Homeomorphism groups of Knaster continua

Sumun lyer

Cornell University

November 2022

< A

э

na (~ 1

Introduction

臣

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let G be a topological group.

If G acts continuously on a compact Hausdorff space X, then we call X a G-flow.

A G-flow, X, is **minimal** if every orbit is dense in X.

э

SQR 3

Let G be a topological group.

If G acts continuously on a compact Hausdorff space X, then we call X a G-flow.

A G-flow, X, is **minimal** if every orbit is dense in X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a universal minimal flow for G and it is unique (up to G-flow isomorphism).

Denote the universal minimal flow of G by $\mathcal{M}(G)$.

Theorem (Veech, 1977)

Every locally compact non-compact group has non-metrizable universal minimal flow.

- ∢ ≣ →

A 16

3

Theorem (Veech, 1977)

Every locally compact non-compact group has non-metrizable universal minimal flow.

G is **extremely amenable** if $\mathcal{M}(G)$ is a single point. Equivalently, *G* is extremely amenable if every *G*-flow, *X*, has a fixed point (a point $x_0 \in X$ so that $gx_0 = x_0$ for all $g \in G$).

Theorem (Veech, 1977)

Every locally compact non-compact group has non-metrizable universal minimal flow.

G is extremely amenable if $\mathcal{M}(G)$ is a single point. Equivalently, G is extremely amenable if every G-flow, X, has a fixed point (a point $x_0 \in X$ so that $gx_0 = x_0$ for all $g \in G$).

Examples of extremely amenable groups arise via:

(1) automorphism groups of Fraissé structures (closed subgroups of S_{∞})-Aut($\mathbb{O}, <$) (Pestov)

(2) infinite-dimensional groups from analysis and measure theory– $U(\ell^2)$ (Gromov-Milman), $Aut(X, \mu)$ (Giordano-Pestov)

Motivation: to study universal minimal flows of homeomorphism groups of indecomposable continua–the pseudo-arc and Knaster continua.

A continuum is a compact, connected, metric space

A continuum X is **indecomposable** if $X = A \cup B$ for subcontinua A, B implies A = X or B = X.

Figure: Knaster's buckethandle continuum

Question: (Uspenskij, 2000) What is the universal minimal flow of Homeo(P), for P the pseudo-arc? (pseudo-arc = chainable and hereditarily indecomposable)

Knaster continua = simpler than the pseudo-arc but still indecomposable

Examples

 $\mathrm{Homeo}_+[0,1]$ — extremely amenable (Pestov)

 $\mathcal{M}(\operatorname{Homeo}_+(\mathbb{S}^1)) \simeq \mathbb{S}^1$ (Pestov)

 $\mathcal{M}(\operatorname{Homeo}(L))$, for L the Lelek fan is metrizable (Bartošová and Kwiatkowska)

 $\mathcal{M}(\operatorname{Homeo}(P)) = ??$

Knaster continua and main theorem

Knaster continua

A Knaster continuum is a continuum of the form

 $\varprojlim(I_n,T_n)$

where each $I_n = [0, 1]$ and T_n is an open, continuous surjection.

Knaster continua

A Knaster continuum is a continuum of the form

 $\varprojlim(I_n, T_n)$

where each $I_n = [0, 1]$ and T_n is an open, continuous surjection.

Ex. buckethandle =
$$\varprojlim(I_n, s_2)$$
 where

$$s_2(x) = \begin{cases} 2x & \text{if } 0 \le x < 1/2 \\ 2 - 2x & \text{if } 1/2 \le x \le 1 \end{cases}$$

(日)

Figure: Knaster's buckethandle continuum

- 31

Main theorem

Define: the **universal Knaster continuum** to be a Knaster continuum which continuously and openly surjects onto all other Knaster continua

K will be the universal Knaster continuum

Theorem (I., 2022)

The group Homeo(K) is isomorphic as a topological group to

 $U \rtimes F$

where U is a Polish extremely amenable group and F is the free abelian group on countably many generators.

Corollary $\mathcal{M}(Homeo(K))$ is homeomorphic to $\mathcal{M}(F)$.

