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Recall Ramsey’s theorem:

Theorem (Ramsey 1930)

Let n, r < ω. Then
ℵ0 → (ℵ0)n

r

meaning that for any coloring γ of [ℵ0]n into r colors, there is an
infinite X ⊆ ℵ0 with |γ[[X ]n]| = 1.

How to generalize? Can try to color infinite subsets.

Theorem (Galvin-Prikry 1973)

For any Borel coloring of [ℵ0]ℵ0 into finitely many colors, there is
an infinte X ⊆ ℵ0 with [X ]ℵ0 monochromatic.
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Another generalization: can demand more structure in the
“monochromatic” set X .

For instance, suppose r < ω and γ : [Q]2 → r is a coloring. Can we
find X ⊆ Q order isomorphic to Q with |γ[[X ]2]| = 1?

NO! Enumerate Q = {qn : n < ω}. We define a coloring
γ : [Q]2 → 2, where given m < n < ω, we set

γ({qm, qn}) = 0⇔ qm < qn.

If X ⊆ Q is order isomorphic to Q, we must have |γ[[X ]2]| = 2.
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Remarkably, 2 colors is the worst possible:

Theorem (Galvin 1968)

For any r < ω, we have

Q→ (Q)2r ,2

meaning that for any coloring γ : [Q]2 → r , there is X ⊆ Q order
isomorphic to Q so that |γ[[X ]2]| ≤ 2.

Theorem (Laver (unpublished), D. Devlin 1979)

For every n < ω, there is Tn < ω so that for every r < ω, we have

Q→ (Q)n
r ,Tn

Devlin gives precise characterization of least Tn that works.
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A few remarks about Devlin’s characterization:

Identify Q with 2<ω ordered lexicographically. Associate to each
finite F ⊆ Q its envelope, the finite subtree generated by F .
Different possible envelopes correspond to different “bad” colors.
Some envelopes can be avoided. Devlin trees cannot.

Finite Devlin trees: rooted binary trees where each level either has
exactly one splitting node or exactly one terminal node. We don’t
really care about passing numbers (or just demand they are all 0).

The terminal nodes code the points of the finite linear order. Call
these coding nodes
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Some examples of Devlin trees.
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Any subset of coding nodes induces a Devlin subtree of the original
Devlin tree by closing under meets. Gives us a notion of
embedding of one Devlin tree into another.
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One can also consider infinite Devlin trees. We add the demand
that terminal nodes are cofinal. Thus infinite Devlin trees code
infinite linear orders.

We pay special attention to those infinite Devlin trees that code
the rational order. To prove the exact characterization of Tn,
Devlin proves the following stronger result.

Theorem (Devlin 1979)

Any two Devlin trees which code the rational order are
bi-embeddable.

Question: Is this extra strength a fluke or a feature?
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Definition

Let K be a countably infinite first-order structure, and let A be a
finite structure with Emb(A,K) 6= ∅. Let ` < r < ω. We write

K→ (K)Ar ,`

if for any coloring γ : Emb(A,K)→ r , there is η ∈ Emb(K,K) with
|γ[η · Emb(A,K)]| = |Im(γ · η)| ≤ `.

The Ramsey degree of A in K is the least ` < ω, if it exists, with
K→ (K)Ar ,` for every r > `.

If K is a Fräıssé class with limit K, we say that A ∈ K has big
Ramsey degree ` < ω if A has Ramsey degree ` in K.

We say that K has finite big Ramsey degrees if every A ∈ K has
some finite big Ramsey degree.
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If K is a Fräıssé class with limit K, we say that A ∈ K has big
Ramsey degree ` < ω if A has Ramsey degree ` in K.

We say that K has finite big Ramsey degrees if every A ∈ K has
some finite big Ramsey degree.

Andy Zucker Big Ramsey degrees



Definition

Let K be a countably infinite first-order structure, and let A be a
finite structure with Emb(A,K) 6= ∅. Let ` < r < ω. We write

K→ (K)Ar ,`

if for any coloring γ : Emb(A,K)→ r , there is η ∈ Emb(K,K) with
|γ[η · Emb(A,K)]| = |Im(γ · η)| ≤ `.

The Ramsey degree of A in K is the least ` < ω, if it exists, with
K→ (K)Ar ,` for every r > `.

If K is a Fräıssé class with limit K, we say that A ∈ K has big
Ramsey degree ` < ω if A has Ramsey degree ` in K.

We say that K has finite big Ramsey degrees if every A ∈ K has
some finite big Ramsey degree.

