Strong ergodicity phenomena for Bernoulli shifts of bounded algebraic dimension

Aristotelis Panagiotopoulos

joint with Assaf Shani

Carnegie Mellon University

May 20, 2022

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E_X^G be the associated **orbit equivalence relation**:

$$xE_X^Gx'\iff \exists g\in G\ (g\cdot x=x').$$

Question. Which topological/dynamical properties of *G* can be recovered from its orbit equivalence relations?

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E_X^G be the associated **orbit equivalence relation**:

$$xE_X^G x' \iff \exists g \in G \ (g \cdot x = x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation (X, E_X^G) :

(1) Its position within the Borel reduction hierarchy.

We say that (X, E) is **Borel reducible** to (Y, F) and we write $E \leq_B F$ if there is a Borel map $f: X \to Y$ with $xEx' \iff f(x)Ff(x')$.

Given a continuous action $G \curvearrowright X$ of a Polish group G on Polish space X we let E_X^G be the associated **orbit equivalence relation**:

$$xE_X^Gx'\iff \exists g\in G\;(g\cdot x=x').$$

Question. Which topological/dynamical properties of G can be recovered from its orbit equivalence relations?

Ways to measure the complexity of an orbit equivalence relation (X, E_X^G) :

(1) Its position within the Borel reduction hierarchy.

We say that (X, E) is **Borel reducible** to (Y, F) and we write $E \leq_B F$ if there is a Borel map $f: X \to Y$ with $xEx' \iff f(x)Ff(x')$.

(2) Its strong ergodic properties.

We say that (X, E) is **strongly ergodic** with respect to (Y, F) if for every Borel $f: X \to Y$ with $xEx' \implies f(x)Ff(x')$ there is a comeager $C \subseteq X$ so that for all $x, x' \in C$ we have that f(x)Ff(x').

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

G is compact;

2 For all $G \curvearrowright X$ we have that E_X^G is smooth, i.e., $(X, E_X^G) \leq_B (\mathbb{R}, =)$.

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

- 1 G is compact;
- 2) For all $G \curvearrowright X$ we have that E_X^G is smooth, i.e., $(X, E_X^G) \leq_B (\mathbb{R}, =)$.

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

- (1) G is CLI;
- ② For all $G \cap X$ we have that E_X^G is classifiable by CLI-actions, i.e., $(X, E_X^G) \leq_B (Y, E_Y^H)$ where $H \cap Y$ is an action of a CLI group H.

Theorem (Solecki)

Let G be a Polish group. Then the following are equivalent:

- G is compact;
- ② For all $G \curvearrowright X$ we have that E_X^G is smooth, i.e., $(X, E_X^G) \leq_B (\mathbb{R}, =)$.

Theorem (Thompson)

Let G be a Polish group. Then the following are equivalent:

- $\textcircled{1} G \text{ is } \mathbf{CLI};$
- ② For all $G \cap X$ we have that E_X^G is classifiable by CLI-actions, i.e., $(X, E_X^G) \leq_B (Y, E_Y^H)$ where $H \cap Y$ is an action of a CLI group H.

Question (Kechris)

Let G be a Polish group which is **not locally-compact**. Does there exist some action $G \curvearrowright X$ so that (X, E_X^G) is not **essentially countable**?

Let $Sym(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $Sym(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

Let $Sym(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $Sym(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Let $Sym(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $Sym(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Notation. We denote by E(P) the orbit equivalence relation of $P \curvearrowright \mathbb{R}^{\mathbb{N}}$. We denote by $E_{inj}(P)$ the restriction of E(P) to the *P*-invariant subset $Inj(\mathbb{N},\mathbb{R})$ of $\mathbb{R}^{\mathbb{N}}$, consisting of all injective sequences.

Let $Sym(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $Sym(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Notation. We denote by E(P) the orbit equivalence relation of $P \curvearrowright \mathbb{R}^{\mathbb{N}}$. We denote by $E_{inj}(P)$ the restriction of E(P) to the *P*-invariant subset $Inj(\mathbb{N},\mathbb{R})$ of $\mathbb{R}^{\mathbb{N}}$, consisting of all injective sequences.

