Does the axiom of Dependent Choices imply the axiom of Countable Choices, locally? joint work with Lorenzo Notaro

Alessandro Andretta

Dipartimento di Matematica "Giuseppe Peano" Università di Torino

24-01-2023

Some well-known principles

 $\mathsf{DC}(X)$, the axiom of Dependent Choices for X $\forall R \subseteq X^2 (\forall x \exists y (x R y) \Rightarrow \exists (x_n)_{n \in \omega} \forall n (x_n R x_{n+1})).$

(DC)
$$\forall X \neq \emptyset \operatorname{DC}(X)$$

 $\mathsf{AC}_{\omega}(X)$ i.e. $\mathsf{CC}(X)$, the axiom of Countable Choices for X $\forall (A_n)_{n \in \omega} (\forall n \ (\emptyset \neq A_n \subseteq X) \Rightarrow \exists (x_n)_{n \in \omega} \forall n \ (x_n \in A_n)).$

$$(\mathsf{AC}_{\omega}) \qquad \qquad \forall X \, \mathsf{AC}_{\omega}(X)$$

(Torino)

 $\mathsf{AC}(X), \text{ the axiom of choice for } X$ $\exists F \colon \mathscr{P}(X) \to X \, \forall Y \subseteq X \, (Y \neq \emptyset \Rightarrow F(Y) \in Y).$

(AC) $\forall X \neq \emptyset \operatorname{AC}(X)$

For all $X \neq \emptyset$, $AC(X) \Rightarrow DC(X)$ and $AC(X) \Rightarrow AC_{\omega}(X)$, and $DC \Rightarrow AC_{\omega}$.

Question:

Does $DC(X) \Rightarrow AC_{\omega}(X)$ for all X?

To avoid trivialities we assume from now on that X is infinite, i.e. not in bijection with any $n \in \omega$. In particular $X \neq \emptyset$.

Easy facts

If Y is the surjective image of X, then $DC(X) \Rightarrow DC(Y)$.

If $Y \preceq X$, that is Y injects into X, then $AC_{\omega}(X) \Rightarrow AC_{\omega}(Y)$.

 $\mathsf{DC}(X) \text{ is equivalent to the stronger form:} \\ \forall R \subseteq X^2 \left(\forall x \, \exists y \, (x \, R \, y) \Rightarrow \forall \overline{x} \in X \, \exists (x_n)_{n \in \omega} \left(\overline{x} = x_0 \land \forall n \, (x_n \, R \, x_{n+1}) \right) \right).$

If DC(X) and the $\emptyset \neq A_n \subseteq X$ are pairwise disjoint, then there is $(a_n)_n$ such that $a_n \in A_n$, for all $n \in \omega$.

Proof.

Require that every $x \in A_n$ is *R*-related to every $y \in A_{n+1}$.

If the A_n s are not disjoint, the R-chain given by DC(X) might be a loop, meeting only finitely many A_n s.

(Torino)

 $\mathsf{DC}(X \times \omega) \Rightarrow \mathsf{AC}_{\omega}(X).$

Proof.

Given $A_n \subseteq X$, the sets $A_n \times \{n\} \subseteq X \times \omega$ are pairwise disjoint.

If $X \times 2 \precsim X$, then $X \times \omega \precsim X$.

Proof.

If $f_0, f_1 \colon X \to X$ are injective and $\operatorname{ran} f_0 \cap \operatorname{ran} f_1 = \emptyset$, then $F \colon X \times \omega \to X$ defined by $F(x, n) = f_0 \circ \underbrace{f_1 \circ \cdots \circ f_1}_{n \text{ times}}(x)$ is injective \Box

Theorem 1a

If $X \times 2 \preceq X$, then $\mathsf{DC}(X) \Rightarrow \mathsf{AC}_{\omega}(X)$.

In particular $\mathsf{DC}(\mathbb{R}) \Rightarrow \mathsf{AC}_{\omega}(\mathbb{R})$. As every X is contained in some Y such that $Y \times 2 \preceq Y$, then $\mathsf{DC} \Rightarrow \mathsf{AC}_{\omega}$.

Theorem 1b

Assume $AC_{\omega}(\mathbb{R})$. Then $DC(A) \Rightarrow AC_{\omega}(A)$ for all infinite sets A.

Proof.

