The number of ergodic models of an infinitary sentence

Rehana Patel

Caltech Logic Seminar (Online) May 11, 2022 Joint work with: N. Ackerman, C. Freer, A. Kruckman, & A. Kwiatkowska

Span of the talk

- **1** Ergodic models of $\mathscr{L}_{\omega_1\omega}$ -sentences
- **2** The ergodic spectrum for $\mathscr{L}_{\omega_1\omega}$ -sentences
- 3 Highly homogeneous structures
- **4** The range of the spectrum function
- 5 Two questions

Ergodic models of $\mathscr{L}_{\omega_1\omega}$ -sentences

The measurable space Str_L

Throughout this talk, L is a countable language.

Write Str_L for the measurable space consisting of *L*-structures with underlying set \mathbb{N} , equipped with the Borel σ -algebra generated by subbasic open sets

$$\{\mathcal{M} \in \operatorname{Str}_L : \mathcal{M} \models R(\bar{a})\}$$
 and $\{\mathcal{M} \in \operatorname{Str}_L : \mathcal{M} \models \neg R(\bar{a})\}$

for relation symbols $R \in L$ and tuples $\bar{a} \in \mathbb{N}$ with $|\bar{a}| = \operatorname{arity}(R)$; and similarly for constant and function symbols in *L*.

For a sentence ϑ of $\mathscr{L}_{\omega_1\omega}(L)$, define the **extent** of ϑ in Str_L to be:

$$\llbracket \boldsymbol{\vartheta} \rrbracket := \{ \mathscr{M} \in \operatorname{Str}_L : \mathscr{M} \models \boldsymbol{\vartheta} \}.$$

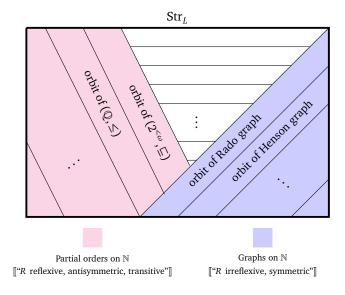
The logic action on Str_L

The group S_{∞} of permutations of \mathbb{N} acts on Str_{L} via the **logic action**, by permuting the underlying set: For $g \in S_{\infty}$ and $\mathcal{M} \in \operatorname{Str}_{L}$, the structure $g \cdot \mathcal{M} \in \operatorname{Str}_{L}$ is obtained by relabelling the elements of \mathcal{M} according to g.

- ★ Orbits of the logic action are precisely the isomorphism classes of *L*-structures, i.e., extents of Scott sentences.
- ★ The extent of any $\mathscr{L}_{\omega_1\omega}(L)$ -sentence is Borel; and it is also invariant under the logic action, i.e., for any $\mathscr{L}_{\omega,\omega}(L)$ -sentence ϑ and $g \in S_{\infty}$,

$$g \cdot \llbracket \vartheta \rrbracket = \llbracket \vartheta \rrbracket.$$

Example. $L = \{R\}$, where *R* is a binary relation symbol.



Ergodic invariant probability measures on Str_L

A probability measure μ on Str_{*L*} is (S_{∞} -) invariant when the logic action does not change the μ -measure of a Borel subset of Str_{*L*}, i.e., when $\mu(X) = \mu(g \cdot X)$ for every Borel subset *X* of Str_{*L*} and every $g \in S_{\infty}$.

Further, such a μ is **ergodic** when, for any Borel subset *X* of Str_{*L*} such that $\mu(X \triangle g \cdot X) = 0$ for all $g \in S_{\infty}$, we have either $\mu(X) = 0$ or $\mu(X) = 1$.

★ Fact: The set of invariant probability measures on Str_L is a convex set. Its extreme points are the ergodic invariant probability measures; any invariant probability measure on Str_L is a mixture of ergodic ones.

Thus, without loss of generality, we may consider only the ergodic invariant probability measures on Str_L .

Ergodic models of an $\mathscr{L}_{\omega_1\omega}$ -sentence

 μ an ergodic invariant probability measure on Str_L.

★ Since extents of sentences are invariant under the logic action, for any sentence ϑ of ℒ_{ω₁ω}(L), we have that μ([[ϑ]]) equals either 0 or 1, i.e., ϑ almost surely holds or almost surely does not hold with respect to μ.

Define the **theory** of μ to be:

Th(
$$\mu$$
) := { ϑ an $\mathscr{L}_{\omega_1\omega}(L)$ -sentence : $\mu(\llbracket \vartheta \rrbracket) = 1$ }.

* Th(μ) is complete and countably satisfiable (by ergodicity and σ -additivity, respectively).

