Some Open Problems On Invariant Random Subgroups

Simon Thomas

Rutgers University

November 9, 2022

Simon Thomas (Rutgers University)

CalTech Logic Seminar

November 9, 2022

• Let G be a countable group and let

$$\operatorname{Sub}_G \subset \mathcal{P}(G) = \{0, 1\}^G = 2^G$$

be the compact space of subgroups $H \leq G$.

• Note that $G \curvearrowright \text{Sub}_G$ via conjugation: $H \stackrel{g}{\mapsto} g H g^{-1}$.

Definition (Abért)

A G-invariant Borel probability measure ν on Sub_G is called an invariant random subgroup or IRS.

A Boring Example

If $N \leq G$, then the Dirac measure δ_N is an IRS of *G*.

Another Boring Example

- Suppose that the IRS *ν* concentrates on a single conjugacy class
 C = { gHg⁻¹ | g ∈ G } of subgroups of G.
- Then C is necessarily finite and hence $[G: N_G(H)] < \infty$.
- Furthermore, ν is the counting probability measure on C.

Observation

- Let $f : Z \to \text{Sub}_G$ be the *G*-equivariant map defined by $z \mapsto G_z = \{ g \in G \mid g \cdot z = z \}.$
- Then the stabilizer distribution *ν* = *f*_{*}*μ* is an IRS of *G*, where if *B* ⊆ Sub_{*G*}, then

$$\nu(B) = \mu(f^{-1}(B)) = \mu(\{z \in Z \mid G_z \in B\}).$$

Theorem (Abért-Glasner-Virág 2012)

If ν is an IRS of G, then ν is the stabilizer distribution of a measure-preserving action $G \curvearrowright (Z, \mu)$.

A measure-preserving action $G \curvearrowright (Z, \mu)$ is ergodic if $\mu(A) = 0, 1$ for every *G*-invariant μ -measurable subset $A \subseteq Z$.

Observation

If $G \frown (Z, \mu)$ is ergodic, then the corresponding stabilizer distribution ν is an ergodic IRS of *G*.

Theorem (Creutz-Peterson 2013)

If ν is an ergodic IRS of G, then ν is the stabilizer distribution of an ergodic action $G \curvearrowright (Z, \mu)$.

Example

The group $\operatorname{Fin}(\mathbb{N}) = \{ g \in \operatorname{Sym}(\mathbb{N}) | \operatorname{supp}(g) \text{ is finite } \}$ of finite permutations of \mathbb{N} has an ergodic IRS μ which does not concentrate on a single conjugacy class of subgroups.

- Let μ be the usual uniform product probability measure on $2^{\mathbb{N}}$.
- Then Fin(ℕ) acts ergodically on (2^ℕ, μ) via the shift action (g · ξ)(n) = ξ(g⁻¹(n)).
- For each $\xi \in 2^{\mathbb{N}}$ and i = 0, 1, let $B_i^{\xi} = \{ n \in \mathbb{N} \mid \xi(n) = i \}$.
- Then the stabilizer map is given by $\xi \stackrel{f}{\mapsto} \operatorname{Fin}(B_0^{\xi}) \times \operatorname{Fin}(B_1^{\xi})$.
- Clearly the stabilizer distribution ν = f_{*}μ does not concentrate on a single conjugacy class of subgroups of Fin(N).

Remark

- If *ν* is an ergodic IRS of a countable group *G*, then we obtain a corresponding zero-one law on Sub_G for the class of group-theoretic properties Φ such that the set { *H* ∈ Sub_G | *H* has property Φ } is *ν*-measurable.
- Assuming suitable large cardinals, these include the properties with projective definitions and thus ν concentrates on a collection of subgroups which are quite difficult to distinguish between.
- In fact, until very recently, all of the known examples of ergodic IRSs ν had the property that ν concentrates on the subgroups of G of a fixed isomorphism type.

Zero-one laws continued

Remark

• It is well known that if $K \leq G$ is a subgroup, then

```
\{ H \in \operatorname{Sub}_G \mid H \cong K \}
```

is a Borel subset of Sub_G .

