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Invariant random subgroups

Let G be a countable group and let

SubG ⊂ P(G) = {0,1 }G = 2G

be the compact space of subgroups H ⩽ G.

Note that G ↷ SubG via conjugation: H
g7→ g H g−1.

Definition (Abért)
A G-invariant Borel probability measure ν on SubG is called
an invariant random subgroup or IRS.
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Some Boring Examples

A Boring Example
If N ⊴ G, then the Dirac measure δN is an IRS of G.

Another Boring Example
Suppose that the IRS ν concentrates on a single conjugacy class
C = {gHg−1 | g ∈ G } of subgroups of G.
Then C is necessarily finite and hence [G : NG(H) ] < ∞.
Furthermore, ν is the counting probability measure on C.
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Stabilizer distributions

Observation
Suppose that G ↷ (Z , µ ) is a measure-preserving action on
a Borel probability space.
Let f : Z → SubG be the G-equivariant map defined by
z 7→ Gz = {g ∈ G | g · z = z }.
Then the stabilizer distribution ν = f∗µ is an IRS of G, where
if B ⊆ SubG, then

ν(B ) = µ( f−1(B) ) = µ( { z ∈ Z | Gz ∈ B } ).

Theorem (Abért-Glasner-Virág 2012)
If ν is an IRS of G, then ν is the stabilizer distribution of a
measure-preserving action G ↷ (Z , µ ).
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Ergodicity

Definition
A measure-preserving action G ↷ (Z , µ ) is ergodic if µ(A) = 0, 1
for every G-invariant µ-measurable subset A ⊆ Z .

Observation
If G ↷ (Z , µ ) is ergodic, then the corresponding stabilizer distribution
ν is an ergodic IRS of G.

Theorem (Creutz-Peterson 2013)
If ν is an ergodic IRS of G, then ν is the stabilizer distribution of
an ergodic action G ↷ (Z , µ ).
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A less boring example of an IRS

Example
The group Fin(N) = {g ∈ Sym(N) | supp(g) is finite } of finite
permutations of N has an ergodic IRS µ which does not concentrate
on a single conjugacy class of subgroups.

Let µ be the usual uniform product probability measure on 2N.
Then Fin(N) acts ergodically on (2N, µ ) via the shift action
(g · ξ )(n) = ξ(g−1(n)).

For each ξ ∈ 2N and i = 0, 1, let Bξ
i = {n ∈ N | ξ(n) = i }.

Then the stabilizer map is given by ξ
f7→ Fin(Bξ

0)× Fin(Bξ
1).

Clearly the stabilizer distribution ν = f∗µ does not concentrate
on a single conjugacy class of subgroups of Fin(N).
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Zero-one laws

Remark
If ν is an ergodic IRS of a countable group G, then we obtain
a corresponding zero-one law on SubG for the class of
group-theoretic properties Φ such that the set
{H ∈ SubG | H has property Φ } is ν-measurable.
Assuming suitable large cardinals, these include the properties
with projective definitions and thus ν concentrates on a collection
of subgroups which are quite difficult to distinguish between.
In fact, until very recently, all of the known examples of ergodic
IRSs ν had the property that ν concentrates on the subgroups of
G of a fixed isomorphism type.
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Zero-one laws continued

Remark
It is well known that if K ⩽ G is a subgroup, then

{H ∈ SubG | H ∼= K }

is a Borel subset of SubG.
Hence, if ν is an ergodic IRS of G, then for each subgroup K ⩽ G,

ν( {H ∈ SubG | H ∼= K } ) ∈ {0,1 }.

Definition
An ergodic IRS ν of a countable group G is said to be diffuse
if ν( {H ∈ SubG | H ∼= K } ) = 0 for every subgroup K ⩽ G.

Theorem (Thomas)
There exist countable groups with diffuse IRSs.
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Strenthening conjugacy to isomorphism

Main Lemma
If G is any countable group, then there exists a countable group N
and a semidirect product P = N ⋊ G such that for all K1, K2 ∈ SubG,

N ⋊ K1
∼= N ⋊ K2 ⇐⇒ (∃g ∈ G ) gK1g−1 = K2.
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Proof of Theorem

Let G be a countable group with an ergodic IRS µ which does
not concentrate on a single conjugacy class of subgroups of G.
Let N and P = N ⋊ G be the countable groups given by the
Lemma.
Let j : SubG → SubP be the G-equivariant map defined by
j(K ) = N ⋊ K and let ν = j∗µ be the corresponding G-invariant
ergodic probability measure on SubP .
Since N acts trivially by conjugation on j(SubG), it follows that
ν is P-invariant.
Thus ν is an ergodic IRS of P.
Furthermore, since the isomorphism classes on j(SubG)
correspond to the conjugacy classes on SubG, it follows that
ν is a diffuse IRS of P.
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A Lemma of Burnside (1897)

Notation
If S is a group and s ∈ S, then is denotes the corresponding inner
automorphism, defined by is(x) = sxs−1.
Inn(S) = { is | s ∈ S }.

