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Dynamics and orbit equivalence relations
Given a continuous action Gy X of a Polish group G on Polish space X
we let EG

X be the associated orbit equivalence relation:

xEG
Xx

′ ⇐⇒ ∃g ∈ G (g · x = x′).

Question. Which topological/dynamical properties of G can be recovered
from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation (X,EG
X):

(1) Its position within the Borel reduction hierarchy.

We say that (X,E) is Borel reducible to (Y, F ) and we write E ≤B F if
there is a Borel map f : X → Y with xEx′ ⇐⇒ f(x)Ff(x′).

(2) Its strong ergodic properties.

We say that (X,E) is strongly ergodic with respect to (Y, F ) if for every
Borel f : X → Y with xEx′ =⇒ f(x)Ff(x′) there is a comeager C ⊆ X
so that for all x, x′ ∈ C we have that f(x)Ff(x′).
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Dynamics and orbit equivalence relations

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

1 G is compact;

2 For all Gy X we have that EG
X is smooth, i.e., (X,EG

X) ≤B (R,=).

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

1 G is CLI;

2 For all Gy X we have that EG
X is classifiable by CLI-actions, i.e.,

(X,EG
X) ≤B (Y,EH

Y ) where H y Y is an action of a CLI group H.

Question (Kechris)

Let G be a Polish group which is not locally-compact. Does there exist
some action Gy X so that (X,EG

X) is not essentially countable?
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Polish permutation groups
Let Sym(N) be the Polish group of all bijections g : N→ N endowed with
the pointwise convergence topology.

A Polish permutation group P is any closed subgroup of Sym(N).
Such P comes together with an action P y N with (g, n) 7→ g(n).

The Bernoulli shift of P is the induced action on RN:

g · (xn : n ∈ N) = (xg−1(n) : n ∈ N).

Notation. We denote by E(P ) the orbit equivalence relation of P y RN.
We denote by Einj(P ) the restriction of E(P ) to the P -invariant subset
Inj(N,R) of RN, consisting of all injective sequences.

Heuristic. Einj(P ) remembers topological/dynamical properties of P .

Theorem (Kechris, Malicki, P., Zielinski)

If P is not locally compact then Einj(P ) is not essentially countable.
Similarly for when P is non-compact or non-CLI.
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Algebraic dimension

Let P be a Polish permutation group.
For every F ⊆ N we have the pointwise stabilizer:

PF := {g ∈ P : g(a) = a for all a ∈ F}

The algebraic closure of A ⊆ N w.r.t to P is the set [A]P ⊆ N with:

[A]P := {b ∈ N : the orbit PF · b is finite, for some finite F ⊆ A}

The assignment P(N)→ P(N) with A 7→ [A]P is a closure operator:
1 A ⊆ [A]P ;
2 A ⊆ B =⇒ [A]P ⊆ [B]P ;
3 [[A]P ]P = [A]P

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , if such
n exists. Otherwise, we write dim(P ) =∞.
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Permutation groups of finite algebraic dimension

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , where

[A]P := {b ∈ N : the orbit PA · b is finite}

Examples.
(1) Let T4 be the infinite 4-regular tree:

Then dim(Aut(T4)) = 1
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Permutation groups of finite algebraic dimension

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , where

[A]P := {b ∈ N : the orbit PA · b is finite}

Examples.
(2) Let n× T4 be the forest consisting of n-many infinite 4-regular trees:

Then dim(Aut(n× T4)) = n
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Permutation groups of finite algebraic dimension

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , where

[A]P := {b ∈ N : the orbit PA · b is finite}

Examples.
(3) Let Qn be the n-dimensional Q-vector space, then

dim(Aut(Qn)) = n

Remark. In examples (1),(2),(3) the permutation group P happens to be
locally-compact.

This is a consequence of the fact that in all these examples the closure
operator A 7→ [A]P additionally satisfied the exchange property:

b ∈ [A ∪ {a}]P \ [A]P =⇒ a ∈ [A ∪ {b}]P ,
forming this way a pre-geometry.

There exist non-locally compact P with dim(P ) <∞.

Aristotelis Panagiotopoulos (CMU) Strong ergodicity and algebraic dimension May 20, 2022 8 / 18



Permutation groups of finite algebraic dimension

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , where

[A]P := {b ∈ N : the orbit PA · b is finite}

Examples.
(3) Let Qn be the n-dimensional Q-vector space, then

dim(Aut(Qn)) = n

Remark. In examples (1),(2),(3) the permutation group P happens to be
locally-compact.