Hence we call an ergodic invariant probability measure μ on Str_{*L*} an ergodic structure. We say μ is an ergodic model of ϑ when $\vartheta \in Th(\mu)$.

The ergodic spectrum for $\mathscr{L}_{\omega_1\omega}\text{-sentences}$

The ergodic spectrum

We define the **ergodic spectrum** *I* to be the function on $\mathscr{L}_{\omega_1\omega}(L)$ -sentences given by: $I(\vartheta)$ is the number of ergodic models of ϑ .

Main Question. What values can $I(\vartheta)$ take?

- ★ Note that $I(\vartheta) \le 2^{\aleph_0}$, as *L* is countable.
- * Note also that if $\vartheta \models \xi$, then $I(\vartheta) \le I(\xi)$.

Pop Quiz. What is the value of $I(\vartheta)$ when ϑ is:

- ♦ a Scott sentence for (\mathbb{Z}, \leq)
- ♦ a Scott sentence for (\mathbb{Q}, \leq)
- a Scott sentence for the Rado graph
- ♦ the model companion of the theory of ℵ₀-many irreflexive, symmetric binary relations

Trivial definable closure and $I(\vartheta)$

A criterion for existence of an ergodic model

Recall the model-theoretic notion of trivial definable closure for a structure. We extend this notion to $\mathscr{L}_{\omega_1\omega}$ -sentences.

An $\mathscr{L}_{\omega_1\omega}(L)$ -sentence ϑ has **trivial definable closure** when, for any countable fragment F of $\mathscr{L}_{\omega_1\omega}$ and complete F-theory Σ such that $\vartheta \in \Sigma \subseteq F$, there is no formula in F that uniformly witnesses non-trivial $\mathscr{L}_{\omega_1\omega}(L)$ -definable closure in all models of Σ , i.e., there is no formula $\varphi(\bar{x}, y)$ in F, with $|\bar{x}| := n$, such that

$$\Sigma \models \exists \bar{x} \exists^{=1} y \left(\left(\bigwedge_{i=1}^{n} y \neq x_{i} \right) \land \varphi(\bar{x}, y) \right).$$

Theorem (Ackerman–Freer–P. 2017). For any $\mathscr{L}_{\omega_1\omega}(L)$ -sentence ϑ , $I(\vartheta) > 0$ if and only if ϑ has trivial definable closure.

Proper ergodicity and $I(\vartheta)$

A sufficient condition for attaining the maximum

An ergodic structure μ is **properly ergodic** when μ is not an ergodic model of any Scott sentence, i.e., when $\vartheta \notin Th(\mu)$ holds for any Scott sentence ϑ .

- * A properly ergodic structure on Str_L assigns measure 0 to every isomorphism class of structures in Str_L .
- * If μ is an ergodic structure that is not properly ergodic, then Th(μ) contains exactly one Scott sentence, to which it is equivalent.

Theorem (Ackerman–Freer–Kruckman–P. 2017). If an $\mathscr{L}_{\omega_1\omega}(L)$ -sentence ϑ has a properly ergodic model, then $I(\vartheta) = 2^{\aleph_0}$.

Pop Quiz, Redux. What is the value of $I(\vartheta)$ when ϑ is:

- ♦ a Scott sentence for (\mathbb{Z}, \leq)
- ♦ a Scott sentence for (\mathbb{Q}, \leq)
- ◊ a Scott sentence for the Rado graph
- $\diamond~$ the model companion of the theory of $\aleph_0\text{-many}$ irreflexive, symmetric binary relations

Pop Quiz, Redux. What is the value of $I(\vartheta)$ when ϑ is:

- ◇ a Scott sentence for (\mathbb{Z}, \leq)
- ♦ a Scott sentence for (\mathbb{Q}, \leq)
- a Scott sentence for the Rado graph
- $\diamond\,$ the model companion of the theory of \aleph_0 -many irreflexive, symmetric binary relations

Extra Credit. What is the value of $I(\vartheta)$ when ϑ is:

- $\diamond~$ a disjunction of Scott sentences for ($\mathbb{Z},\leq)$ and for the pure set $\mathbb N$
- ♦ a disjunction of Scott sentences for (\mathbb{Q}, \leq) and for the pure set \mathbb{N}
- $\diamond\,$ a disjunction of Scott sentences for the Rado graph and for the pure set $\mathbb N$

Highly homogeneous structures

High homogeneity

The key property in the classification of $I(\vartheta)$

A structure \mathcal{M} is **highly homogeneous** when, for any finite subsets *A*, *B* of \mathcal{M} with |A| = |B|, there is an automorphism σ of \mathcal{M} such that $\sigma[A] = B$.