Assume DC(A) and let $\emptyset \neq A_n \subseteq A$. Define $I: A \to \mathscr{P}(\omega)$, $I(a) = \{n \in \omega \mid a \in A_n\}$. Let $X_n = \{x \in \operatorname{ran} I \mid n \in x\} \subseteq \mathscr{P}(\omega)$. If $a \in A_n$ then $n \in I(a)$ so $I(a) \in X_n$ and hence $\emptyset \neq X_n$ for all $n \in \omega$. By AC_{ω}(\mathbb{R}) pick $x_n \in X_n$ —the x_n s need not be distinct! Let $B_n = I^{-1}(\{x_n\}) \subseteq A$. Then $B_n = \{a \mid I(a) = x_n\} = \{a \mid \{k \mid a \in A_k\} = x_n\}$ and since $n \in x_n$, then $B_n \subseteq A_n$. The B_n s need not be distinct, but if $x_n \neq x_m$ then $B_n \cap B_m = \emptyset$, so after some trivial reindexing, by DC(A) we can pick $a_n \in B_n \subseteq A_n$.

There is another, more constructive proof of Theorem 1b, proving that DC(A) implies $AC_{\omega}^{fin}(A)$ the axiom of countable choices for finite subsets of A.

Theorem 1

Assume one of the following:

- $\mathfrak{m} + \mathfrak{m} = \mathfrak{m}$ for all \mathfrak{m} (i.e. $X \times 2 \precsim X$ for all infinite X)
- $\mathsf{AC}_{\omega}(\mathbb{R})$.

Then $\forall X (\mathsf{DC}(X) \Rightarrow \mathsf{AC}_{\omega}(X)).$

Remarks

It is consistent with ZF that:

- $AC_{\omega}(\mathbb{R})$ fails and $\mathfrak{m} + \mathfrak{m} = \mathfrak{m}$ for all \mathfrak{m} (Sageev, 1975)
- ${\rm AC}_\omega(\mathbb{R})$ holds and there is an infinite X such that $X\times 2$ is not in bijection with X

Theorem 2

It is consistent with ZF that there is $A \subseteq \mathbb{R}$ such that DC(A) holds, but $AC_{\omega}(A)$ fails.

An equivalent (?) version of dependent choices

$\mathsf{DC}_{\omega}(X)$

Let $\emptyset \neq T \subseteq {}^{<\omega}X$ be a (descriptive-set-theoretic) tree on X. If T is pruned then it has an infinite branch.

$$\mathsf{DC}_{\omega}(X) \Rightarrow \mathsf{DC}(X).$$

Proof.

Given $R \subseteq X \times X$ as in the definition of DC(X), the tree T of attempts to build an R-chain is pruned, and any branch of T is the desired sequence.

Proof.

Given T on X, then ${}^{<\omega}X$ maps onto T so DC(T) holds. For $s, t \in T$ set $s \ R \ t$ iff t is an immediate extension of s.

Therefore

$$\mathsf{DC} \Leftrightarrow \mathsf{DC}_{\omega}.$$

 $\mathsf{DC}_\omega(X)\Rightarrow\mathsf{AC}_\omega(X)$ for all infinite X. In particular $\mathsf{DC}(X)$ does not imply $\mathsf{DC}_\omega(X)$ in ZF.

Proof.

Given $\emptyset \neq A_n \subseteq X$, the tree $T = \{s \in {}^{<\omega}X \mid \forall i < \ln s \ (s(i) \in A_i)\}$ is pruned, and any branch of T yields a desired sequence.

Let $X \subseteq \mathbb{R}$ be infinite and such that DC(X) holds.

- For any x ∈ Cl X there is a sequence x_n ∈ X converging to x. In particular X is Dedekind infinite.
- If moreover

eitherX contains a perfect set,

 ${} \hspace{0.1 cm} \text{ or } X \times 2 \precsim X \text{,}$

then $AC_{\omega}(X)$ holds.

Proof.

🚺 is easy.

If X contains a perfect set, then \mathbb{R} embeds into X, hence X and \mathbb{R} would be in bijection, so Therefore $\mathsf{DC}(X) \Rightarrow \mathsf{DC}(\mathbb{R}) \Rightarrow \mathsf{AC}_{\omega}(\mathbb{R}) \Rightarrow \mathsf{AC}_{\omega}(X).$

Theorem 2

There is a model M of ZF in which there is $A \subseteq \mathbb{R}$ such that DC(A) holds but A is non-separable.

The model M is a symmetric extension, that is $V \subset M \subset V[G]$. The forcing \mathbf{P} adds an ω_1 -sequence of reals $\langle x_{\alpha} \mid \alpha < \omega_1 \rangle$, and the set A is $\{x_{\alpha} \mid \alpha < \omega_1\} \in M$, but the enumeration $\langle x_{\alpha} \mid \alpha < \omega_1 \rangle$ does not belong to M. The model M is obtained by taking the interpretation of hereditary symmetric names— the fact that A is non-separable, and hence $AC_{\omega}(A)$ fails, as in Cohen's model.