This is a consequence of the fact that in all these examples the closure
operator A 7→ [A]P additionally satisfied the exchange property:

b ∈ [A ∪ {a}]P \ [A]P =⇒ a ∈ [A ∪ {b}]P ,
forming this way a pre-geometry.

There exist non-locally compact P with dim(P ) <∞.

Aristotelis Panagiotopoulos (CMU) Strong ergodicity and algebraic dimension May 20, 2022 8 / 18



Permutation groups of finite algebraic dimension

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , where

[A]P := {b ∈ N : the orbit PA · b is finite}

Examples.
(3) Let Qn be the n-dimensional Q-vector space, then

dim(Aut(Qn)) = n

Remark. In examples (1),(2),(3) the permutation group P happens to be
locally-compact.

This is a consequence of the fact that in all these examples the closure
operator A 7→ [A]P additionally satisfied the exchange property:

b ∈ [A ∪ {a}]P \ [A]P =⇒ a ∈ [A ∪ {b}]P ,
forming this way a pre-geometry.

There exist non-locally compact P with dim(P ) <∞.

Aristotelis Panagiotopoulos (CMU) Strong ergodicity and algebraic dimension May 20, 2022 8 / 18



Permutation groups of finite algebraic dimension

Definition

The algebraic dimension dim(P ) of P is the smallest n ∈ N so that for
all A ⊆ N with |A| = n+ 1, there is a ∈ A so that a ∈ [A \ {a}]P , where

[A]P := {b ∈ N : the orbit PA · b is finite}

Examples.
(3) Let Qn be the n-dimensional Q-vector space, then

dim(Aut(Qn)) = n

Remark. In examples (1),(2),(3) the permutation group P happens to be
locally-compact.

This is a consequence of the fact that in all these examples the closure
operator A 7→ [A]P additionally satisfied the exchange property:

b ∈ [A ∪ {a}]P \ [A]P =⇒ a ∈ [A ∪ {b}]P ,
forming this way a pre-geometry.

There exist non-locally compact P with dim(P ) <∞.

Aristotelis Panagiotopoulos (CMU) Strong ergodicity and algebraic dimension May 20, 2022 8 / 18



Bernoulli shifts and algebraic dimension
Let Q be a Polish permutation group. Recall the orbit equivalence relation:

Einj(Q), induced on the injective part of the Bernoulli shift Qy Inj(N,R).

Question. How much does Einj(Q) remember of dim(Q)?

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let n ∈ N. Assume that:

1 dim(Q) ≤ n;

2 P is locally-finite and (n+ 1)–free.

Then, Einj(P ) is strongly ergodic against Einj(Q). So, Einj(P ) 6≤B Einj(Q).

• P is locally-finite if for all finite A ⊆ N we have that [A]P is finite.

• P is (n+ 1)–free if for all finite A ⊆ N there are g0, g1, . . . , gn ∈ P so
that for all i ≤ n we have that [giA]P and [

⋃
j:j 6=i gjA]P are disjoint.
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Some examples from Baldwin-Koerwien-Laskowski
L2 = {f0, f1, f2, . . .} consists of a sequence of 2-ary function symbols.
Let M2 be the Fräıssé limit of the class K2 of all finite L-structures A s.t.

1 for all a0, a1 in A and cofinitely many n ∈ N, fn(a0, a1) = a0.
2 for all a0, a1, a2 in A there is n ∈ N and i ∈ {0, 1, 2} so that ai is the

image of {a0, a1, a2} \ {ai} under fn.

Then P2 := Aut(M2) is 2-dimensional, locally-finite, 2-free.

Similarly, for every n ≥ 2 we have Ln, consisting of n-ary functions, and
the corresponding Fräıssé class Kn whose Fräıssé limit satisfies:

Then Pn := Aut(Mn) is n-dimensional, locally-finite, n-free.

Theorem. (Kruckman, P.) If m 6= n, then Einj(Pm)) and Einj(Pn)) are
incomparable under ∗-reductions.

Corollary of our Main Theorem. (P., Shani) If m � n, then Einj(Pn)) is
strongly ergodic w.r.t. Einj(Pm)). In particular, we have that:

Einj(P2)) �B Einj(P3)) �B Einj(P4)) �B · · ·
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Some examples from Baldwin-Koerwien-Laskowski
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Relationship with pinned cardinality
Let (X,E) be an equivalence relation, P be a poset, and τ be a P-name.

