

Example

▶ Consider again G = {(F ,G), (G,H)} be our two-edged filter
graph from before, associated the to infinite sets A,B,C .

▶ if U is an ultrafilter extending F , we might think of U as
being a “point mass” on the A-side of the edge (F ,G).

▶ We have u(X ) = 1 implies 1F (X ) = 1, which in turn implies
1F→G(X ) = 1 . . . as long as X does not belong to G.

▶ Intuitively, this says that any X containing the mass from U
has the edge (F ,G) on its boundary, unless this edge is
internal to X .



Max-flow/min-cut for filter graphs

▶ The definition of feasible is the same as before: a mass
assignment u is feasible for a submodular F if u(X ) ≤ F (X )
for all X ⊆ V .

▶ If G = {(Fi ,Gi )} is a finite filter graph, and u =
∑

i ui is a
sum of ultrafilter measures (associated to some ultrafilters Ui )
which is feasible for the boundary function F =

∑
i 1Fi→Gi

,
then one can check that every Ui extends some Fi .

▶ That is, all “point-masses” sit on the outgoing side of at least
one “edge.”



Max-flow/min-cut for filter graphs

Theorem
Suppose that G = {(Fj ,Gj)} is a finite filter graph with vertex set
V and boundary function F =

∑
i 1Fj→Gj

. Suppose u =
∑

i ui is a
sum of ultrafilter measures (associated to ultrafilters Ui ) which is
feasible for F .

Fix i , and consider the ultrafilter Ui and associated measure ui . For
some edge (F ,G) ∈ G where Ui extends F , there is an ultrafilter
U ′
i extending G such that if we define a new mass assignment u′ by

u′ = u − ui + u′i

Then u′ is feasible for F ′ = F − 1F→G .



Proof

Step 1: “Pick up the ultrafilter and burn the edge”

▶ List the pairs (F1,G1), . . . , (Fn,Gn) for which Ui extends Fj .

▶ Let u∗ = u − ui .

▶ Claim: There is j ≤ n such that u∗ is feasible for
F ′ = F − 1Fj→Gj

.



Proof

▶ If not, for every j ≤ n we must be able to find a saturated set
Xj with ui (Xj) = 0 (i.e. Xj ̸∈ Ui ) and with 1Fj→Gj

(Xj) = 1

(i.e. Xj is Fj -positive and Xj is Gj -positive).

▶ Then X =
⋃

j≤n Xj is also saturated and Ui -null.

▶ We can find A ⊆ V that sees the mass at Ui (i.e. A ∈ Ui , i.e.
ui (A) = 1) but isn’t incident to any of the edges (F ,G) away
from this mass (i.e. A is F-null when Ui does not extend F).
▶ (using: finite intersection of co-null sets is co-null; if an

ultrafilter U does not extend a filter F , then there is an F-null
set in U .)



Proof

▶ Then since X is already incident to all edges incident to Ui ,
and A is incident only to these, we have F (X ∪ A) = F (X ).

▶ Since X is saturated we have F (X ∪ A) = F (X ) = u(X ).

▶ On the other hand, since X is Ui -null and A is not we have
u(X ∪ A) = u(X ) + 1.

▶ Combining these lines gives F (X ∪ A) < u(X ∪ A),
contradicting feasibility.



Proof

Step 2: “Put an ultrafilter back down on the other side”

▶ Reordering if necessary, list the pairs (F1,G1), . . . , (Fm,Gm)
above for which we can do a “pick up and burn” move
(there’s at least one).

▶ Claim: There is j ≤ m and some ultrafilter U ′
i extending Gj

with associated measure u′i such that if we define

u′ = u∗ + u′i = u − ui + u′i

Then u′ is feasible for F ′ = F − 1Fj→Gj
.



Proof

▶ If not, for every j ≤ m and every ultrafilter V extending Gj we
can find a set Yj ,v such that F ′(Yj ,v ) = u∗(Yj ,v ).

▶ Since the space of ultrafilters on V is compact and the
collection of ultrafilters extending Gj is closed in this space,
we can actually find an finite collection of these saturated sets
Yj ,v1 , . . . ,Yj ,vp such that every ultrafilter V extending Gj

contains one of these sets — and hence their union Yj , which
must also be saturated.

▶ But the only sets which are in every ultrafilter extending Gj

are sets in Gj itself. Hence Yj is in Gj .

▶ As before, it follows that not only do we have
F ′(Yj) = u∗(Yj) but actually F (Yj) = u∗(Yj).



Proof

▶ Letting Y =
⋃

j≤m Yj we have F (Y ) = u∗(Y ).

▶ If Y isn’t Ui -null, we immediately contradict feasibility since
in this case u(Y ) = u∗(Y ) + 1.

▶ If Y is Ui -null, then in fact F (Y ) = u(Y ). We can find as
before a set A in Ui that is Fk null for all Fk in edges
(Fk ,Gk) not incident to Ui .

▶ Since X from part 1 of the proof is saturated we have X ∪ Y
is too, i.e. F (X ∪ Y ) = u(X ∪ Y ).

▶ Our A is chosen so that F (X ∪ Y ∪ A) = F (X ∪ Y ).

▶ But A is also chosen so that ui (A) = 1.

▶ Combining yields,
F (X ∪ Y ∪ A) = u(X ∪ Y ) < u(X ∪ Y ) + 1 = u(X ∪ Y ∪ A),
contradicting feasibility.



Two questions

1. To what extent does the theory of submodular functions more
generally extend if we replace every graph in sight with a filter
graph and every point mass in sight with an ultrafilter
measure?
My guess: all the main results should extend once
reformulated correctly.

2. What if we consider submodular functions on standard
measure spaces (e.g. Rn) and consider continuous measures
as mass assignments?
My guess: there should be a nice theory here, including some
max-flow theorems.


