Almost disjoint families in dimension 2 and higher

Asger Törnquist

Department of Mathematical Sciences University of Copenhagen

Joint work with David Schrittesser (U. Toronto)

Caltech logic seminar January 18, 2023

The goal of this talk is to give such an overview of the proof of:

Theorem (Schrittesser-Törnquist, 2021-22)

(ZF+DC+R-Unif) Let \mathcal{I} be an iterated Frechet ideal. If all sets are (completely) Ramsey then there are no infinite \mathcal{I} -mad families.

Background

In this talk:

- $[\mathbb{N}]^{\infty} = \text{infinite subsets of } \mathbb{N}.$
- $FIN = [\mathbb{N}]^{<\infty} = finite subsets of \mathbb{N}.$
- A family A ⊆ [N][∞] is almost disjoint if for any distinct x, y ∈ A, the intersection x ∩ y ∈ FIN.
- A mad family is a maximal almost disjoint family.

In recent years, there has been a lot new results about the (un-)definability of infinite mad families. One such theorem is the following:

Theorem (Schrittesser-Törnquist, 2018-2019)

(ZF+DC+R-Unif) If all sets are (completely) Ramsey then there are no infinite mad families.

This talk is about generalizing this to the situation where FIN is replaced by **Fubini products** of FIN with itself. *Especially the 2-dimensional case*,

 $\mathsf{FIN}^2=\mathsf{FIN}\otimes\mathsf{FIN}=\{\textbf{X}\subseteq\mathbb{N}^2\mid \textbf{X} \text{ has finitely many infinite verticals}\}.$

Notation

You've already noticed I used a boldface capital letter for a subset $\mathbf{X} \subseteq \mathbb{N}^2$. I'll stick to that throughout the talk.

I also talked about verticals: If $X \subseteq \mathbb{N}^2$ and $n \in \mathbb{N}$, the vertical at n is

$$\mathbf{X}(n) = \{m \in \mathbb{N} : (n, m) \in \mathbf{X}\}.$$

So: $FIN^2 = {\mathbf{X} \subseteq \mathbb{N}^2 : {n \in \mathbb{N} : |\mathbf{X}(n)| = \infty}}$ is finite}.

You also noticed I said completely Ramsey. Recall:

- For $a \subset \mathbb{N}$ finite and $A \subseteq \mathbb{N}$, $a \sqsubseteq A$ means *a* is an initial segment of *A*.
- When $a \sqsubseteq A$ and A is infinite,

 $[a, A] = \{B \in [\mathbb{N}]^{\infty} : a \sqsubseteq B \subseteq A\}$ (Ellentuck open nbhd)

Note: $[\emptyset, A] = [A]^{\infty} =$ all infinite subsets of A.

S ⊆ [N][∞] is completely Ramsey if for every finite a ⊆ N and infinite A ⊆ N with a ⊑ A there is B ∈ [a, A] such that

$$[a, B] \subseteq S$$
 or $[a, B] \cap S = \emptyset$.

The theorem

Definition

- Let I be an ideal on N. A family A ⊆ P(N) is called I-disjoint if for any distinct x, y ∈ A we have x ∩ y ∈ I.
- An \mathcal{I} -disjoint family is \mathcal{I} -mad (or m \mathcal{I} d) if it is a maximal \mathcal{I} -disjoint family.
- An **iterated Frechet ideal** is an ideal that arises as a finite or infinite iteration of the Fubini product operation ⊗, starting from FIN.

E.g., $FIN \otimes FIN = {\mathbf{X} \subseteq \mathbb{N}^2 \mid {n \in \mathbb{N} : \mathbf{X}(n) \notin FIN} \in FIN} = FIN^2$.

Theorem (Schrittesser-Törnquist, 2021-22)

(ZF+DC+R-Unif) Let \mathcal{I} be an iterated Frechet ideal. If all sets are (completely) Ramsey then there are no infinite \mathcal{I} -mad families.

In particular: If all sets are Ramsey then there are no infinite FIN²-mad families.