Heuristic. $E_{inj}(P)$ remembers topological/dynamical properties of P.

Let $Sym(\mathbb{N})$ be the Polish group of all bijections $g: \mathbb{N} \to \mathbb{N}$ endowed with the pointwise convergence topology.

A **Polish permutation group** P is any closed subgroup of $Sym(\mathbb{N})$. Such P comes together with an action $P \curvearrowright \mathbb{N}$ with $(g, n) \mapsto g(n)$.

The **Bernoulli shift** of P is the induced action on $\mathbb{R}^{\mathbb{N}}$:

$$g \cdot (x_n \colon n \in \mathbb{N}) = (x_{g^{-1}(n)} \colon n \in \mathbb{N}).$$

Notation. We denote by E(P) the orbit equivalence relation of $P \curvearrowright \mathbb{R}^{\mathbb{N}}$. We denote by $E_{inj}(P)$ the restriction of E(P) to the *P*-invariant subset $Inj(\mathbb{N},\mathbb{R})$ of $\mathbb{R}^{\mathbb{N}}$, consisting of all injective sequences.

Heuristic. $E_{inj}(P)$ remembers topological/dynamical properties of P.

Theorem (Kechris, Malicki, P., Zielinski)

If P is **not locally compact** then $E_{inj}(P)$ is not essentially countable. Similarly for when P is non-compact or non-CLI.

Let P be a Polish permutation group.

For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{g \in P \colon g(a) = a \text{ for all } a \in F\}$$

Let P be a Polish permutation group.

For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{g \in P \colon g(a) = a \text{ for all } a \in F\}$$

The algebraic closure of $A \subseteq \mathbb{N}$ w.r.t to P is the set $[A]_P \subseteq \mathbb{N}$ with:

 $[A]_P := \{b \in \mathbb{N} : \text{ the orbit } P_F \cdot b \text{ is finite, for some finite } F \subseteq A\}$

Let P be a Polish permutation group.

For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{g \in P \colon g(a) = a \text{ for all } a \in F\}$$

The algebraic closure of $A \subseteq \mathbb{N}$ w.r.t to P is the set $[A]_P \subseteq \mathbb{N}$ with:

 $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_F \cdot b \text{ is finite, for some finite } F \subseteq A\}$

The assignment $\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ with $A \mapsto [A]_P$ is a closure operator: (1) $A \subseteq [A]_P$; (2) $A \subseteq B \implies [A]_P \subseteq [B]_P$; (3) $[[A]_P]_P = [A]_P$

Let P be a Polish permutation group.

For every $F \subseteq \mathbb{N}$ we have the **pointwise stabilizer**:

$$P_F := \{g \in P \colon g(a) = a \text{ for all } a \in F\}$$

The algebraic closure of $A \subseteq \mathbb{N}$ w.r.t to P is the set $[A]_P \subseteq \mathbb{N}$ with:

 $[A]_P := \{b \in \mathbb{N} \colon \text{ the orbit } P_F \cdot b \text{ is finite, for some finite } F \subseteq A\}$

The assignment $\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ with $A \mapsto [A]_P$ is a **closure operator**:

- $a \subseteq B \implies [A]_P \subseteq [B]_P;$
- 3 $[[A]_P]_P = [A]_P$

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, if such n exists. Otherwise, we write $\dim(P) = \infty$.

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N}: \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(1) Let T_4 be the infinite 4-regular tree:

Then $\dim(\operatorname{Aut}(T_4)) = 1$

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N}: \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(2) Let $n \times T_4$ be the forest consisting of *n*-many infinite 4-regular trees:

Then $\dim(\operatorname{Aut}(n \times T_4)) = n$

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N}: \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(3) Let \mathbb{Q}^n be the n-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n)) = n$

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N}: \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(3) Let \mathbb{Q}^n be the *n*-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n)) = n$

Remark. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N}: \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(3) Let
$$\mathbb{Q}^n$$
 be the *n*-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n)) = n$

Remark. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

This is a consequence of the fact that in all these examples the closure operator $A \mapsto [A]_P$ additionally satisfied the **exchange property**: $b \in [A \cup \{a\}]_P \setminus [A]_P \implies a \in [A \cup \{b\}]_P,$

forming this way a *pre-geometry*.

