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Let G be a topological group.

If G acts continuously on a compact Hausdorff space X, then we call X a
G-flow.

A G-flow, X, is minimal if every orbit is dense in X.
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Let G be a topological group.

If G acts continuously on a compact Hausdorff space X, then we call X a
G-flow.

A G-flow, X, is minimal if every orbit is dense in X.

Theorem (Ellis, 1960)

Let G be a topological group. There is a universal minimal flow for G and
it is unique (up to G-flow isomorphism).

Denote the universal minimal flow of G by M(G).
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minimal flow.

Every locally compact non-compact group has non-metrizable universal
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Theorem (Veech, 1977)

Every locally compact non-compact group has non-metrizable universal
minimal flow.

G is extremely amenable if M(G) is a single point. Equivalently, G is
extremely amenable if every G-flow, X, has a fixed point (a point xp € X
so that gxo = xp for all g € G).
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Theorem (Veech, 1977)

Every locally compact non-compact group has non-metrizable universal
minimal flow.

G is extremely amenable if M(G) is a single point. Equivalently, G is
extremely amenable if every G-flow, X, has a fixed point (a point xp € X
so that gxo = xp for all g € G).

Examples of extremely amenable groups arise via:

(1) automorphism groups of Fraissé structures (closed subgroups of
So0)—Aut(Q, <) (Pestov)

(2) infinite-dimensional groups from analysis and measure theory— U(¢?)
(Gromov-Milman), Aut(X, 1) (Giordano-Pestov)
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Motivation: to study universal minimal flows of homeomorphism groups
of indecomposable continua—the pseudo-arc and Knaster continua.

A continuum is a compact, connected, metric space

A continuum X is indecomposable if X = AU B for subcontinua A, B
implies A= X or B = X.

N LJ ftt

Figure: Knaster's buckethandle continuum
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Question: (Uspenskij, 2000) What is the universal minimal flow of
Homeo(P), for P the pseudo-arc? (pseudo-arc = chainable and
hereditarily indecomposable)

Knaster continua = simpler than the pseudo-arc but still indecomposable
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Examples

Homeo [0, 1] — extremely amenable (Pestov)
M(Homeo, (S)) ~ S* (Pestov)

M(Homeo(L)), for L the Lelek fan is metrizable (BartoSova and
Kwiatkowska)

M(Homeo(P)) =77
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Knaster continua and main theorem

Sumun lyer (Cornell University) Homeomorphism groups of Knaster continua



Knaster continua

A Knaster continuum is a continuum of the form

jim(, T,)

where each I, = [0,1] and T, is an open, continuous surjection.
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Knaster continua

A Knaster continuum is a continuum of the form

jim(, T,)

where each I, = [0,1] and T, is an open, continuous surjection.

Ex. buckethandle = I'ﬂ(l,,, s») where

(x) 2x if0<x<1/2

s(x) =

2 2—2x if1/2<x <1 Figure: Knaster's buckethandle
continuum
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Main theorem
Define: the universal Knaster continuum to be a Knaster continuum
which continuously and openly surjects onto all other Knaster continua
K will be the universal Knaster continuum
Theorem (1., 2022)
The group Homeo(K) is isomorphic as a topological group to
UxF

where U is a Polish extremely amenable group and F is the free abelian
group on countably many generators.
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M(Homeo(K)) is homeomorphic to M(F).
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Projective Fraissé limits
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Projective Fraissé limits

For us a graph is a set A equipped with a symmetric, reflexive relation
RA. An epimorphism is a map between graphs which preserves the
relation and is surjective on vertices and edges.
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Projective Fraissé limits

For us a graph is a set A equipped with a symmetric, reflexive relation
RA. An epimorphism is a map between graphs which preserves the
relation and is surjective on vertices and edges.

A projective Fraissé category, F, is a countable (up to isomorphism)
category of finite graphs and morphisms

1. each morphism is an epimorphism
2. F satisfies the joint projection property
3. F satisfies the projective amalgamation property.

Sumun lyer (Cornell University) Homeomorphism groups of Knaster continua



Projective Fraissé limits

For us a graph is a set A equipped with a symmetric, reflexive relation
RA. An epimorphism is a map between graphs which preserves the
relation and is surjective on vertices and edges.

A projective Fraissé category, F, is a countable (up to isomorphism)
category of finite graphs and morphisms

1. each morphism is an epimorphism
2. F satisfies the joint projection property
3. F satisfies the projective amalgamation property.