Lemma (Burnside)
Let S be a simple nonabelian group and let G, H be groups such that

Inn(S) ⩽ G,H ⩽ Aut(S).

If π : G → H is an isomorphism, then there exists φ ∈ Aut(S) such
that π(g) = φgφ−1 for all g ∈ G.
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Proof of Main Lemma

By Fried-Kollár (1981), there exists a countably infinite field F
such that Aut(F ) = G.
By Schreier and van der Waerden (1928),

Aut(PSL(2,F )) = PGL(2,F )⋊ Aut(F ) = PGL(2,F )⋊ G.

Suppose that K1, K2 ∈ SubG.
Clearly if K1 and K2 are conjugate subgroups of G, then
PGL(2,F )⋊ K1

∼= PGL(2,F )⋊ K2.
Conversely, suppose that

π : PGL(2,F )⋊ K1 → PGL(2,F )⋊ K2

is an isomorphism.
By Burnside’s Lemma, there exists h ∈ PGL(2,F )⋊ G such
that h(PGL(2,F )⋊ K1)h−1 = PGL(2,F )⋊ K2.
After factoring by PGL(2,F ), we see that K1 and K2 are conjugate
subgroups of G.
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A Natural Example?

Problem
Find natural examples of groups G with diffuse IRSs.

Theorem (Raimbault)

Let T4 be a triangle in the hyperbolic plane H2 with all three angles
equal to π/4 and let G be the group of isometries generated by
reflections in the faces of T4.
Then G is a finitely presented group with a diffuse IRS.
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A Flaw in the Abért-Glasner-Virág Construction?

Remark
If ν is an ergodic IRS of the countable group G, then the construction
of Abért-Glasner-Virág realizes ν as the stabilizer distribution of a
measure-preserving action G ↷ (X , µ ) such that the set

{ x ∈ X | Gx = H }

is uncountable for ν-a.e. H ∈ SubG.

Question
Is this inevitable?
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A Flaw in the Abért-Glasner-Virág Construction?

Proposition (Thomas)
Suppose that ν is an ergodic IRS of a countable group G and
that [NG(H) : H ] = ∞ for ν-a.e. H ∈ SubG. If ν is the stabilizer
distribution of a measure-preserving action G ↷ (X , µ ) on a Borel
probability space, then the set { x ∈ X | Gx = H } is uncountable
for ν-a.e. H ∈ SubG.
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Proof of Proposition

If not, it follows that the set { x ∈ X | Gx = H } is countable
for ν-a.e. H ∈ SubG.
Consider the Borel equivalence relation E on X defined by

x E y ⇐⇒ Gx = Gy .

Then for µ-a.e. x ∈ X , the corresponding E-class [ x ]E is
countable.
Hence, after restricting to a Borel subset X0 ⊆ X with µ(X0) = 1,
we can suppose that [ x ]E is countable for every x ∈ X .
Thus E is a smooth countable Borel equivalence relation on X .
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Proof of Proposition

It follows that E ′ = E ∩ EX
G is also smooth.

Since [NG(Gx) : Gx ] = ∞ and Gx = gGxg−1 = Gg·x
whenever g ∈ NG(Gx), it follows that every E ′-class is infinite.
Thus E ′ ⊆ EX

G is a smooth aperiodic Borel equivalence relation.
By Dougherty-Jackson-Kechris, there does not exist a G-invariant
Borel probability measure on X , which is a contradiction.

Question
Is this inevitable in the case when [NG(H) : H ] < ∞ for ν-a.e.
H ∈ SubG?
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Refining the Question

Suppose that ν is an ergodic IRS of a countable group G
such that [NG(H) : H ] < ∞ for ν-a.e. H ∈ SubG.
Then there exists an integer n ≥ 1 such that [NG(H) : H ] = n
for ν-a.e. H ∈ SubG.
If n = 1, then ν is the stabilizer distribution of the ergodic action
G ↷ (SubG, ν ) and the corresponding stabilizer map

H 7→ NG(H) = H

is ν-a.e. injective.
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Refining the Question