. ⊒ . . .

< 47 ►

990 II

Projective Fraïssé limits

→

э

Projective Fraissé limits

For us a **graph** is a set A equipped with a symmetric, reflexive relation R^A . An **epimorphism** is a map between graphs which preserves the relation and is surjective on vertices and edges.

Projective Fraissé limits

For us a **graph** is a set A equipped with a symmetric, reflexive relation R^A . An **epimorphism** is a map between graphs which preserves the relation and is surjective on vertices and edges.

A **projective Fraissé category**, \mathcal{F} , is a countable (up to isomorphism) category of finite graphs and morphisms

- 1. each morphism is an epimorphism
- 2. ${\mathcal F}$ satisfies the joint projection property
- 3. \mathcal{F} satisfies the projective amalgamation property.

Projective Fraissé limits

For us a **graph** is a set A equipped with a symmetric, reflexive relation R^A . An **epimorphism** is a map between graphs which preserves the relation and is surjective on vertices and edges.

A **projective Fraissé category**, \mathcal{F} , is a countable (up to isomorphism) category of finite graphs and morphisms

- 1. each morphism is an epimorphism
- 2. ${\mathcal F}$ satisfies the joint projection property
- 3. \mathcal{F} satisfies the projective amalgamation property.

A **topological graph** is a graph such that the underlying set X is a compact, metrizable, zero-dimensional space and R^X is closed. (e.g., each finite graph with discrete topology)

Definition: for \mathcal{F} a Fraissé class, let \mathcal{F}^{ω} be all topological graphs formed as inverse limits of a sequence of structures in \mathcal{F} via morphisms in \mathcal{F} .

Theorem (Irwin, Solecki, 2006)

Let \mathcal{F} be a projective Fraissé class. There exists a unique (up to isomorphism) topological graph $\mathbb{F} \in \mathcal{F}^{\omega}$ so that:

- 1. for each $A \in \mathcal{F}$, there is a morphism $\mathbb{F} \to A$
- 2. for $A, B \in \mathcal{F}$, morphisms $f : \mathbb{F} \to A$ and $g : B \to A$, there is a morphism $h : \mathbb{F} \to B$ with $f = g \circ h$.

Morphisms in \mathcal{F}^{ω} :

Ramsey categories and the KPT correspondence

Sumun Iyer (Cornell University) Homeomorphism groups of Knaster continua November

Ramsey categories

Let \mathcal{F} be a projective Fraisse category.

Notation: for $A, B \in \mathcal{F}$, hom(B, A) is the set of all morphisms $B \to A$.

We say $A \in \mathcal{F}$ has the **Ramsey property** if for every $B \in \mathcal{F}$ and $d \in \mathbb{N}$ there exists $C \in \mathcal{F}$ so that for any coloring $c : hom(C, A) \rightarrow d$, there exists some $f \in hom(C, B)$ such that

 $hom(B, A) \circ f$ is *c*-monochromatic.

 \mathcal{F} is a **Ramsey category** if every object in \mathcal{F} has the Ramsey property.

√ Q (~ 17

Theorem (Kechris, Pestov, Todorcevic, 2005)

Let \mathcal{F} be a projective Fraïssé category with limit \mathbb{F} . The following are equivalent:

- 1. $Aut(\mathbb{F})$ is extremely amenable.
- 2. \mathcal{F} is a Ramsey category and members of \mathcal{F} are rigid.

The **Ramsey degree** of $A \in \mathcal{F}$ is the minimum $m \in \mathbb{N}$ such that for any n > m and $B \in \mathcal{F}$, there is $C \in \mathcal{F}$ so that for any coloring $c : \hom(C, A) \to n$, there exists $f \in \hom(C, B)$ such that

 $|\mathsf{hom}(B,A) \circ f| \leq m$

Theorem (Zucker, 2016)

Let \mathcal{F} , \mathbb{F} be as before. Then, $\mathcal{M}(Aut(\mathbb{F}))$ is metrizable if and only if every member of \mathcal{F} has finite Ramsey degree and members of \mathcal{F} are rigid.