 ★ Any highly homogeneous structure is ℵ₀-categorical, by the Engeler– Ryll-Nardzewski–Svenonius Theorem.

Key Observation. The following $\mathscr{L}_{\omega_1\omega}(L)$ -sentence defines high homogeneity among countable *L*-structures:

$$\mathfrak{HSS} := \bigwedge_{n < \omega} \left(\forall x_0, \dots, x_{n-1}, y_0, \dots, y_{n-1} \big(x_i \text{ distinct, } y_i \text{ distinct } \rightarrow \right)$$
$$\bigvee_{\sigma \in S_n} \bigwedge_{\psi \in \mathscr{L}_{\omega\omega}(L)} \psi(x_0, \dots, x_{n-1}) \leftrightarrow \psi(y_{\sigma(0)}, \dots, y_{\sigma(n-1)}) \right)$$

Peter Cameron's classification

The highly homogeneous structures are essentially the reducts of (\mathbb{Q} , <)

Theorem. (Cameron, 1976) Up to isomorphism, the countably infinite highly homogeneous structures are the reducts of (\mathbb{Q}, \leq) , namely, the structures interdefinable with one of the following:

- ◊ Q as a pure set
- ♦ (\mathbb{Q} , ≤), the rational linear order
- $\diamond~(\mathbb{Q},B),$ where B is the ternary **betweenness** relation
- (\mathbb{Q}, K) , where *B* is the ternary **circular order** relation
- $\diamond~(\mathbb{Q},S),$ where S is the quaternary **separation** relation

High homogeneity and $I(\vartheta)$ for ϑ a Scott sentence

A unique ergodicity phenomenon

High homogeneity characterises unique ergodicity for Scott sentences.

Theorem (Ackerman–Freer–Kwiatkowska–P. 2016). Let $\mathcal{M} \in \text{Str}_L$ and ϑ a Scott sentence for \mathcal{M} . Exactly one of the following holds.

- ♦ ϑ has non-trivial definable closure, in which case $I(\vartheta) = 0$
- ♦ \mathcal{M} is highly homogeneous, in which case $I(\vartheta) = 1$

 $\diamond I(\vartheta) = 2^{\aleph_0}$

High homogeneity and $I(\vartheta)$ for arbitrary ϑ

Recall the $\mathscr{L}_{\omega_1\omega}(L)$ -sentence $\mathfrak{H}\mathfrak{H}$: A structure $\mathscr{M} \in \operatorname{Str}_L$ is highly homogeneous if and only if $\mathscr{M} \models \mathfrak{H}\mathfrak{H}$.

Proposition (Combining previously cited results of Ackerman–Freer– Kruckman–Kwiatkowska–P.). Let ϑ be an $\mathscr{L}_{\omega_1\omega}(L)$ -sentence.

- ♦ If $\vartheta \land \neg \mathfrak{H}\mathfrak{H}$ has trivial definable closure, then $I(\vartheta) = 2^{\aleph_0}$.
- ♦ If $\vartheta \land \neg \mathfrak{H} \mathfrak{H}$ has non-trivial definable closure and $\vartheta \land \mathfrak{H} \mathfrak{H}$ is equivalent to the disjunction of Scott sentences for *n*-many non-isomorphic highly homogeneous structures, where $1 \le n \le \aleph_0$, then $I(\vartheta) = n$.

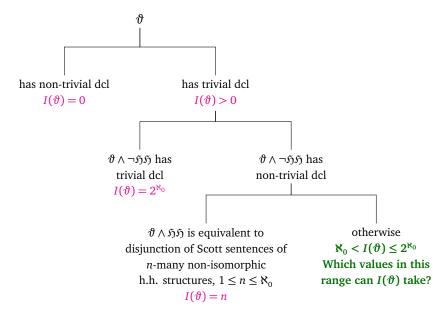
The converse holds as well.

Extra Credit, Redux. What is the value of $I(\vartheta)$ when ϑ is:

- $\diamond~$ a disjunction of Scott sentences for (Z, \leq) and for the pure set $\mathbb N$
- $\diamond~$ a disjunction of Scott sentences for ($\mathbb{Q},\leq)$ and for the pure set $\mathbb N$
- $\diamond~$ a disjunction of Scott sentences for the Rado graph and for the pure set $\mathbb N$

The range of the spectrum function

What values can $I(\vartheta)$ take?