• Hence, if ν is an ergodic IRS of *G*, then for each subgroup $K \leq G$,

 $\nu(\{H \in \operatorname{Sub}_G \mid H \cong K\}) \in \{0,1\}.$

Definition

An ergodic IRS ν of a countable group G is said to be diffuse if $\nu(\{H \in Sub_G \mid H \cong K\}) = 0$ for every subgroup $K \leq G$.

Theorem (Thomas)

There exist countable groups with diffuse IRSs.

Simon Thomas (Rutgers University)

CalTech Logic Seminar

Main Lemma

If G is any countable group, then there exists a countable group N and a semidirect product $P = N \rtimes G$ such that for all $K_1, K_2 \in Sub_G$,

 $N \rtimes K_1 \cong N \rtimes K_2 \iff (\exists g \in G) g K_1 g^{-1} = K_2.$

Proof of Theorem

- Let G be a countable group with an ergodic IRS μ which does not concentrate on a single conjugacy class of subgroups of G.
- Let *N* and *P* = *N* ⋊ *G* be the countable groups given by the Lemma.
- Let *j* : Sub_G → Sub_P be the *G*-equivariant map defined by *j*(*K*) = *N* ⋊ *K* and let *ν* = *j*_{*}*μ* be the corresponding *G*-invariant ergodic probability measure on Sub_P.
- Since N acts trivially by conjugation on *j*(Sub_G), it follows that ν is P-invariant.
- Thus ν is an ergodic IRS of *P*.
- Furthermore, since the isomorphism classes on *j*(Sub_G) correspond to the conjugacy classes on Sub_G, it follows that *ν* is a diffuse IRS of *P*.

Notation

- If S is a group and s ∈ S, then is denotes the corresponding inner automorphism, defined by is(x) = sxs⁻¹.
- $lnn(S) = \{ i_{s} \mid s \in S \}.$

Lemma (Burnside)

Let S be a simple nonabelian group and let G, H be groups such that

 $\operatorname{Inn}(S) \leqslant G, H \leqslant \operatorname{Aut}(S).$

If $\pi : G \to H$ is an isomorphism, then there exists $\varphi \in Aut(S)$ such that $\pi(g) = \varphi g \varphi^{-1}$ for all $g \in G$.

Proof of Main Lemma

- By Fried-Kollár (1981), there exists a countably infinite field F such that Aut(F) = G.
- By Schreier and van der Waerden (1928),

 $\operatorname{Aut}(\operatorname{PSL}(2, F)) = \operatorname{PGL}(2, F) \rtimes \operatorname{Aut}(F) = \operatorname{PGL}(2, F) \rtimes G.$

- Suppose that $K_1, K_2 \in \text{Sub}_G$.
- Clearly if K_1 and K_2 are conjugate subgroups of G, then $PGL(2, F) \rtimes K_1 \cong PGL(2, F) \rtimes K_2$.
- Conversely, suppose that

$$\pi: \mathsf{PGL}(2, F) \rtimes K_1 \to \mathsf{PGL}(2, F) \rtimes K_2$$

is an isomorphism.

- By Burnside's Lemma, there exists h ∈ PGL(2, F) ⋊ G such that h(PGL(2, F) ⋊ K₁)h⁻¹ = PGL(2, F) ⋊ K₂.
- After factoring by PGL(2, F), we see that K₁ and K₂ are conjugate subgroups of G.

Problem

Find natural examples of groups G with diffuse IRSs.

Theorem (Raimbault)

- Let T₄ be a triangle in the hyperbolic plane ℍ² with all three angles equal to π/4 and let G be the group of isometries generated by reflections in the faces of T₄.
- Then G is a finitely presented group with a diffuse IRS.

Remark

If ν is an ergodic IRS of the countable group *G*, then the construction of Abért-Glasner-Virág realizes ν as the stabilizer distribution of a measure-preserving action $G \curvearrowright (X, \mu)$ such that the set

$$\{x \in X \mid G_x = H\}$$

is uncountable for ν -a.e. $H \in Sub_G$.

Question

Is this inevitable?

Proposition (Thomas)

Suppose that ν is an ergodic IRS of a countable group G and that $[N_G(H) : H] = \infty$ for ν -a.e. $H \in Sub_G$. If ν is the stabilizer distribution of a measure-preserving action $G \curvearrowright (X, \mu)$ on a Borel probability space, then the set $\{x \in X \mid G_x = H\}$ is uncountable for ν -a.e. $H \in Sub_G$.