What is *really* in this talk

I this talk, I will sketch a proof of the following special case of the theorem:

Theorem (Haga-Schrittesser-T., 2016)

There are no infinite analytic FIN²-mad families.

Remarks:

- The proof I will sketch is based on the Ramsey-theoretic approach developed for the much more general theorem on the previous slide.
- The original proof due to Haga-Schrittesser-T. used forcing and absoluteness (and proved much more beyond analytic sets.)
- In the analytic case, we don't to say anything about R-Unif, since in this case we have the Jankov-von Neumann uniformization theorem, and we don't need to say anything about completely Ramsey, because all analytic sets are completely Ramsey.

For the remainder of the talk, we fix $\mathcal{A} \subseteq \mathcal{P}(\mathbb{N} \times \mathbb{N})$ which is an infinite analytic FIN²-almost disjoint family. We will eventually prove that \mathcal{A} is not maximal.

Asger Törnquist

From 1 to 2 dimensions: The tilde operator

The key idea behind the Ramsey-theoretic proof that there are no infinite analytic FIN²-mad families is an operator, which we call the **tilde operator**, which transforms an infinite set $A \subseteq \mathbb{N}$ to a set $\tilde{A} \in \text{FIN}^{2+}$.

Let $A \subseteq \mathbb{N}$ be infinite. Recall: \mathcal{A} is our fixed, infinite FIN²-a.d. family. As a small simplifying assumptions, we suppose we have a sequence $Z^{\ell} \in \mathcal{A}$, where $\ell \in \mathbb{N}$, such that

• all non-empty columns (i.e., verticals) of \mathbf{Z}^{ℓ} are infinite;

•
$$\ell \neq m \implies \mathbf{Z}^{\ell} \cap \mathbf{Z}^m = \emptyset.$$

Denote by $\hat{\mathbf{Z}}^{\ell}(m, n)$ the entry $(p, q) \in \mathbf{Z}^{\ell}$ where p is the first coordinate of the m'th non- \emptyset column of \mathbf{Z}^{ℓ} , and q is the n'th entry in this column.

Definition (Definition of \tilde{A} , given $A \subseteq \mathbb{N}$)

 $ilde{A} = \{ \hat{\mathbf{Z}}^{\ell}(m, n) : \ell, m, n \in A \land \ell < m < n \land \ell \text{ and } m \text{ are consecutive in } A \}.$

Note: It is easy to show that $\tilde{A} \in FIN^{2+}$.

Theorem (Genericity theorem for the tilde operator; Schrittesser-T.)

The set

 $\{A \in [\mathbb{N}]^{\infty} : \tilde{A} \text{ is FIN}^2\text{-almost disjoint from every } \mathbf{X} \in \mathcal{A}\}$

is Ramsey co-null, and so \mathcal{A} is **not** maximal.

Important facts about the tilde operator

Below, a, X, A, A' denote subsets of \mathbb{N} (*a* finite, A, A' infinite by default). (FIN, FIN²)-equivariance: If $A \triangle A' \in \text{FIN}$, then $\tilde{A} \triangle \tilde{A'} \in \text{FIN}^2$.

- Pigeon hole principle for the domain: For any [a, A] there is B ∈ [a, A] such that either dom(B̃) ∩ X ∈ FIN or dom(B̃) ⊆^{FIN} X.
- Pigeon hole principle for the verticals: For any [a, A] and m ∈ dom(Ã), there is B ∈ [a, A] such that m ∈ dom(B̃), and either B̃(m) ∩ X ∈ FIN or B̃(m) ⊆^{FIN} X.
- Almost disjointness principle: For any A ∈ A and [a, A], there is B ∈ [a, A] such that B̃ ∩ A ∈ FIN².

Tree representations

To prove the the genericity theorem for the tilde operator, we need to work with the tree representations of analytic sets in $\mathcal{P}(\mathbb{N} \times \mathbb{N})$.

From now on, we'll usually identify $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ with $2^{\mathbb{N} \times \mathbb{N}}$.