Definition

The algebraic dimension $\dim(P)$ of P is the smallest $n \in \mathbb{N}$ so that for all $A \subseteq \mathbb{N}$ with |A| = n + 1, there is $a \in A$ so that $a \in [A \setminus \{a\}]_P$, where $[A]_P := \{b \in \mathbb{N}: \text{ the orbit } P_A \cdot b \text{ is finite}\}$

Examples.

(3) Let
$$\mathbb{Q}^n$$
 be the *n*-dimensional \mathbb{Q} -vector space, then $\dim(\operatorname{Aut}(\mathbb{Q}^n)) = n$

Remark. In examples (1),(2),(3) the permutation group P happens to be locally-compact.

This is a consequence of the fact that in all these examples the closure operator $A \mapsto [A]_P$ additionally satisfied the **exchange property**: $b \in [A \cup \{a\}]_P \setminus [A]_P \implies a \in [A \cup \{b\}]_P,$

forming this way a *pre-geometry*.

There exist non-locally compact P with $\dim(P) < \infty$.

Bernoulli shifts and algebraic dimension

Let Q be a Polish permutation group. Recall the orbit equivalence relation:

 $E_{inj}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright Inj(\mathbb{N}, \mathbb{R})$.

Question. How much does $E_{inj}(Q)$ remember of $\dim(Q)$?

Bernoulli shifts and algebraic dimension

Let Q be a Polish permutation group. Recall the orbit equivalence relation:

 $E_{\mathrm{inj}}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright \mathrm{Inj}(\mathbb{N},\mathbb{R})$.

Question. How much does $E_{inj}(Q)$ remember of $\dim(Q)$?

Theorem (P., Shani)

Let P and Q be Polish permutation groups and let $n \in \mathbb{N}$. Assume that: $\dim(Q) \leq n$;

2 *P* is locally-finite and (n + 1)-free.

Then, $E_{inj}(P)$ is strongly ergodic against $E_{inj}(Q)$. So, $E_{inj}(P) \not\leq_B E_{inj}(Q)$.

Bernoulli shifts and algebraic dimension

Let ${\boldsymbol{Q}}$ be a Polish permutation group. Recall the orbit equivalence relation:

 $E_{\mathrm{inj}}(Q)$, induced on the injective part of the Bernoulli shift $Q \curvearrowright \mathrm{Inj}(\mathbb{N},\mathbb{R})$.

Question. How much does $E_{inj}(Q)$ remember of dim(Q)?

Theorem (P., Shani)

Let *P* and *Q* be Polish permutation groups and let $n \in \mathbb{N}$. Assume that: $\dim(Q) \leq n$;

2 P is locally-finite and (n+1)-free.

Then, $E_{inj}(P)$ is strongly ergodic against $E_{inj}(Q)$. So, $E_{inj}(P) \not\leq_B E_{inj}(Q)$.

• P is **locally-finite** if for all finite $A \subseteq \mathbb{N}$ we have that $[A]_P$ is finite.

• P is (n + 1)-free if for all finite $A \subseteq \mathbb{N}$ there are $g_0, g_1, \ldots, g_n \in P$ so that for all $i \leq n$ we have that $[g_i A]_P$ and $[\bigcup_{j:j \neq i} g_j A]_P$ are disjoint.

 $\mathcal{L}_{2} = \{f_{0}, f_{1}, f_{2}, \ldots\}$ consists of a sequence of 2-ary function symbols. Let \mathbb{M}_{2} be the Fraïssé limit of the class \mathcal{K}_{2} of all finite \mathcal{L} -structures \mathbb{A} s.t.

- (1) for all a_0, a_1 in A and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- 2 for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := \operatorname{Aut}(\mathbb{M}_2)$ is 2-dimensional, locally-finite, 2-free.

 $\mathcal{L}_{2} = \{f_{0}, f_{1}, f_{2}, \ldots\}$ consists of a sequence of 2-ary function symbols. Let \mathbb{M}_{2} be the Fraïssé limit of the class \mathcal{K}_{2} of all finite \mathcal{L} -structures \mathbb{A} s.t.