- If not, it follows that the set { x ∈ X | G_x = H } is countable for *ν*-a.e. H ∈ Sub_G.
- Consider the Borel equivalence relation *E* on *X* defined by

$$x E y \iff G_x = G_y.$$

- Then for µ-a.e. x ∈ X, the corresponding E-class [x]_E is countable.
- Hence, after restricting to a Borel subset X₀ ⊆ X with μ(X₀) = 1, we can suppose that [x]_E is countable for every x ∈ X.
- Thus *E* is a smooth countable Borel equivalence relation on *X*.

- It follows that $E' = E \cap E_G^X$ is also smooth.
- Since $[N_G(G_x): G_x] = \infty$ and $G_x = gG_xg^{-1} = G_{g \cdot x}$ whenever $g \in N_G(G_x)$, it follows that every *E'*-class is infinite.
- Thus $E' \subseteq E_G^X$ is a smooth aperiodic Borel equivalence relation.
- By Dougherty-Jackson-Kechris, there does not exist a *G*-invariant Borel probability measure on *X*, which is a contradiction.

Question

Is this inevitable in the case when $[N_G(H) : H] < \infty$ for ν -a.e. $H \in Sub_G$?

- Suppose that ν is an ergodic IRS of a countable group G such that [N_G(H) : H] < ∞ for ν-a.e. H ∈ Sub_G.
- Then there exists an integer n ≥ 1 such that [N_G(H) : H] = n for ν-a.e. H ∈ Sub_G.
- If n = 1, then ν is the stabilizer distribution of the ergodic action
 G ∩ (Sub_G, ν) and the corresponding stabilizer map

$$H\mapsto N_G(H)=H$$

is ν -a.e. injective.

- Next suppose that n > 1 and that ν is the stabilizer distribution of the measure-preserving action G ∼ (X, μ).
- If $x \in X$ and $g \in N_G(G_x)$, then $G_{g \cdot x} = gG_xg^{-1} = G_x$.
- It follows that for μ-a.e. x ∈ X, the stabilizer map f : X → Sub_G is *n*-to-one on the orbit G ⋅ x.
- Consequently, the stabilizer map f is μ -a.e. n-to-one iff the map

$$G \cdot x \mapsto \{ gG_xg^{-1} \mid g \in G \}$$

is μ -a.e. injective.

In this case, by restricting to a suitable *G*-invariant Borel subset X₀ ⊆ X with μ(X₀) = 1, we obtain a measure-preserving action G ∼ (X₀, μ) with stabilizer distribution ν such that the corresponding stabilizer map is *n*-to-one.

Open Problem

- Suppose that ν is an ergodic IRS of a countable group *G* and that $[N_G(H):H] = n < \infty$ for ν -a.e. $H \in \text{Sub}_G$.
- Is ν the stabilizer distribution of an ergodic action $G \curvearrowright (X, \mu)$ on a standard Borel probability space such that the stabilizer map $x \mapsto G_x$ is *n*-to-one?

Theorem (Thomas)

This is true if G is amenable.

- Suppose that *ν* is an ergodic IRS of a countable group *G* and that 1 < [*N_G*(*H*) : *H*] = *n* < ∞ for *ν*-a.e. *H* ∈ Sub_{*G*}.
- Let $Z = \{ H \in Sub_G \mid [N_G(H) : H] = n \}.$
- And let $X = \{ aH \mid H \in Z, a \in N_G(H) \}.$
- Then we can define a Borel probability measure µ on X by

$$\mu(B) = \int_{Z} \frac{|B \cap \{ aH \mid a \in N_G(H) \}|}{n} d\nu(H).$$

Towards a Solution of the Realization Problem

• Let $c: E_G^Z \to G$ be a Borel map such that

$$c(H_1, H_2)H_1c(H_1, H_2)^{-1} = H_2$$

for each pair of conjugate subgroups H_1 , $H_2 \in Z$.

• Then for each $g \in G$, we can define a corresponding Borel bijection $\pi_g : X \to X$ by

$$\pi_g(aH) = c(H, gHg^{-1})aHg^{-1}$$
$$= gb_H^{-1}ag^{-1}(gHg^{-1}),$$

where $b_H \in N_G(H)$ is such that $g = c(H, gHg^{-1})b_H$.

