Polish modules over subrings of \mathbb{Q}

Dexuan Hu

Cornell University

November 2022

This is joint work with Sławomir Solecki.

Introduction

Our aim

Give a construction of Polish modules.

Using the construction, we answer a question of Frisch and Shinko.

A corollary of our result that does not require more definitions:

There is a family of size 2^{\aleph_0} of F_{σ} Q-vector subspaces of \mathbb{R} such that, for any $F_1 \neq F_2$ in the family, each Borel Q-linear map $F_1 \rightarrow F_2$ is constantly equal to 0.

Polish modules

R a countable commutative ring

Polish R-**Modules** = abelian Polish groups with a continuous scalar multiplication (with R equipped with the discrete topology)

 $M_1 \sqsubseteq^R M_2$ if there is an injective continuous *R*-module homomorphism

$$M_1 \sqsubset^R M_2$$
 if $M_1 \sqsubseteq^R M_2$ and $M_2 \not\sqsubseteq^R M_1$

Minimal Polish Q-modules

Theorem (Frisch-Shinko)

For R a countable Noetherian ring, there is a countable family N_n , $n \in \mathbb{N}$, of uncountable Polish R-modules, such that, for each uncountable Polish R-module M,

 $N_n \sqsubseteq^R M$ for some n.

If R is a countable field, then there is a **single** uncountable Polish R-vector space N_R such that, for each uncountable Polish R-vector space M,

$$N_R \sqsubseteq^R M.$$

$$N_{\mathbb{Q}} \sqsubseteq^{\mathbb{Q}} \mathbb{R}$$

$N_{\mathbb{Q}} \sqsubset^{\mathbb{Q}} \mathbb{R}$

Question(Frisch-Shinko): Is there anything in between?

Main theorem

Theorem (H.–Solecki)

R a subring of \mathbb{Q} not equal to \mathbb{Z} There exists V_x , $x \subseteq \mathbb{N}$, uncountable Polish *R*-modules such that

- (i) $V_x \sqsubseteq^R \mathbb{R}$;
- (ii) if $x \setminus y$ is finite, then $V_x \sqsubseteq^R V_y$;
- (iii) if $x \setminus y$ is infinite, then each continuous *R*-module homomorphism $V_x \to V_y$ is identically equal to zero; in particular, $V_x \not\sqsubseteq^R V_y$.

Why theorem answers the question

Take $R = \mathbb{Q}$. Take x such that both x and $\mathbb{N} \setminus x$ are infinite. We have

$$N_{\mathbb{Q}} \sqsubset^{\mathbb{Q}} V_x \sqsubset^{\mathbb{Q}} \mathbb{R}.$$

Let $y = \mathbb{N} \setminus x$. $N_{\mathbb{Q}} \sqsubseteq^{\mathbb{Q}} V_x, V_y \sqsubseteq^{\mathbb{Q}} \mathbb{R}$. If $\mathbb{R} \sqsubseteq^{\mathbb{Q}} V_x$, then $V_y \sqsubseteq^{\mathbb{Q}} V_x$, contradiction. If $V_x \sqsubseteq^{\mathbb{Q}} N_{\mathbb{Q}}$, then $V_x \sqsubseteq^{\mathbb{Q}} V_y$, again a contradiction.

Construction

Relevant objects

Base sequences;

Translation invariant analytic P-ideals;

Coherence condition between them.

Base sequences

Base sequence \overrightarrow{a} = sequence (a_n) with $a_n \in \mathbb{N}$ and $a_n \ge 2$, for each $n \in \mathbb{N}$

A unique representation for $r \in \mathbb{R}_{\geq 0}$:

$$r=[r]+\sum_{n=1}^{\infty}\frac{r_n}{a_1\cdots a_n},$$

where [r] is the integer part of r, $0 \le r_n < a_n$ and $r_n \ne a_n - 1$ for infinitely many n.

For a set P of primes define

$$P^{-1}\mathbb{Z} = \{ \frac{k}{l} \mid k \in \mathbb{Z}, l \in \mathbb{N}, \text{ and, for each prime } p, \text{ if } p \mid l, \text{ then } p \in P \}.$$

Each subring of ${\mathbb Q}$ is of this form.

Each such subring is noetherian.