Andy Zucker Big Ramsey degrees



Definition

Let K be a countably infinite first-order structure, and let A be a
finite structure with Emb(A,K) 6= ∅. Let ` < r < ω. We write

K→ (K)Ar ,`

if for any coloring γ : Emb(A,K)→ r , there is η ∈ Emb(K,K) with
|γ[η · Emb(A,K)]| = |Im(γ · η)| ≤ `.

The Ramsey degree of A in K is the least ` < ω, if it exists, with
K→ (K)Ar ,` for every r > `.
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If A ∈ K has big Ramsey degree `, it is interesting to consider
unavoidable `-colorings of Emb(A,K), i.e. a coloring witnessing
that the big Ramsey degree is at least `.

Easy: if A ≤ B ∈ K have finite big Ramsey degrees `A and `B ,
respectively, then there are unavoidable colorings
γX : Emb(X,K)→ `X (X ∈ {A,B}), so that whenever
f ∈ Emb(A,B) and x , y ∈ Emb(B,K), then γB(x) = γB(y)
implies γA(x ◦ f ) = γA(y ◦ f ).

In other words, if we know γB(x), then we automatically know
γA(x ◦ f ) for every f ∈ Emb(A,B).
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What about A0 ≤ A1 ≤ · · · ? If each Ai has finite big Ramsey
degree `i , it is no longer clear that we can find unavoidable
colorings γi : Emb(Ai ,K)→ `i with this coherence property.

Definition (Z. 2019)

Assume K has finite big Ramsey degrees, and write K = Flim(K).
We say that K admits a big Ramsey structure if there is an
expansion K′ of K so that for every A ∈ K with big Ramsey degree
`, the map sending f ∈ Emb(A,K) to the expansion on f [A] is an
unavoidable `-coloring of Emb(A,K).

Example: Devlin trees coding the rational order. However, the
statement that any two Devlin trees are bi-embeddable is even
stronger.
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Big Ramsey degrees are often discussed in terms of copies rather
than embeddings. Embeddings are better for dynamical
applications, while copies are more intuitive combinatorially.

Enumerated structures: A is enumerated if its underlying set is |A|.
Given enumerated structures A and B, write
OEmb(A,B) := {f ∈ Emb(A,B) : f is monotone}.

If K is SAP with limit K, then any two enumerations of K will be
bi-embeddable. So we can define the ordered big Ramsey degree of
an enumerated A ∈ K. Ordinary BRD can be recovered from this.
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Another example: the class K of finite graphs. Sauer (2006) shows
that K has finite BRD, and Laflamme-Sauer-Vuksanovic (2007)
give the precise characterization.

As in Devlin’s characterization, the (ordered) BRD of an
(enumerated) finite graph is characterized by the number of
certain tree-like objects which code the enumerated graph.

The main difference between Devlin trees and LSV-trees is that we
now need to encode the graph relation via passing numbers.
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Similar to Devlin trees, any subset of coding nodes of an LSV-tree
induces an LSV-subtree by closing under meets. Note that we
don’t record passing numbers unless the coding node on that level
is in the subtree.

We can also consider those infinite LSV-trees which code the Rado
graph. As before, lower bounds on big Ramsey degrees are
obtained by proving something stronger.

Theorem (Laflamme, Sauer, Vuksanovic 2007)

Any two LSV-trees coding the Rado graph are bi-embeddable.

In particular, any LSV-tree coding the Rado graph is a big Ramsey
structure for the Rado graph.
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In recent years, there has been rapid progress in understanding big
Ramsey degrees, especially for binary free-amalgamation classes.
The following classes all have finite big Ramsey degrees.

Dobrinen (2020): finite triangle-free graphs.

Dobrinen (2022+): finite k-clique-free graphs.

Z. (2022): Any class in a finite binary relational language of
the form Forb(F) for F a finite set of finite irreducible
structures.

Here irreducible means that every pair of points participates in a
non-trivial relation.
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In recent joint work with several authors, we precisely characterize
the big Ramsey degrees for classes in a finite binary relational
language of the form Forb(F) for F a finite set of finite irreducible
structures.

Similar to the rational order and the Rado graph, the big Ramsey
degree of an enumerated A ∈ Forb(F) is the number of tree-like
objects, which we call diagonal diaries, that code the structure.

Theorem (Balko-Chodounský-Dobrinen-Hubička-Konečný-Vena-Z.)

For any such Forb(F), any two diagonal diaries coding the Fräıssé
limit are bi-embeddable. In particular, these classes all admit big
Ramsey structures.
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The precise definition of a diagonal diary is extremely technical.
The most important new feature is that in addition to splitting and
coding levels, there is a new type of critical level called an
age-change level.