- It is clear that each π_g is μ -preserving.
- However, in order to ensure that these maps define a *G*-action, it is necessary to impose an extra hypothesis on the map c : E^Z_G → G.

An IRS ν of a countable group G is said to have the weak cocycle property if there exists a G-invariant Borel subset $Z \subseteq Sub_G$ with $\nu(Z) = 1$ and a Borel map $c : E_G^Z \to G$ such that whenever $H_1, H_2, H_3 \in Z$ are conjugate subgroups of G, then:

- $c(H_1, H_2)H_1c(H_1, H_2)^{-1} = H_2$; and
- $c(H_1, H_3)^{-1}c(H_2, H_3)c(H_1, H_2) \in H_1$.

Remark

The usual cocycle property has the stronger requirement that

$$c(H_1, H_3)^{-1}c(H_2, H_3)c(H_1, H_2) = 1.$$

Theorem (Thomas)

If ν is an ergodic IRS of a countable group G with the property that $[N_G(H) : H] = n < \infty$ for ν -a.e. $H \in Sub_G$, then the following conditions are equivalent:

- (i) ν has the weak cocycle property.
- (ii) ν is the stabilizer distribution of an ergodic action $G \curvearrowright (X, \mu)$ on a standard Borel probability space such that the stabilizer map $x \mapsto G_x$ is n-to-one.

Corollary

If ν is an ergodic IRS of a countable amenable group G such that $[N_G(H) : H] = n < \infty$ for ν -a.e. $H \in Sub_G$, then ν is the stabilizer distribution of an ergodic action $G \curvearrowright (X, \mu)$ on a standard Borel probability space such that the stabilizer map $x \mapsto G_x$ is n-to-one.

Simon Thomas (Rutgers University)

Theorem (Thomas)

There exist a countable group G with an ergodic IRS ν which does not have the weak cocycle property.

Remark

Unfortunately, in the above example, $[N_G(H) : H] = \infty$ for ν -a.e. $H \in \text{Sub}_G$.

Conjecture

There exists an ergodic IRS ν of a countable group G such that:

• $[N_G(H):H] = n < \infty$ for ν -a.e. $H \in Sub_G$; and

 ν is not the stabilizer distribution of an ergodic action G ∼ (X, μ) on a standard Borel probability space such that the stabilizer map x → G_x is *n*-to-one.

If G is a countable group, then $\chi : G \to \mathbb{C}$ is a character if the following conditions are satisfied:

- (i) $\chi(1_G) = 1$.
- (ii) $\chi(hgh^{-1}) = \chi(g)$ for all $g, h \in G$.
- (iii) χ is positive definite; i.e.

$$\sum_{i,j=1}^n \lambda_i ar{\lambda}_j \chi(\boldsymbol{g}_j^{-1} \boldsymbol{g}_i) \geq 0$$

for all $\lambda_1, \cdots, \lambda_n \in \mathbb{C}$ and $g_1, \cdots, g_n \in G$.

Example

If $G \curvearrowright (Z, \mu)$ is a measure-preserving action on a Borel probability space, then $\chi(g) = \mu(\operatorname{Fix}_Z(g))$ is a character.

Simon Thomas (Rutgers University)

CalTech Logic Seminar

A character χ is indecomposable if it is impossible to express

$$\chi = r\chi_1 + (1-r)\chi_2,$$

where 0 < r < 1 and $\chi_1 \neq \chi_2$ are distinct characters.

Remark

Indecomposable characters of countable groups give rise (via the Gelfand-Naimark-Siegel construction) to the factor representations of finite type.

Open Problem

Find necessary and sufficient conditions for the associated character $\chi(g) = \mu(\operatorname{Fix}_{Z}(g))$ of an ergodic action $G \curvearrowright (Z, \mu)$ to be indecomposable.

Remark

I will soon formulate a conjecture.

If $G \sim (Z, \mu)$ is a measure-preserving action of a countable group on a standard Borel probability space, then the μ -a.e. kernel is

$${\it K}_{\mu}=\{\, {\it g}\in {\it G} \mid \mu({\sf Fix}_{{\it Z}}({\it g}))=1\,\};$$

and the action is said to be μ -a.e. faithful if $K_{\mu} = 1$.