Tree representations for analytic subsets of $2^{\mathbb{N} \times \mathbb{N}}$.

• For any analytic $S \subseteq 2^{\mathbb{N} \times \mathbb{N}}$, there is a **closed** set $F \subseteq 2^{\mathbb{N} \times \mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ such that $S = \pi(F)$.

(Here $\pi: 2^{\mathbb{N} \times \mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N} \times \mathbb{N}}$ is the projection.)

• From this F, we can obtain a "tree"

$$T = \{(s,t) \in \bigcup_{n \in \mathbb{N}} 2^{n \times n} \times \mathbb{N}^n : (\exists x, y \in F) \ x \supseteq s \land y \supseteq t\}.$$

Then F is *exactly* the set of infinite branches through T, i.e. F = [T].
So S = π[T].

Fix a tree T such that $p[T] = A = \text{our fixed FIN}^2$ -disj. family.

The associated trees $T^{\mathbf{X}}$ and $T^{\mathbf{X},d}$

Recall: We have fixed an infinite analytic FIN²-a.d. family \mathcal{A} , and a tree T such that $p[T] = \mathcal{A}$. We'll write T_t for the subtree of those things in T that are compatible with t, i.e., $T_t = \{s \in T : s \subseteq t \lor t \subseteq s\}$.

Definition of the trees $T^{\mathbf{X}}$ and $T^{\mathbf{X},d}$

For each $\mathbf{X} \subseteq \mathbb{N}^2$ and $d \in \mathsf{FIN}$, define

$$T^{\mathsf{X}} = \{t \in T : (\exists \mathsf{A} \in \rho[T_t]) \; \mathsf{A} \cap \mathsf{X} \in \mathsf{FIN}^{2+}\}.$$

$$T^{\mathbf{X},d} = \{t \in T : (\exists \mathbf{A} \in p[T_t]) | \mathbf{A} \cap \mathbf{X} \in \mathsf{FIN}^{2+} \land t \in \mathsf{FIN}^{2+} \land t \in \mathsf{FIN}^{2+} \land t \in \mathsf{FIN}^{2+} \}$$

for all $i \in d$, the intersection of the verticals $\mathbf{A}(i) \cap \mathbf{X}(i)$ are infinite}.

Remark:

• Clearly $T^{\mathbf{X},\emptyset} = T^{\mathbf{X}}$.

We think of *T*^{X,d} as the tree of attempts to find an A ∈ A such that A ∩ X ∈ FIN²⁺ and such that for all *i* ∈ *d*, the intersection of the verticals A(*i*) and X(*i*), which sit above *i*, are infinite.

Invariance properties of $T^{\mathbf{X}}$ and $T^{\mathbf{X},d}$

Let me repeat the definition from the previous slide:

Definition of the trees $T^{\mathbf{X}}$ and $T^{\mathbf{X},d}$

For each $\mathbf{X} \subseteq \mathbb{N}^2$ and $d \in FIN$, define

$$T^{\mathbf{X}} = \{t \in T : (\exists \mathbf{A} \in \mathcal{A} \in \rho[T_t]) \ \mathbf{A} \cap \mathbf{X} \in \mathsf{FIN}^{2+}\}.$$

$$\mathcal{T}^{\mathbf{X},d} = \{t \in \mathcal{T} : (\exists \mathbf{A} \in \mathcal{A} \in p[\mathcal{T}_t]) | \mathbf{A} \cap \mathbf{X} \in \mathsf{FIN}^{2+} \land t \in \mathsf{FIN}^{2+} \land t \in \mathsf{FIN}^{2+} \land t \in \mathsf{FIN}^{2+} \}$$

for all $i \in d$, the intersection of the verticals $\mathbf{A}(i) \cap \mathbf{X}(i)$ are infinite}.

Lemma

(Invariance) If $\mathbf{X} \triangle \mathbf{X}' \in FIN^2$, then $T^{\mathbf{X}} = T^{\mathbf{X}'}$.