 $\operatorname{pr}(\overrightarrow{a}) = \{p \mid p \text{ a prime and } p \mid a_n \text{ for all but finitely many } n\}$

$$\mathbb{Q}_{\overrightarrow{a}} = \left(\operatorname{pr}(\overrightarrow{a})^{-1} \right) \mathbb{Z}$$

Each subring of ${\mathbb Q}$ is of this form.

Ideals

Ideal = a non-empty family I of subsets of $\mathbb N$ that is closed under \subseteq and finite \cup

I is **translation invariant** if for each $x \in I$,

 $\{n+1 \mid n \in x\} \in I$ and $\{n \mid n+1 \in x\} \in I$.

I is an **analytic P-ideal** if *I* is analytic as a subsets of $2^{\mathbb{N}}$, and $\forall (x_n)$ sequence of elements of *I*, $\exists y \in I$ such that

 $x_n \setminus y$ is finite for each *n*.

Equivalently, by Solecki's theorem, there is a lsc submeasure $\phi\colon 2^{\mathbb{N}}\to [0,\infty]$ such that

 $I = \operatorname{Exh}(\phi) = \{x \subseteq \mathbb{N} \mid \phi(x \setminus \{1, \dots, n\}) \to 0, \text{ as } n \to \infty\}.$

Coherence of base sequences and ideals

$$\overrightarrow{a}$$
 is adapted to I if $\{n \mid a_n \neq a_{n+1}\} \in I$.

Constructing *H*

For non-negative r, let

$$j_{\overrightarrow{a}}(r) = \{n \in \mathbb{N} \mid r_n \neq r_{n+1}\}.$$

 $j_{\overrightarrow{a}}$ collects "jumps" of digits.

$H = \{r \mid r \in \mathbb{R}_{\geq 0} \text{ and } j_{\overrightarrow{a}}(r) \in I\} \cup \{-r \mid r \in \mathbb{R}_{\geq 0} \text{ and } j_{\overrightarrow{a}}(r) \in I\}$

Lemma

If I is translation invariant and \overrightarrow{a} is adapted to I, then

- (i) *H* is a subgroup of \mathbb{R} taken with addition +.
- (ii) *H* is closed under the multiplication by elements of $\mathbb{Q}_{\overrightarrow{a}}$.

Topologizing H

I is an analytic P-ideal. Fix ϕ such that $I = \text{Exh}(\phi)$. Define

$$ho({m r},{m s})=\phiig(j(|{m r}-{m s}|)ig)+|{m r}-{m s}|, \;\; ext{for}\; {m r},{m s}\in\mathbb{R}.$$

 ρ is almost a metric.

Lemma

There exists a metric d on H such that for each $\epsilon > 0$, there exists $\delta > 0$ with

$$ig(
ho(r,s)<\delta\Rightarrow d(r,s)<\epsilonig) ext{ and } ig(d(r,s)<\delta\Rightarrow
ho(r,s)<\epsilonig),$$

for all $r, s \in H$.

We call the topology induced by the metric d the **submeasure topology**.

Define

 $I[\overrightarrow{a}] := H$ with the submeasure topology with addition + and $\mathbb{Q}_{\overrightarrow{a}}$ -scalar multiplication.

Polish $\mathbb{Q}_{\overrightarrow{a}}$ -modules

Theorem

I a translation invariant, analytic P-ideal of subsets of $\ensuremath{\mathbb{N}}$

 \overrightarrow{a} a base sequence adapted to I

Then $I[\overrightarrow{a}]$ is a Polish $\mathbb{Q}_{\overrightarrow{a}}$ -module and the identity map $I[\overrightarrow{a}] \to \mathbb{R}$ is a continuous $\mathbb{Q}_{\overrightarrow{a}}$ -embedding.

Inclusions, non-inclusions and homomorphisms among modules

In this section, we assume

- I, J are translation invariant, analytic P-ideals;
- \overrightarrow{a} is a base sequence adapted to both I and J.

Inclusion \Rightarrow inclusion

Proposition

If $I \subseteq J$, then $I[\overrightarrow{a}] \subseteq J[\overrightarrow{a}]$.

Strong non-inclusion

I is not included in J on intervals if

 \exists lsc submeasures ϕ and ψ with $I = \text{Exh}(\phi)$ and $J = \text{Exh}(\psi)$, for which $\exists d > 0$ such that

 $\inf\{\phi(P) \mid P \text{ an interval in } \mathbb{N} \text{ with } \psi(P) \geq d\} = 0.$

This property implies $I \nsubseteq J$.