• (P, τ) is an E-pin, if P× P forces that τlEτr.
• An E-pin (P, τ) is trivial if there is x ∈ X so that P  x̌Eτ
• E is pinned if all E-pins are trivial.

Example. Let Einj(Sym(N)) be the injective part of Sym(N) y RN:
(xn : n ∈ N)Einj(Sym(N))(yn : n ∈ N) ⇐⇒ {xn : n ∈ N} = {yn : n ∈ N}
Then Einj(Sym(N)) is unpinned. Take P := Coll(N,R).

Question. (Kechris) Is Einj(Sym(N)) the ≤B-least unpinned E.R. ?

Zapletal exhibited unpinned: F1 �B F2 �B

ℵ1︷︸︸︷
· · · �B Einj(Sym(N))

The proof uses the theory of pinned cardinality.
The minimum of the above sequence and the minimum of our sequence:
Einj(P2)) �B Einj(P3)) �B Einj(P4)) �B · · · have pinned cardinality ℵ1.

Corollary. (P., Shani) Einj(P2)) �B F1.
Question. What about the converse? Is there a nice basis for the class of
unpinned equivalence relations under Borel reductions?
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Main theorem

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let n ∈ N. Assume that:

1 dim(Q) ≤ n;

2 P is locally-finite and (n+ 1)–free.

Then, Einj(P ) is strongly ergodic against Einj(Q). So, Einj(P ) 6≤B Einj(Q).

The proof employs/builds on symmetric model techniques.
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The dictionary

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively
and x 7→ N x and y 7→ My be classifications by countable structures of E
and F respectively. Then, the following are equivalent.

1 For every Borel homomorphism f : (X0, E)→ (Y, F ), where X0 ⊆ X
is non-meager, f maps a non-meager set into a single F -class;

2 If x ∈ X is Cohen-generic over V and M is a potential F -invariant in
V (N x), definable from N x and parameters in V , then M∈ V .
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The basic Cohen model

Recall Cohen’s proof that ZF + ¬AC is consistent.

Let P be the forcing which adds a countable sequence of Cohen reals:

(xGn : n ∈ N)

Between V and V [G] there is the intermediate “symmetric model”:

V ({xGn : n ∈ N})

This can be defined in a number of equivalent ways:

it consists of the realization of all symmetric names (Sym(N) y P);

it is the smallest ZF-extension of V in V [G] containing {xGn : n ∈ N}.

Theorem. (Cohen) In V ({xGn }) there is no injection N→ {xGn : n ∈ N}

Lemma. (Existence of supports) For any S ∈ V ({xGn }) with S ⊆ V there
is a finite F ⊆ {xGn : n ∈ N} so that S ∈ V [F ].
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Symmetric models from permutation groups
In the basic Cohen model the action Sym(N) y P gave:

(xGn : n ∈ N) 7→ {xGn : n ∈ N}

If P is a Polish permutation group, then the Bernoulli shift action
P y RN is essentially P y P, and the generic (xGn : n ∈ N) is injective.
But P = Aut(N ) for some countable structure N on N. We have

(xGn : n ∈ N) 7→ NG

where NG is the structure N copied on {xGn : n ∈ N}.
We have the intermediate symmetric model V ⊆ V (NG) ⊆ V [G]:

it consists of the realization of all symmetric names (P y P);

it is the smallest ZF-extension of V in V [G] containing NG.

Lemma ((P., Shani) Existence of supports)

If P is a locally-finite Polish permutation group, then for all S ∈ V (NG)
with S ⊆ V there is a finite F ⊆ {xGn : n ∈ N} so that S ∈ V [F ].
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To conclude:

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively
and x 7→ N x and y 7→ My be classifications by countable structures of E
and F respectively. Then, the following are equivalent.

1 For every Borel homomorphism f : (X0, E)→ (Y, F ), where X0 ⊆ X
is non-meager, f maps a non-meager set into a single F -class;

2 If x ∈ X is Cohen-generic over V and M is a potential F -invariant in
V (N x), definable from N x and parameters in V , then M∈ V .

In the case of the Bernoulli shifts, we have that P = Aut(N ) and
Q = Aut(M) for countable structures M and N . So we have that:

P y Inj(N,R) is classified by (xn : n ∈ N) 7→ “N on {xn : n ∈ N}”

Qy Inj(N,R) is classified by (yn : n ∈ N) 7→ “M on {yn : n ∈ N}”
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Thαnk you!
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