The difficult bit is to guarantee DC(A).

The forcing

$$\mathbf{P} = igcup_{n \in \omega} \mathbf{P}_n$$
 where $\mathbf{P}_0 \subseteq \mathbf{P}_1 \subseteq \mathbf{P}_2 \subseteq \dots$

These are just inclusions, not complete embeddings. We write \Vdash_n , 1_n and \leq_n instead $\Vdash_{\mathbf{P}_n}$, $1_{\mathbf{P}_n}$ and $\leq_{\mathbf{P}_n}$. $\mathbf{P}_0 = \{ \emptyset \}$ is the trivial forcing.

 \mathbf{P}_{n+1} is the set of all functions p, where $\operatorname{dom} p \subseteq \omega_1$ is countable and there is $X \subseteq \operatorname{dom} p$ such that:

•
$$p \upharpoonright X \in \mathbf{P}_n$$
,

• $p(\alpha)$ is a $\mathbf{P}_n \upharpoonright X$ -name and $p \upharpoonright X \Vdash_{\mathbf{P}_n} (p(\alpha) \text{ is in } {}^{<\omega}2)$, for $\alpha \notin X$,

•
$$p \upharpoonright X \Vdash_n \forall s \exists t (s \subseteq t \text{ and } \forall x \in \dot{E}_{p,x} (t \notin x))$$
, where $\dot{E}_{p,x} = \{ (p(\alpha), 1_n) \mid \alpha \in \operatorname{dom} p \setminus X \}.$

For each $p\in \mathbf{P}_{n+1}$ one can pick a largest X as above, call it X(p). $p\leq_{n+1}q$ iff

- dom $p \supseteq \operatorname{dom} q$,
- $p \upharpoonright X(p) \leq_n q \upharpoonright X(q)$,
- if $\alpha \notin X(q)$ then $p \upharpoonright X(p) \Vdash_n q(\alpha) \subseteq p(\alpha)$.

(There is one further technical requirement, but let's forget about it.)

P adds ω_1 new reals whose names are \dot{a}_{α} ($\alpha < \omega_1$), and a new set with name $\dot{A} = \{(\dot{a}_{\alpha}, 1) \mid \alpha \in \omega_1\}$.

As $V \vDash \mathsf{ZFC}$, so does V[G], and in order to construct a model of ZF where choice fails we must pass to an intermediate transitive class M.

M is obtained by choosing a suitable family of subgroups of the group of all permutations of \mathbf{P} , called a symmetric system. Using this we define the collection of hereditarily symmetric names HS, and we set

$$M = \{ \dot{x}_G \mid x \in \mathsf{HS} \}.$$

Every canonical name for a set in V is in HS, so $V \subseteq M$. Moreover $A := \dot{A}_G \in M$ and $M \models A$ is non-separable. The convoluted definition of **P** is needed to prove that $M \models DC(A)$

The symmetric system

Any bijection $\pi: \omega_1 \to \omega_1$ yields an automorphism $\tilde{\pi}_n: \mathbf{P}_n \to \mathbf{P}_n$, $p \mapsto \tilde{\pi}_n p$:

• $ilde{\pi}_0$ is the identity, since \mathbf{P}_0 is a singleton

•
$$\tilde{\pi}_{n+1}p(\pi(\alpha)) = \tilde{\pi}_n(p(\alpha)).$$

The automorphism agree, i.e. $\tilde{\pi}_{n+1} \upharpoonright \mathbf{P}_n = \tilde{\pi}_n$ so we get an automorphism $\tilde{\pi} \colon \mathbf{P} \to \mathbf{P}$.

Let \mathcal{G} be the group of all automorphisms of \mathbf{P} induced by a permutation $\pi: \omega_1 \to \omega_1$, and let $\mathcal{F} = \{ \operatorname{fix}(E) \mid E \subseteq \omega_1 \text{ countable} \}$, where

$$\operatorname{fix}(E) = \{ \tilde{\pi} \in \mathcal{G} \mid \forall \alpha \in E \, (\pi(\alpha) = \alpha) \}.$$

 \mathcal{F} is a filter of subgroups for \mathcal{G} , and $(\mathbf{P}, \mathcal{G}, \mathcal{F})$ is the symmetric system.

Thank You