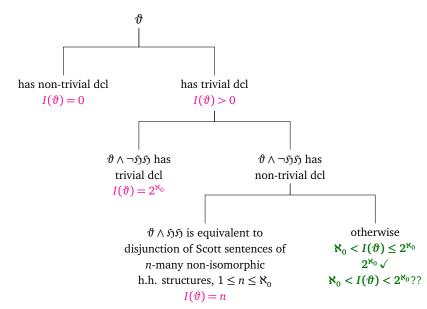
Example: $\xi \wedge \neg \mathfrak{H}\mathfrak{H}$ has non-trivial dcl and $I(\xi) = 2^{\aleph_0}$

 $L = \{U_i : i < \omega\}$, where each U_i is a unary relation symbol. Define

$$\xi := \bigwedge_{i < \omega} \left((\forall x) U_i(x) \lor (\forall x) \neg U_i(x) \right)$$

- * Every countable model of ξ is interdefinable with the pure set \mathbb{N} , hence is highly homogeneous. Thus $\xi \wedge \neg \mathfrak{H}\mathfrak{H}$ vacuously has non-trivial definable closure.
- * There are 2^{\aleph_0} -many non-isomorphic highly homogeneous models of ξ in Str_L. For each such model \mathcal{M} , there is a unique ergodic model of any Scott sentence for \mathcal{M} . Hence $I(\xi) = 2^{\aleph_0}$.

What values can $I(\vartheta)$ take?



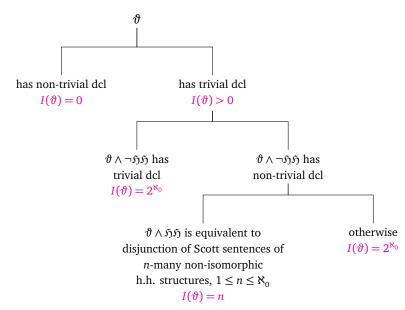
Can $\vartheta \wedge \neg \mathfrak{H} \mathfrak{H}$ have non-trivial dcl and $\aleph_0 < I(\vartheta) < 2^{\aleph_0}$? Answer: No, by Silver's Dichotomy

Proposition. Suppose an $\mathscr{L}_{\omega_1\omega}(L)$ -sentence ϑ has fewer than 2^{\aleph_0} -many highly homogeneous models in Str_L , up to isomorphism. Then ϑ has only countably many highly homogeneous models in Str_L , up to isomorphism.

Proof. Let ~ be the equivalence relation on Str_L given by: $\mathcal{M} \sim \mathcal{N}$ if and only if

Then \sim is a Borel equivalence relation on Str_L. By Silver's Dichotomy, Str_L / \sim is either countable or of size 2^{\aleph_0} . The result follows from hypothesis, as any highly homogeneous structure is \aleph_0 -categorical.

What values can $I(\vartheta)$ take?



A classification for $I(\vartheta)$

Theorem (Ackerman–Freer–Kruckman–Kwiatkowska–P. 2022+). For an $\mathscr{L}_{\omega,\omega}(L)$ -sentence ϑ , exactly one of the following holds.

 \diamond_0 𝔅 has non-trivial definable closure. In this case, *I*(𝔅) = 0.

 \diamond_n ϑ ∧ ¬ℌℌ has non-trivial definable closure, and there are sentences ρ_i , *i* < *n*, where 1 ≤ *n* ≤ ℵ₀, such that the ρ_i are Scott sentences of non-isomorphic highly homogeneous structures in Str_{*L*} and

$$\models (\vartheta \land \mathfrak{H}) \leftrightarrow (\bigvee_{i < n} \rho_i).$$

In this case, $I(\vartheta) = n$.

 $\diamond_{2^{\aleph_0}} I(\vartheta) = 2^{\aleph_0}.$

Analogue of Vaught Conjecture for ergodic structures

Corollary. (Ackerman–Freer–Kruckman–Kwiatkowska–P. 2022+) If an $\mathscr{L}_{\omega_1\omega}(L)$ -sentence has fewer than 2^{\aleph_0} -many ergodic models, then it has countably many ergodic models.

This answers a question asked by C. Freer at the Vaught's Conjecture Workshop held in Berkeley in June, 2015. **Two questions**

Q. Range of the spectrum function in a finite language?

The maximal range of the spectrum function is $\{0, 1, \dots, \aleph_0, 2^{\aleph_0}\}$.

Observe:

- * The values 0, 2^{\aleph_0} can each be achieved in a language with a single relation symbol.
- ★ The values $n, 1 \le n \le \aleph_0$, can each be respectively achieved in a language with *n* relation symbols.
- **Q.** Can the value \aleph_0 be achieved in some finite language?

Observe also:

- * The maximal range can be achieved in a countably infinite language.
- Q. Can the maximal range be achieved in some finite language?

Thank you!