- **(1)** for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- 2 for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := \operatorname{Aut}(\mathbb{M}_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \ge 2$ we have \mathcal{L}_n , consisting of *n*-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := \operatorname{Aut}(\mathbb{M}_n)$ is *n*-dimensional, locally-finite, *n*-free.

 $\mathcal{L}_{2} = \{f_{0}, f_{1}, f_{2}, \ldots\}$ consists of a sequence of 2-ary function symbols. Let \mathbb{M}_{2} be the Fraïssé limit of the class \mathcal{K}_{2} of all finite \mathcal{L} -structures \mathbb{A} s.t.

- (1) for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- 2 for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := \operatorname{Aut}(\mathbb{M}_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \ge 2$ we have \mathcal{L}_n , consisting of *n*-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := \operatorname{Aut}(\mathbb{M}_n)$ is *n*-dimensional, locally-finite, *n*-free.

Theorem. (Kruckman, P.) If $m \neq n$, then $E_{inj}(P_m)$) and $E_{inj}(P_n)$) are incomparable under *-reductions.

 $\mathcal{L}_{2} = \{f_{0}, f_{1}, f_{2}, \ldots\}$ consists of a sequence of 2-ary function symbols. Let \mathbb{M}_{2} be the Fraïssé limit of the class \mathcal{K}_{2} of all finite \mathcal{L} -structures \mathbb{A} s.t.

- **(**) for all a_0, a_1 in \mathbb{A} and cofinitely many $n \in \mathbb{N}$, $f_n(a_0, a_1) = a_0$.
- 2 for all a_0, a_1, a_2 in \mathbb{A} there is $n \in \mathbb{N}$ and $i \in \{0, 1, 2\}$ so that a_i is the image of $\{a_0, a_1, a_2\} \setminus \{a_i\}$ under f_n .

Then $P_2 := Aut(\mathbb{M}_2)$ is 2-dimensional, locally-finite, 2-free.

Similarly, for every $n \ge 2$ we have \mathcal{L}_n , consisting of *n*-ary functions, and the corresponding Fraïssé class \mathcal{K}_n whose Fraïssé limit satisfies:

Then $P_n := \operatorname{Aut}(\mathbb{M}_n)$ is *n*-dimensional, locally-finite, *n*-free.

Theorem. (Kruckman, P.) If $m \neq n$, then $E_{inj}(P_m)$) and $E_{inj}(P_n)$) are incomparable under *-reductions.

Corollary of our Main Theorem. (P., Shani) If $m \leq n$, then $E_{inj}(P_n)$) is strongly ergodic w.r.t. $E_{inj}(P_m)$). In particular, we have that:

$$E_{\text{inj}}(P_2)) \leq_B E_{\text{inj}}(P_3) \leq_B E_{\text{inj}}(P_4) \leq_B \cdots$$

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P\text{-name}.$

- (\mathbb{P}, τ) is an *E*-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x} E \tau$
- E is **pinned** if all E-pins are trivial.

Example. Let $E_{inj}(Sym(\mathbb{N}))$ be the injective part of $Sym(\mathbb{N}) \curvearrowright \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N})E_{inj}(Sym(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$ Then $E_{inj}(Sym(\mathbb{N}))$ is unpinned. Take $\mathbb{P} := Coll(\mathbb{N}, \mathbb{R})$.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P\text{-name}.$

- (\mathbb{P}, τ) is an *E*-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x} E \tau$
- E is **pinned** if all E-pins are trivial.

Example. Let $E_{inj}(Sym(\mathbb{N}))$ be the injective part of $Sym(\mathbb{N}) \cap \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N})E_{inj}(Sym(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$ Then $E_{inj}(Sym(\mathbb{N}))$ is unpinned. Take $\mathbb{P} := Coll(\mathbb{N}, \mathbb{R})$.

Question. (Kechris) Is $E_{inj}(Sym(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P\text{-name}.$

- (\mathbb{P}, τ) is an *E*-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x} E \tau$
- E is **pinned** if all E-pins are trivial.