Amalgamation property: D
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A topological graph is a graph such that the underlying set X is a
compact, metrizable, zero-dimensional space and RX is closed.
(e.g., each finite graph with discrete topology)

Definition: for F a Fraissé class, let % be all topological graphs formed
as inverse limits of a sequence of structures in F via morphisms in F.
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Theorem (Irwin, Solecki, 2006)
Let F be a projective Fraissé class. There exists a unique (up to
isomorphism) topological graph F € F¥ so that:

1. for each A € F, there is a morphism F — A

2. for A,B € F, morphisms f : F — A and g : B — A, there is a
morphism h: F — B with f = g o h.

Morphisms in F“:
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Ramsey categories and the KPT
correspondence
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Ramsey categories
Let F be a projective Fraisse category.
Notation: for A, B € F, hom(B, A) is the set of all morphisms B — A.

We say A € F has the Ramsey property if for every B € F and d € N
there exists C € F so that for any coloring ¢ : hom(C, A) — d, there
exists some f € hom(C, B) such that

hom(B, A) o f is c-monochromatic.

F is a Ramsey category if every object in F has the Ramsey property.
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Theorem (Kechris, Pestov, Todorcevic, 2005)

Let F be a projective Fraissé category with limit F. The following are
equivalent:

1. Aut(F) is extremely amenable.

2. F is a Ramsey category and members of F are rigid.
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The Ramsey degree of A € F is the minimum m € N such that for any
n> m and B € F, there is C € F so that for any coloring
¢ : hom(C, A) — n, there exists f € hom(C, B) such that

[hom(B,A)o f| < m

Theorem (Zucker, 2016)

Let F, F be as before. Then, M(Aut(F)) is metrizable if and only if every
member of F has finite Ramsey degree and members of F are rigid.
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Ideal situation

The ideal is: start with a projective Fraissé class C such that :
1. RC is transitive
2. C/RT is homeomorphic to the continua C you care about

3. the category C “approximates” homeomorphisms of C well; i.e,
Aut(C) is dense in Homeo(C)

Then, compute the universal minimal flow of Aut(C) via KPT

Fact: If H < G is dense and H is extremely amenable, then so is G.
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Approximating the universal Knaster
continuum
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Projective Fraissé construction

Let IC be the category of all finite, reflexive, connected linear graphs with
a marked endpoint.

epimorphisms = surjective maps that preserve R and marked endpoint
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Morphisms in IC are “tent-like” maps

Degree:

IC is a projective Fraissé category.
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Let K be the Fraissé limit of IC. Then:

Theorem

The relation R¥ is a closed equivalence relation and
1. K/R¥ is homeomorphic to the universal Knaster continuum
2. Aul(K) is a dense subgroup of Homeo(K)
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Let K be the Fraissé limit of KC. Then:

Theorem

The relation R¥ is a closed equivalence relation and
1. K/R¥ is homeomorphic to the universal Knaster continuum
2. Aul(K) is a dense subgroup of Homeo(K)

It turns out: C contains an object with infinite Ramsey degree
= M(Aut(K)) is non-metrizable.

Note: this gives no information about Homeo(K)...
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Solution: consider a modified class, C*.

Objects: pairs (A, g) where A is a finite pointed linear graph and g € Q>°

Morphisms: 7 : (B, r) — (A, q) is a morphism if f : B — A is a morphism

in K and deg(f) = ¢
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The category K* is a Ramsey category.

The proof uses the classical Ramsey theorem.

Sumun lyer (Cornell University)

o F
Homeomorphism groups of Knaster continua

Ay 26
November 2022

26 /33



Proposition
The category K* is a Ramsey category.

The proof uses the classical Ramsey theorem.

So: Aut(K*) is extremely amenable (by KPT)

What does this mean for Homeo(K)?
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Turns out: Aut(K*) is dense in the subgroup Homeo'(K) of degree one
homeomorphisms of K
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Turns out: Aut(K*) is dense in the subgroup Homeo!(K) of degree one
homeomorphisms of K

Debski, 1985— defines a notion of a degree for continuous open maps
between Knaster continua

Theorem (Debski, 1985)

There is a continuous map deg : Homeo(K) — Q* which is a group
homomorphism.

(Here, Q* is the group of positive rationals with multiplication.)
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Main theorem again

Theorem

The group Homeo(K) is isomorphic as a topological group to U x F
where U is Polish and extremely amenable and F is the free abelian group
on countably many generators.

The U above is exactly Homeo!(K).

So: M(Homeo(K)) is homeomorphic to M(Q*) and the action of
Homeo(K) on M(Q*) is exactly the action via the degree map.
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Thank you for listening :)
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