Strong non-inclusion \Rightarrow strong non-inclusion

I is **tall** if each infinite subset of \mathbb{N} contains an infinite subset in *I*.

For a subset X of \mathbb{R} and a real number c, we write

$$c X = \{ cx \mid x \in X \}.$$

Theorem

I a tall ideal

If I is not included in J on intervals, then for each $c \neq 0$,

 $c I[\overrightarrow{a}] \not\subseteq J[\overrightarrow{a}].$

About the proof:

 $\begin{aligned} \forall \epsilon > 0, \ \exists w \in I[\overrightarrow{a}] \text{ such that} \\ (a) \ 0 \leq w < \epsilon; \\ (b) \ \phi(j(w)) < \epsilon; \\ (c) \ \psi(j(c w)) > d. \end{aligned}$

Assume for contradiction that $c I[\overrightarrow{a}] \subseteq J[\overrightarrow{a}]$, then

 $x \mapsto cx$

defines a continuous homomorphism $I[\overrightarrow{a}] \rightarrow J[\overrightarrow{a}]$.

(a), (b) and (c) contradict continuity at 0.

Consequences on homomorphism

 \overrightarrow{a} is **uniform** if

$$\operatorname{pr}(\overrightarrow{a}) = \{p \mid p \text{ a prime and } p \mid a_n \text{ for some } n\}.$$

Lemma

 $\begin{array}{c} I \ a \ tall \ ideal \\ \overrightarrow{a} \ a \ uniform \ base \ sequence \\ \end{array}$

If $f: I[\overrightarrow{a}] \to J[\overrightarrow{a}]$ is a continuous $\mathbb{Q}_{\overrightarrow{a}}$ -module homomorphism, then there exists $c \in \mathbb{R}$ with f(y) = c y for all $y \in I[\overrightarrow{a}]$.

Corollary

I a tall ideal

 \overrightarrow{a} a uniform base sequence

If I is not included in J on intervals, then each continuous $\mathbb{Q}_{\overrightarrow{a}}$ -module homomorphism from $I[\overrightarrow{a}]$ to $J[\overrightarrow{a}]$ is identically equal to 0.

Proof of the main theorem

Family of P-ideals

$$P_k = \{n \in \mathbb{N} \mid 2^{k-1} \le n < 2^k\}, k \in \mathbb{N}.$$

For $x \subseteq \mathbb{N}$, $A_x = \bigcup_{k \in x} P_k$, and

$$\phi_{\mathsf{X}}(\mathsf{a}) = \sum_{\mathsf{n}\in\mathsf{a}\cap\mathsf{A}_{\mathsf{X}}} \frac{1}{2^{\mathsf{n}}} + \sum_{\mathsf{n}\in\mathsf{a}\setminus\mathsf{A}_{\mathsf{X}}} \frac{1}{\mathsf{n}}.$$

 ϕ_x is a lsc submeasure.

Define

$$I_x = \operatorname{Exh}(\phi_x)$$

For each x, I_x is a translation invariant, analytic P-ideal that is tall.

- $x \setminus y$ finite $\Longrightarrow I_x \subseteq I_y$
- $x \setminus y$ infinite $\Longrightarrow I_x$ is not included in I_y on intervals

Proof of main theorem

R is given. Take \overrightarrow{a} with three properties:

- (i) $R = \mathbb{Q}_{\overrightarrow{a}}$; (ii) \overrightarrow{a} uniform; (...) \overrightarrow{a} lead to be a field
- (iii) \overrightarrow{a} adapted to I_x for each $x \subseteq \mathbb{N}$.

For each x, $I_x[\overrightarrow{a}] \subseteq \mathbb{R}$ is a Polish *R*-module and the identity map is a continuous *R*-embedding.

If $x \setminus y$ is finite, then $I_x[\overrightarrow{a}] \subseteq I_y[\overrightarrow{a}]$. The inclusion map $I_x[\overrightarrow{a}] \to I_y[\overrightarrow{a}]$ is an *R*-module homomorphism and it is continuous by Pettis Theorem.

If $x \setminus y$ is infinite, then every continuous *R*-module homomorphism from $I_x[\overrightarrow{a}] \to I_y[\overrightarrow{a}]$ is constantly 0.

Thank you!