Example. Let $E_{inj}(Sym(\mathbb{N}))$ be the injective part of $Sym(\mathbb{N}) \cap \mathbb{R}^{\mathbb{N}}$: $(x_n : n \in \mathbb{N})E_{inj}(Sym(\mathbb{N}))(y_n : n \in \mathbb{N}) \iff \{x_n : n \in \mathbb{N}\} = \{y_n : n \in \mathbb{N}\}$ Then $E_{inj}(Sym(\mathbb{N}))$ is unpinned. Take $\mathbb{P} := Coll(\mathbb{N}, \mathbb{R})$.

Question. (Kechris) Is $E_{inj}(Sym(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

Zapletal exhibited unpinned: $F_1 \leq_B F_2 \leq_B \cdots \leq_B E_{inj}(Sym(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P\text{-name}.$

- (\mathbb{P}, τ) is an *E*-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x} E \tau$
- E is **pinned** if all E-pins are trivial.

Example. Let $E_{inj}(Sym(\mathbb{N}))$ be the injective part of $Sym(\mathbb{N}) \cap \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N})E_{inj}(Sym(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$ Then $E_{inj}(Sym(\mathbb{N}))$ is unpinned. Take $\mathbb{P} := Coll(\mathbb{N}, \mathbb{R})$.

Question. (Kechris) Is $E_{inj}(Sym(\mathbb{N}))$ the \leq_B -least unpinned E.R. ? Zapletal exhibited unpinned: $F_1 \leq_B F_2 \leq_B \underbrace{\sim}_{\dots} \leq_B E_{inj}(Sym(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence: $E_{inj}(P_2) \leq_B E_{inj}(P_3) \leq_B E_{inj}(P_4) \leq_B \cdots$ have pinned cardinality \aleph_1 .

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P\text{-name}.$

- (\mathbb{P}, τ) is an *E*-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x} E \tau$
- E is **pinned** if all E-pins are trivial.

Example. Let $E_{inj}(Sym(\mathbb{N}))$ be the injective part of $Sym(\mathbb{N}) \cap \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N})E_{inj}(Sym(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$ Then $E_{inj}(Sym(\mathbb{N}))$ is unpinned. Take $\mathbb{P} := Coll(\mathbb{N}, \mathbb{R})$.

Question. (Kechris) Is $E_{inj}(Sym(\mathbb{N}))$ the \leq_B -least unpinned E.R. ? Zapletal exhibited unpinned: $F_1 \leq_B F_2 \leq_B \underbrace{\sim}_{\dots} \leq_B E_{inj}(Sym(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence: $E_{inj}(P_2) \leq_B E_{inj}(P_3) \leq_B E_{inj}(P_4) \leq_B \cdots$ have pinned cardinality \aleph_1 . **Corollary**. (P., Shani) $E_{inj}(P_2) \leq_B F_1$.

Let (X,E) be an equivalence relation, $\mathbb P$ be a poset, and τ be a $\mathbb P\text{-name}.$

- (\mathbb{P}, τ) is an *E*-pin, if $\mathbb{P} \times \mathbb{P}$ forces that $\tau_l E \tau_r$.
- An E-pin (\mathbb{P}, τ) is trivial if there is $x \in X$ so that $\mathbb{P} \Vdash \check{x} E \tau$
- E is **pinned** if all E-pins are trivial.

Example. Let $E_{inj}(Sym(\mathbb{N}))$ be the injective part of $Sym(\mathbb{N}) \cap \mathbb{R}^{\mathbb{N}}$: $(x_n \colon n \in \mathbb{N})E_{inj}(Sym(\mathbb{N}))(y_n \colon n \in \mathbb{N}) \iff \{x_n \colon n \in \mathbb{N}\} = \{y_n \colon n \in \mathbb{N}\}$ Then $E_{inj}(Sym(\mathbb{N}))$ is unpinned. Take $\mathbb{P} := Coll(\mathbb{N}, \mathbb{R})$.

Question. (Kechris) Is $E_{inj}(Sym(\mathbb{N}))$ the \leq_B -least unpinned E.R. ?

Zapletal exhibited unpinned: $F_1 \leq_B F_2 \leq_B \cdots \leq_B E_{inj}(Sym(\mathbb{N}))$ The proof uses the theory of pinned cardinality.