Next suppose that n > 1 and that ν is the stabilizer distribution
of the measure-preserving action G ↷ (X , µ ).
If x ∈ X and g ∈ NG(Gx), then Gg·x = gGxg−1 = Gx .
It follows that for µ-a.e. x ∈ X , the stabilizer map f : X → SubG
is n-to-one on the orbit G · x .
Consequently, the stabilizer map f is µ-a.e. n-to-one iff the map

G · x 7→ {gGxg−1 | g ∈ G }

is µ-a.e. injective.
In this case, by restricting to a suitable G-invariant Borel subset
X0 ⊆ X with µ(X0) = 1, we obtain a measure-preserving action
G ↷ (X0, µ ) with stabilizer distribution ν such that the
corresponding stabilizer map is n-to-one.
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The Realization Problem

Open Problem
Suppose that ν is an ergodic IRS of a countable group G and that
[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG.
Is ν the stabilizer distribution of an ergodic action G ↷ (X , µ ) on
a standard Borel probability space such that the stabilizer map
x 7→ Gx is n-to-one?

Theorem (Thomas)
This is true if G is amenable.
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Towards a Solution of the Realization Problem

Suppose that ν is an ergodic IRS of a countable group G and
that 1 < [NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG.
Let Z = {H ∈ SubG | [NG(H) : H ] = n }.
And let X = {aH | H ∈ Z ,a ∈ NG(H) }.
Then we can define a Borel probability measure µ on X by

µ(B) =

∫
Z

|B ∩ { aH | a ∈ NG(H) }|
n

dν(H).
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Towards a Solution of the Realization Problem

Let c : EZ
G → G be a Borel map such that

c(H1,H2)H1c(H1,H2)
−1 = H2

for each pair of conjugate subgroups H1, H2 ∈ Z .
Then for each g ∈ G, we can define a corresponding Borel
bijection πg : X → X by

πg(aH) = c(H,gHg−1)aHg−1

= gb−1
H ag−1(gHg−1),

where bH ∈ NG(H) is such that g = c(H,gHg−1)bH .
It is clear that each πg is µ-preserving.
However, in order to ensure that these maps define a G-action,
it is necessary to impose an extra hypothesis on the map
c : EZ

G → G.
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The Weak Cocycle Property

Definition
An IRS ν of a countable group G is said to have the weak cocycle
property if there exists a G-invariant Borel subset Z ⊆ SubG with
ν(Z ) = 1 and a Borel map c : EZ

G → G such that whenever H1, H2,
H3 ∈ Z are conjugate subgroups of G, then:

c(H1,H2)H1c(H1,H2)
−1 = H2; and

c(H1,H3)
−1c(H2,H3)c(H1,H2) ∈ H1.

Remark
The usual cocycle property has the stronger requirement that

c(H1,H3)
−1c(H2,H3)c(H1,H2) = 1.
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The Realization Problem

Theorem (Thomas)
If ν is an ergodic IRS of a countable group G with the property that
[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG, then the following
conditions are equivalent:

(i) ν has the weak cocycle property.
(ii) ν is the stabilizer distribution of an ergodic action G ↷ (X , µ )

on a standard Borel probability space such that the stabilizer
map x 7→ Gx is n-to-one.

Corollary
If ν is an ergodic IRS of a countable amenable group G such that
[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG, then ν is the stabilizer
distribution of an ergodic action G ↷ (X , µ ) on a standard Borel
probability space such that the stabilizer map x 7→ Gx is n-to-one.
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The Realization Problem

Theorem (Thomas)
There exist a countable group G with an ergodic IRS ν which does
not have the weak cocycle property.

Remark
Unfortunately, in the above example, [NG(H) : H ] = ∞ for ν-a.e.
H ∈ SubG.

Conjecture
There exists an ergodic IRS ν of a countable group G such that:

[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG; and
ν is not the stabilizer distribution of an ergodic action G ↷ (X , µ )
on a standard Borel probability space such that the stabilizer
map x 7→ Gx is n-to-one.
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Characters of countable groups

Definition
If G is a countable group, then χ : G → C is a character if the following
conditions are satisfied:

(i) χ(1G) = 1.
(ii) χ(h g h−1) = χ(g) for all g, h ∈ G.
(iii) χ is positive definite; i.e.

n∑
i,j=1

λi λ̄jχ(g−1
j gi) ≥ 0

for all λ1, · · · , λn ∈ C and g1, · · · ,gn ∈ G.

Example
If G ↷ (Z , µ ) is a measure-preserving action on a Borel probability
space, then χ(g) = µ( FixZ (g) ) is a character.
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Indecomposable characters

Definition
A character χ is indecomposable if it is impossible to express

χ = rχ1 + (1 − r)χ2,

where 0 < r < 1 and χ1 ̸= χ2 are distinct characters.