3 (Conditional invariance) If $\mathbf{X} \triangle \mathbf{X}' \in FIN^2$ and for each $i \in d$ we have $\mathbf{X}(i) \triangle \mathbf{X}'(i) \in FIN$, then $T^{\mathbf{X},d} = T^{\mathbf{X}',d}$.

Proof: Clear by the definition of T^{X} and $T^{X,d}$.

Lemma

For any $A \in [\mathbb{N}]^{\infty}$ there is an infinite $B \subseteq A$ such that for every $X \in [B]^{\infty}$ and every finite $d \subseteq \operatorname{dom}(\tilde{X})$ we have $T^{\tilde{X},d} = T^{\tilde{B},d}$.

This means: Inside any infinite set $A \subseteq \mathbb{N}$, we can find an infinite $B \subseteq A$ such that the functions $X \mapsto T^{\tilde{X},d}$ are "as constant as possible" on $[B]^{\infty}$.

Proof: Since $X \mapsto T^{\tilde{X},d}$ is Baire measurable with respect to the Ellentuck topology on $[\mathbb{N}]^{\infty}$, we can go through the countably many pairs $(t,d) \in T \times \text{FIN}$ and accept or reject the statement

"
$$t \in T^{ ilde{X},d}$$
 "

For the rest of the talk, fix $A \subseteq \mathbb{N}$ such that the Lemma above holds. That is, we'll assume that $T^{\tilde{X},d} = T^{\tilde{A},d}$ for all $X \in [A]^{\infty}$.

The branch lemma (Proof in Appendix)

Lemma (Branch Lemma)

If $t_0, t_1 \in T^{\hat{A}, d}$ differ in the first component, then there is $d' \in [A]^{<\infty}$ with min $d' > \max d$ and $t'_0, t'_1 \in T^{\tilde{A}, d \cup d'}$ such that one of the following hold: • For all $m > \max d'$ and all $(w_0, w_1) \in [\mathcal{T}_{t'_{\star}}^{\tilde{A}, d \cup d'}] \times [\mathcal{T}_{t'_{\star}}^{\tilde{A}, d \cup d'}]$ $m \notin \operatorname{dom}_{\infty}(\pi(w_0)) \cap \operatorname{dom}_{\infty}(\pi(w_1)).$ **That is:** When we look below t'_0 and t'_1 in $T^{\tilde{A},d\cup d'}$, we won't find any w_0, w_1 with $\pi(w_0) \cap \pi(w_1)$ having a further infinite column. 3 There is $m \in d \cup d'$ and $n \in \mathbb{N}$ such that for all $w_0 \in [T_{t'_n}^{A,d \cup d'}]$ and $w_1 \in [T_{t'_1}^{\overline{A}, d \cup d'}]$ we have: $(\pi(w_0) \cap \pi(w_1))(m) \subseteq n.$

That is: There is some $m \in d \cup d'$ so that if we look below t'_0 and t'_1 in $T^{\tilde{A}, d \cup d'}$, we will never find w_0, w_1 where the intersection $\pi(w_0)(m) \cap \pi(w_1)(m)$ of the columns above m has grown out of n.

Putting it all together: Claim 1

Recall that we're trying to prove:

Theorem (Genericity theorem for the tilde operator; Schrittesser-T.)

The set below is Ramsey co-null, and so A is **not** maximal.

 $\{A \in [\mathbb{N}]^{\infty} : \tilde{A} \text{ is FIN}^2 \text{-almost disjoint from every } \mathbf{X} \in \mathcal{A}\}$

To finish the proof, we'll show that we must have $T^{\tilde{A}} = \emptyset$.

This is enough, since $\mathcal{T}^{\tilde{A}}$ is the tree that searches for some $\mathbf{A} \in \mathcal{A}$ which intersects \tilde{A} in a FIN²⁺ set, so if $\mathcal{T}^{\tilde{A}} = \emptyset$ then $\tilde{A} \cap \mathbf{A} \in \text{FIN}^2$ for all $\mathbf{A} \in \mathcal{A}$.

Claim 1: If $|p[T^{\tilde{A}}]| \leq 1$, then $T^{\tilde{A}} = \emptyset$.