The minimum of the above sequence and the minimum of our sequence: $E_{inj}(P_2) \leq_B E_{inj}(P_3) \leq_B E_{inj}(P_4) \leq_B \cdots$ have pinned cardinality \aleph_1 .

Corollary. (P., Shani) $E_{inj}(P_2) \leq_B F_1$.

Question. What about the converse? Is there a nice basis for the class of unpinned equivalence relations under Borel reductions?

Table of Contents

Main theorem

Theorem (P., Shani)

Let *P* and *Q* be Polish permutation groups and let $n \in \mathbb{N}$. Assume that: ① dim(*Q*) $\leq n$;

2 P is locally-finite and (n+1)-free.

Then, $E_{inj}(P)$ is strongly ergodic against $E_{inj}(Q)$. So, $E_{inj}(P) \not\leq_B E_{inj}(Q)$.

Main theorem

Theorem (P., Shani)

Let *P* and *Q* be Polish permutation groups and let $n \in \mathbb{N}$. Assume that: $\dim(Q) \leq n$;

2 P is locally-finite and (n+1)-free.

Then, $E_{inj}(P)$ is strongly ergodic against $E_{inj}(Q)$. So, $E_{inj}(P) \not\leq_B E_{inj}(Q)$.

The proof employs/builds on symmetric model techniques.

The dictionary

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively and $x \mapsto \mathcal{N}^x$ and $y \mapsto \mathcal{M}^y$ be classifications by countable structures of Eand F respectively. Then, the following are equivalent.

- **①** For every Borel homomorphism $f: (X_0, E) \to (Y, F)$, where $X_0 \subseteq X$ is non-meager, f maps a non-meager set into a single F-class;
- 2 If $x \in X$ is Cohen-generic over V and \mathcal{M} is a potential F-invariant in $V(\mathcal{N}^x)$, definable from \mathcal{N}^x and parameters in V, then $\mathcal{M} \in V$.

Recall Cohen's proof that $\mathrm{ZF} + \neg \mathrm{AC}$ is consistent.

Recall Cohen's proof that $ZF + \neg AC$ is consistent. Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

 $(x_n^G \colon n \in \mathbb{N})$

Recall Cohen's proof that $ZF + \neg AC$ is consistent. Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

 $(x_n^G\colon n\in\mathbb{N})$

Between V and V[G] there is the intermediate "symmetric model":

 $V(\{x_n^G\colon n\in\mathbb{N}\})$

This can be defined in a number of equivalent ways:

- it consists of the realization of all symmetric names $(Sym(\mathbb{N}) \curvearrowright \mathbb{P});$
- it is the smallest ZF-extension of V in V[G] containing $\{x_n^G \colon n \in \mathbb{N}\}$.

Recall Cohen's proof that $ZF + \neg AC$ is consistent. Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

 $(x_n^G\colon n\in\mathbb{N})$

Between V and V[G] there is the intermediate "symmetric model":

 $V(\{x_n^G \colon n \in \mathbb{N}\})$

This can be defined in a number of equivalent ways:

- it consists of the realization of all symmetric names $(Sym(\mathbb{N}) \curvearrowright \mathbb{P});$
- it is the smallest ZF-extension of V in V[G] containing $\{x_n^G \colon n \in \mathbb{N}\}$.

Theorem. (Cohen) In $V(\{x_n^G\})$ there is no injection $\mathbb{N} \to \{x_n^G \colon n \in \mathbb{N}\}$

Recall Cohen's proof that $ZF + \neg AC$ is consistent. Let \mathbb{P} be the forcing which adds a countable sequence of Cohen reals:

 $(x_n^G\colon n\in\mathbb{N})$

Between V and V[G] there is the intermediate "symmetric model":

 $V(\{x_n^G \colon n \in \mathbb{N}\})$

This can be defined in a number of equivalent ways:

- it consists of the realization of all symmetric names $(Sym(\mathbb{N}) \curvearrowright \mathbb{P});$
- it is the smallest ZF-extension of V in V[G] containing $\{x_n^G \colon n \in \mathbb{N}\}$.