Remark

If $K_{\mu} \neq 1$, then there exists a Borel subset $Z_0 \subseteq Z$ with $\mu(Z_0) = 1$ such that K_{μ} acts trivially on Z_0 ; and the induced action $G/K_{\mu} \curvearrowright (Z_0, \mu)$ is μ -a.e. faithful.

A group G is said to have the infinite conjugacy class property, or to be an i.c.c. group, if the conjugacy class g^G of every nonidentity element $1 \neq g \in G$ is infinite.

Theorem

If $G \curvearrowright (Z, \mu)$ is a μ -a.e. faithful ergodic action of a countable non-i.c.c. group on a standard Borel probability space, then the associated character $\chi(g) = \mu(Fix_Z(g))$ is decomposable.

Theorem (Thomas)

If $G \cap (Z, \mu)$ is an ergodic action of a countable group on a standard Borel probability space and there exists a *G*-invariant Borel equivalence relation $E \subseteq E_G^Z$ such that $1 < [Z]_E < \infty$ for μ -a.e. $z \in Z$, then the associated character $\chi(g) = \mu(\operatorname{Fix}_Z(g))$ is decomposable.

Conjecture

If $G \curvearrowright (Z, \mu)$ is a μ -a.e. faithful ergodic action of a countable i.c.c. group on a standard Borel probability space, then the following statements are equivalent:

(i) The associated character $\chi(g) = \mu(\operatorname{Fix}_Z(g))$ is decomposable.

(ii) There exists a *G*-invariant Borel equivalence relation $E \subseteq E_G^Z$ such that $1 < |[z]_E| < \infty$ for μ -a.e. $z \in Z$.

The trivial IRSs of G are δ_1 and δ_G .

Definition

A countably infinite group G is said to be strongly simple if the only ergodic IRSs of G are δ_1 and δ_G .

Remark

Equivalently, *G* is strongly simple if for every ergodic action $G \curvearrowright (Z, \mu)$ on a standard Borel probability space, either:

(i) the action is μ -a.e. fixed-point-free; or

(ii) there exists a *G*-invariant point $z_0 \in Z$ with $\mu(\{z_0\}) = 1$.

The trivial characters of G are the regular character χ_{reg} and the constant character χ_{con} , where:

•
$$\chi_{\mathit{reg}}(g) =$$
 0 for all 1 eq $g \in$ G ; and

•
$$\chi_{con}(g) = 1$$
 for all $g \in G$.

Definition

A countably infinite group G is said to be character rigid if the only indecomposable characters of G are χ_{reg} and χ_{con} .

Theorem (Thomas-Tucker-Drob)

If the countably infinite group G is character rigid, then G is strongly simple.

Lemma (Ioana-Kechris-Tsankov)

If $G \cap (Z, \mu)$ is an ergodic measure-preserving action and there exists r > 0 such that $\mu(Fix(g)) \ge r$ for all $g \in G$, then there exists a G-invariant point $z_0 \in Z$ with $\mu(\{z_0\}) = 1$.

Remark

This generalizes the result that if a finite group *G* acts transitively on a set *Z* with |Z| > 1, then some element $g \in G$ is fixed-point-free.

Proof of Theorem

- Suppose that *G* is character rigid and that $\nu \neq \delta_1$, δ_G is a nontrivial ergodic IRS of *G*.
- Then ν is the stabilizer distribution of an ergodic action G ∩ (Z, μ).
- Let $\chi(g) = \mu(\operatorname{Fix}_Z(g))$ be the associated character.
- Since G is character rigid, there exists $0 \le r \le 1$ such that $\chi = r\chi_{con} + (1 r)\chi_{reg}$.
- Since $\nu \neq \delta_1$, it follows that r > 0.
- Thus µ(Fix_Z(g)) ≥ r for all g ∈ G and so there exists a G-invariant point z₀ ∈ Z with µ({ z₀ }) = 1.

But then

$$\nu(\{ G \}) = \mu(\{ z \in Z \mid G = G_z \}) = 1$$

and so $\nu = \delta_{G}$, which is a contradiction.

Conjecture

There exist a strongly simple group *G* which is not character rigid.

Conjecture

If *K* is a countable real closed field, then G = SO(3, K) is a strongly simple group which is **not** character rigid.