As an example, in an enumerated Fräıssé limit of the class of
triangle-free graphs, given a non-edge {a, b}, it is interesting to
record the least point adjacent to both a and b.

In diagonal diaries which code triangle-free graphs, we can record
this information by putting a graph structure on each level of the
tree.
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Diagonal diaries coding triangle-free graphs are in one-one
correspondence with runs of the following procedure which
produces a sequence of finite, linearly ordered graphs:

At step 0, G0 is the empty graph.

If Gk is empty, we can choose to stop.

Given Gk , we can form Gk+1 by doing exactly one of the
following:

Add a new minimum vertex adjacent to all previous vertices.
Duplicate a vertex; the two children are order-consecutive and
non-adjacent.
Delete an edge.
Delete a vertex not belonging to any triangle.

When considering infinite runs of this procedure, demand that
every vertex in every Gk has a descendant which gets deleted.
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Theorem (Galvin-Prikry 1973)

For any finite Borel coloring of [ω]ω, there is X ∈ [ω]ω with [X ]ω

monochromatic.

This can be rephrased using the semigroup S of increasing
injections of ω into itself: for any finite Borel coloring of S , there is
a monochromatic right ideal.

Definition

We say that a Borel semigroup S is Galvin-Prikry if S satisfies the
above statement.
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For certain S , Todorčević has given sufficient structural criteria A1
through A4 which imply that S is Galvin-Prikry.

We consider S = Emb(M,M) for some countable relational
structure M, which we write as a union of finite substructures in a
distinguished way, M =

⋃
n An.

Write Ak = {f ∈ Emb(Ak ,M) : ∃φ ∈ Emb(M,M) with φ|Ak
= f }

and A =
⋃

nAn. Put |f | = k iff f ∈ Ak .

This is enough to give A1.

Andy Zucker Big Ramsey degrees
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A2 asks for a quasi-order ≤fin on A satisfying certain properties.
For today, we take

f ≤fin g ⇔ Im(f ) ⊆ Im(g) and g−1 ◦ f ∈ A|f |.

This is also enough to yield one part of A3 called A3(1). We will
almost never be in a situation where A3(2) holds.
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The key pigeon-hole principle is A4:

Given f ∈ Ak , suppose n is least with Im(f ) ⊆ An. Then for every
finite coloring γ of {g ∈ Ak+1 : g |Ak

= f }, there is
φ ∈ Emb(M,M) with φ|An = id|An and with γ ◦ φ constant.

Dobrinen isolates a mild strengthening of A4 which implies that
Emb(M,M) is Galvin-Prikry even without A3(2).
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Theorem (Dobrinen-Z. (2022+))

Fix a class in a finite binary relational language of the form
Forb(F) for F a finite set of finite irreducible structures. Let ∆ be
any diagonal diary which codes the Fräıssé limit. Then Emb(∆,∆)
is Galvin-Prikry.

This is new even for the class of finite graphs.
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The idea is to first show that certain strong diaries, along with a
restricted notion of embedding between them, satisfies the
strengthened version of A4.

This shows that the semigroup of strong self-embeddings of the
strong diary is Galvin-Prikry.

Then use the bi-embeddability of diagonal diaries and properties of
strong embeddings to transfer the result to any diagonal diary with
ordinary embeddings.

Andy Zucker Big Ramsey degrees



The idea is to first show that certain strong diaries, along with a
restricted notion of embedding between them, satisfies the
strengthened version of A4.

This shows that the semigroup of strong self-embeddings of the
strong diary is Galvin-Prikry.

Then use the bi-embeddability of diagonal diaries and properties of
strong embeddings to transfer the result to any diagonal diary with
ordinary embeddings.

Andy Zucker Big Ramsey degrees



The idea is to first show that certain strong diaries, along with a
restricted notion of embedding between them, satisfies the
strengthened version of A4.

This shows that the semigroup of strong self-embeddings of the
strong diary is Galvin-Prikry.

Then use the bi-embeddability of diagonal diaries and properties of
strong embeddings to transfer the result to any diagonal diary with
ordinary embeddings.

Andy Zucker Big Ramsey degrees



Remarkably, this gives us examples of Galvin-Prikry semigroup
where even A4 fails.

We build ∆ an LSV-tree coding the Rado graph with the property
that in Emb(∆,∆), the identity is metrically isolated. We can
arrange that if φ ∈ Emb(∆,∆) satisfies φ|A1 = id|A1 , then φ = id.

However, there will be f ∈ A1 with the property that
{g ∈ A2 : g |A1 = f } ≥ 2 (in fact infinite). For this f , A4 must fail.
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Thanks!
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