Theorem. (Cohen) In $V(\{x_n^G\})$ there is no injection $\mathbb{N} \to \{x_n^G : n \in \mathbb{N}\}$ Lemma. (*Existence of supports*) For any $S \in V(\{x_n^G\})$ with $S \subseteq V$ there

is a finite $F \subseteq \{x_n^G : n \in \mathbb{N}\}$ so that $S \in V[F]$.

Symmetric models from permutation groups In the basic Cohen model the action ${\rm Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

Symmetric models from permutation groups In the basic Cohen model the action ${\rm Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G : n \in \mathbb{N})$ is injective.

Symmetric models from permutation groups In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective. But $P = \operatorname{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N} . We have

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G : n \in \mathbb{N}\}$.

Symmetric models from permutation groups In the basic Cohen model the action ${\rm Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \{x_n^G \colon n \in \mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective. But $P = \operatorname{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N} . We have

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G \colon n \in \mathbb{N}\}$.

We have the intermediate symmetric model $V \subseteq V(\mathcal{N}^G) \subseteq V[G]$:

- it consists of the realization of all symmetric names $(P \curvearrowright \mathbb{P})$;
- it is the smallest ZF-extension of V in V[G] containing \mathcal{N}^G .

Symmetric models from permutation groups In the basic Cohen model the action $\mathrm{Sym}(\mathbb{N}) \curvearrowright \mathbb{P}$ gave:

$$(x_n^G\colon n\in\mathbb{N})\mapsto\{x_n^G\colon n\in\mathbb{N}\}$$

If P is a Polish permutation group, then the Bernoulli shift action $P \curvearrowright \mathbb{R}^{\mathbb{N}}$ is essentially $P \curvearrowright \mathbb{P}$, and the generic $(x_n^G \colon n \in \mathbb{N})$ is injective. But $P = \operatorname{Aut}(\mathcal{N})$ for some countable structure \mathcal{N} on \mathbb{N} . We have

$$(x_n^G \colon n \in \mathbb{N}) \mapsto \mathcal{N}^G$$

where \mathcal{N}^G is the structure \mathcal{N} copied on $\{x_n^G \colon n \in \mathbb{N}\}$.

We have the intermediate symmetric model $V \subseteq V(\mathcal{N}^G) \subseteq V[G]$:

- it consists of the realization of all symmetric names $(P \curvearrowright \mathbb{P})$;
- it is the smallest ZF-extension of V in V[G] containing \mathcal{N}^G .

Lemma ((P., Shani) Existence of supports)

If P is a **locally-finite** Polish permutation group, then for all $S \in V(\mathcal{N}^G)$ with $S \subseteq V$ there is a finite $F \subseteq \{x_n^G : n \in \mathbb{N}\}$ so that $S \in V[F]$.

To conclude:

Theorem (Shani)

Suppose E and F are Borel equivalence relations on X and Y respectively and $x \mapsto \mathcal{N}^x$ and $y \mapsto \mathcal{M}^y$ be classifications by countable structures of Eand F respectively. Then, the following are equivalent.

- **①** For every Borel homomorphism $f: (X_0, E) \to (Y, F)$, where $X_0 \subseteq X$ is non-meager, f maps a non-meager set into a single F-class;
- 2 If $x \in X$ is Cohen-generic over V and \mathcal{M} is a potential F-invariant in $V(\mathcal{N}^x)$, definable from \mathcal{N}^x and parameters in V, then $\mathcal{M} \in V$.

In the case of the Bernoulli shifts, we have that $P = Aut(\mathcal{N})$ and $Q = Aut(\mathcal{M})$ for countable structures \mathcal{M} and \mathcal{N} . So we have that:

 $P \curvearrowright \operatorname{Inj}(\mathbb{N}, \mathbb{R})$ is classified by $(x_n \colon n \in \mathbb{N}) \mapsto \mathcal{N}$ on $\{x_n \colon n \in \mathbb{N}\}$

 $Q \curvearrowright \operatorname{Inj}(\mathbb{N}, \mathbb{R})$ is classified by $(y_n \colon n \in \mathbb{N}) \mapsto \mathcal{M}$ on $\{y_n \colon n \in \mathbb{N}\}$ "

${\sf Th} \alpha {\sf nk}$ you!