Remark
Indecomposable characters of countable groups give rise (via the
Gelfand-Naimark-Siegel construction) to the factor representations
of finite type.
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The Indecomposability Problem

Open Problem
Find necessary and sufficient conditions for the associated character
χ(g) = µ( FixZ (g) ) of an ergodic action G ↷ (Z , µ ) to be
indecomposable.

Remark
I will soon formulate a conjecture.
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Faithful actions

Definition
If G ↷ (Z , µ ) is a measure-preserving action of a countable group
on a standard Borel probability space, then the µ-a.e. kernel is

Kµ = {g ∈ G | µ(FixZ (g)) = 1 };

and the action is said to be µ-a.e. faithful if Kµ = 1.

Remark
If Kµ ̸= 1, then there exists a Borel subset Z0 ⊆ Z with µ(Z0) = 1
such that Kµ acts trivially on Z0; and the induced action
G/Kµ ↷ (Z0, µ ) is µ-a.e. faithful.
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I.c.c. groups

Definition
A group G is said to have the infinite conjugacy class property,
or to be an i.c.c. group, if the conjugacy class gG of every nonidentity
element 1 ̸= g ∈ G is infinite.

Theorem
If G ↷ (Z , µ ) is a µ-a.e. faithful ergodic action of a countable non-i.c.c.
group on a standard Borel probability space, then the associated
character χ(g) = µ(FixZ (g)) is decomposable.
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A sufficient condition for decomposability

Theorem (Thomas)
If G ↷ (Z , µ ) is an ergodic action of a countable group
on a standard Borel probability space and there exists a G-invariant
Borel equivalence relation E ⊆ EZ

G such that 1 < [ z ]E < ∞ for µ-a.e.
z ∈ Z, then the associated character χ(g) = µ(FixZ (g)) is
decomposable.

Conjecture
If G ↷ (Z , µ ) is a µ-a.e. faithful ergodic action of a countable i.c.c.
group on a standard Borel probability space, then the following
statements are equivalent:

(i) The associated character χ(g) = µ(FixZ (g)) is decomposable.
(ii) There exists a G-invariant Borel equivalence relation E ⊆ EZ

G
such that 1 < |[ z ]E | < ∞ for µ-a.e. z ∈ Z .
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Strongly Simple Groups

Definition
The trivial IRSs of G are δ1 and δG.

Definition
A countably infinite group G is said to be strongly simple if the only
ergodic IRSs of G are δ1 and δG.

Remark
Equivalently, G is strongly simple if for every ergodic action
G ↷ (Z , µ ) on a standard Borel probability space, either:

(i) the action is µ-a.e. fixed-point-free; or
(ii) there exists a G-invariant point z0 ∈ Z with µ({ z0 }) = 1.
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Character Rigid Groups

Definition
The trivial characters of G are the regular character χreg
and the constant character χcon, where:

χreg(g) = 0 for all 1 ̸= g ∈ G; and
χcon(g) = 1 for all g ∈ G.

Definition
A countably infinite group G is said to be character rigid if the only
indecomposable characters of G are χreg and χcon.
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Character Rigid Groups

Theorem (Thomas-Tucker-Drob)
If the countably infinite group G is character rigid, then G is strongly
simple.

Lemma (Ioana-Kechris-Tsankov)
If G ↷ (Z , µ ) is an ergodic measure-preserving action and there
exists r > 0 such that µ(Fix(g)) ≥ r for all g ∈ G, then there exists
a G-invariant point z0 ∈ Z with µ({ z0 }) = 1.

Remark
This generalizes the result that if a finite group G acts transitively on
a set Z with |Z | > 1, then some element g ∈ G is fixed-point-free.
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Proof of Theorem

Suppose that G is character rigid and that ν ̸= δ1, δG is a
nontrivial ergodic IRS of G.
Then ν is the stabilizer distribution of an ergodic action
G ↷ (Z , µ ).
Let χ(g) = µ( FixZ (g) ) be the associated character.
Since G is character rigid, there exists 0 ≤ r ≤ 1 such that
χ = rχcon + (1 − r)χreg.
Since ν ̸= δ1, it follows that r > 0.
Thus µ(FixZ (g)) ≥ r for all g ∈ G and so there exists a G-invariant
point z0 ∈ Z with µ({ z0 }) = 1.
But then

ν({G }) = µ({ z ∈ Z | G = Gz }) = 1

and so ν = δG, which is a contradiction.
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Strongly Simple Groups

Conjecture
There exist a strongly simple group G which is not character rigid.

Conjecture
If K is a countable real closed field, then G = SO(3,K ) is a strongly
simple group which is not character rigid.
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