Ideal situation

The ideal is: start with a projective Fraïssé class $\ensuremath{\mathcal{C}}$ such that :

- 1. $R^{\mathbb{C}}$ is transitive
- 2. $\mathbb{C}/R^{\mathbb{C}}$ is homeomorphic to the continua ${\it C}$ you care about
- the category C "approximates" homeomorphisms of C well; i.e, Aut(ℂ) is dense in Homeo(C)

Then, compute the universal minimal flow of $\operatorname{Aut}(\mathbb{C})$ via KPT

<u>Fact:</u> If $H \leq G$ is dense and H is extremely amenable, then so is G.

Approximating the universal Knaster continuum

Projective Fraïssé construction

Let ${\mathcal K}$ be the category of all finite, reflexive, connected linear graphs with a marked endpoint.

epimorphisms = surjective maps that preserve R and marked endpoint

Morphisms in \mathcal{K} are "tent-like" maps:

Degree:

Proposition

 \mathcal{K} is a projective Fraïssé category.

Sumun Iyer (Cornell University) Homeomorphism groups of Knaste

November 2022

23

Let \mathbb{K} be the Fraïssé limit of \mathcal{K} . Then:

Theorem

The relation $R^{\mathbb{K}}$ is a closed equivalence relation and

- 1. $\mathbb{K}/R^{\mathbb{K}}$ is homeomorphic to the universal Knaster continuum
- 2. $Aut(\mathbb{K})$ is a dense subgroup of Homeo(K)

Let \mathbb{K} be the Fraïssé limit of \mathcal{K} . Then:

Theorem

The relation $R^{\mathbb{K}}$ is a closed equivalence relation and

- 1. $\mathbb{K}/R^{\mathbb{K}}$ is homeomorphic to the universal Knaster continuum
- 2. $Aut(\mathbb{K})$ is a dense subgroup of Homeo(K)

It turns out: \mathcal{K} contains an object with infinite Ramsey degree $\implies \mathcal{M}(\operatorname{Aut}(\mathbb{K}))$ is non-metrizable.

Note: this gives no information about Homeo(K)...

Solution: consider a modified class, \mathcal{K}^* .

Objects: pairs (A, q) where A is a finite pointed linear graph and $q \in \mathbb{Q}^{>0}$

 $\underbrace{ \text{Morphisms:}}_{\text{in } \mathcal{K} \text{ and } \deg(f) = \frac{r}{q} } (A, q) \text{ is a morphism if } f : B \to A \text{ is a morphism }$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○ 25

Proposition The category \mathcal{K}^* is a Ramsey category.

The proof uses the classical Ramsey theorem.

26

Proposition The category \mathcal{K}^* is a Ramsey category.

The proof uses the classical Ramsey theorem.

So: $Aut(\mathbb{K}^*)$ is extremely amenable (by KPT)

What does this mean for Homeo(K)?

Turns out: $Aut(\mathbb{K}^*)$ is dense in the subgroup $Homeo^1(K)$ of degree one homeomorphisms of K

э

27

Turns out: $Aut(\mathbb{K}^*)$ is dense in the subgroup $Homeo^1(K)$ of degree one homeomorphisms of K

Debski, 1985– defines a notion of a **degree** for continuous open maps between Knaster continua

Theorem (Debski, 1985)

There is a continuous map deg : $Homeo(K) \to \mathbb{Q}^{\times}$ which is a group homomorphism.

(Here, \mathbb{Q}^{\times} is the group of positive rationals with multiplication.)

Main theorem again

Theorem

The group Homeo(K) is isomorphic as a topological group to $U \rtimes F$ where U is Polish and extremely amenable and F is the free abelian group on countably many generators.

The U above is exactly $Homeo^1(K)$.

So: $\mathcal{M}(\operatorname{Homeo}(K))$ is homeomorphic to $\mathcal{M}(\mathbb{Q}^{\times})$ and the action of $\operatorname{Homeo}(K)$ on $\mathcal{M}(\mathbb{Q}^{\times})$ is exactly the action via the degree map.

Thank you for listening :)

글 제 제 글 제

A D > A B > A