Proof of Claim 1:

Recall the almost disjointness principle for the tilde operator: For any A ∈ A and [a, A], there is B ∈ [a, A] such that B̃ ∩ A ∈ FIN².

• By this principle, we can find $B \in [A]^{\infty}$ with $\tilde{B} \cap \mathbf{A} \in FIN^2$.

• But then
$$T^{\tilde{B}} = \emptyset$$
, whence $T^{\tilde{A}} = \emptyset$.

Claim 2: It is not possible to have $|p[T^{\tilde{A}}]| > 1$.

Before proving this claim (on the next slide), recall the pigeon hole principles for the tilde operator:

Important facts about the tilde operator

Let $X \subseteq \mathbb{N}$.

- Pigeon hole principle for the domain: For any [c, C] there is B ∈ [c, C] such that either dom B̃ ∩ X ∈ FIN or dom B̃ ⊆^{FIN} X.
- **2** Pigeon hole principle for the verticals: For any [c, C] and $m \in \operatorname{dom}(\tilde{C})$, there is $B \in [c, C]$ such that $m \in \operatorname{dom} B$, and either $\tilde{B}(m) \cap X \in \operatorname{FIN}$ or $\tilde{B}(m) \subseteq^{\operatorname{FIN}} X$.

Putting it all together: Claim 2 continued

Recall: Claim 2: It is not possible to have $|p[T^{\hat{A}}]| > 1$.

Proof of Claim 2:

- If p[T^Ã] has at least 2 elements, then we can find t₀, t₁ ∈ T^Ã which are incompatible in the first coordinate.
- Then the **Branch Lemma** tells us that we can find $d \subseteq A$ finite and $t'_0, t'_1 \in T^{\tilde{A}, d}$ with $t'_0 \supseteq t_0$ and $t'_1 \supseteq t_1$ such that for any $\mathbf{X}_0 \in p[T^{\tilde{A}, d}_{t'_0}]$
 - and $\mathbf{X}_1 \in p[\mathcal{T}_{t_1'}^{ ilde{A},d}]$ we have at least one of the following:
 - **1** If $i \notin d$, then $\mathbf{X}_0(i)$ and $\mathbf{X}_1(i)$ can't both be infinite.
 - Or a column above some i ∈ d where X₀(i) ∩ X₁(i) ⊆ n (some fixed n ∈ N).
- In either case, the **pigeon hole principles** for the tilde operator ensures that we can find $B \in [A]^{\infty}$ with $d \in \text{dom}(\tilde{B})$, such that $t'_0 \notin T^{\tilde{B},d}$, contradicting that $T^{\tilde{B},d} = T^{\tilde{A},d}$. \Box_{Claim2}

Thank for listening!

Appendix: Proof of the branch lemma

Proof of the Branch Lemma:

Claim: If the branch lemma fails for $t_0, t_1 \in T^d$, then there is $k > \max d$ and $t'_0, t'_1 \in T^{d \cup \{k\}}$, with $t'_0 \supset t_0$ and $t'_1 \supset t_1$, such that the Branch Lemma fails for t'_0, t'_1 and $d \cup \{k\}$.

Proof of Claim: If the branch lemma holds for t'_0, t'_1 and $d \cup \{k\}$, then it also holds for t_0, t_1 and d.

• Note now that if the branch lemma fails for t_0, t_1 and d, then for any given n we can take $t'_0, t'_1 \in T^{d \cup \{k\}}$ in the claim so that

 $\pi(t_0')(m) \cap \pi(t_1')(m) \not\subseteq n \text{ for all } m \in d \cup \{k\}.$

• Using this, we can build a sequence

$$\max d < k_1 < k_2 < \dots$$

and infinitely growing $t_0^{\ell}, t_1^{\ell} \in T^{d \bigcup \{k_1, \dots, k_\ell\}}$ extending each other, which will build a branch in T where the 1st coordinates will have FIN²⁺ intersection, despite $\pi(t_0) \neq \pi(t_1)$.