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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

Invariant descriptive set theory, the theory of definable equivalence
relations, has (at least) two main objectives.

Measure and compare the difficulties of classification problems in
mathematics

1. Examples: graph isomorphism, isomorphism problem in ergodic
theory

2. Compare classification problems via definable reductions

3. Allows one to determine if a classification problem has a "satisfactory"
solution
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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

Invariant descriptive set theory, the theory of definable equivalence
relations, has (at least) two main objectives.

Study "definable" cardinality

1. Under AC, cardinals are linearly-ordered

2. Without choice, picture much more complicated, and requires difficult
set theory to study

3. Interesting playground: consider quotients X/E of nice topological
spaces by definable equivalence relations, and definable bijections
between them.
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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

We make some assumptions:

1. We consider analytic equivalence relations on Polish spaces.

2. Often times, we specifically want to consider equivalence relations
induced by continuous actions of Polish groups on Polish spaces.

3. Important special case: the Polish group is non-Archimedean

3.1 equivalently, a closed subgroup of S∞
3.2 equivalently, the automorphism group Aut(M) of a countable

structure in a countable language.

4. Notion of definable for a reduction will almost always be a Borel
function.
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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

We will follow the following conventions:

1. G and H are Polish groups

2. X and Y are Polish spaces

3. Orbit equivalence relations EG
X and EH

Y are induced by continuous
actions

4. M is a countable structure in a countable relational language, and is
ultrahomogeneous
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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

Definition 1.1
Given equivalence relations E and F on Polish spaces X and Y, a Borel reduction
from E to F is a Borel function f : X → Y such that x E y iff f (x) F f (y).
When such a reduction exists, we write E ≤B F.

Say that G classifies E iff E ≤B EG
X for some orbit equivalence relation EG

X
induced by G.

We say that G has stronger classification strength than H, denoted H ⪯CS G,
iff G classifies every orbit equivalence relation induced by H.
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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

▶ ⪯CS defines a preorder on the class of all Polish groups;

▶ Every Polish group has a universal orbit equivalence relation
(maximum with respect to Borel reducibility among all orbit
equivalence relations it induces)

There are two special equivalence relations we will need to consider:

1. =+ lives on Rω where (xn)n∈ω =+ (yn)n∈ω iff {xn | n ∈ ω} = {yn | n ∈ ω};

2. Eω1 lives on LO, the Gδ subset of elements of 2ω×ω which codes linear
orders on ω, where x Eω1 y iff both <x and <y are ill-founded, or if they
are both well-ordered with the same ordertype.

Say Eω1 ≤aB F if there is a Borel function which is a reduction except for the
single proper analytic class of non-wellorders.
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CLASSIFICATION STRENGTH
INVARIANT DESCRIPTIVE SET THEORY

Definition 1.2
Say that G involves H iff there is a closed subgroup G′ of G and a continuous
surjective homomorphism from G′ onto H.

Proposition 1 (Mackey, Hjorth)

If G involves H then H ⪯CS G.

The converse is easily false, as the trivial group does not involve any
nontrivial compact Polish groups (such as Zω

2 ), yet every compact Polish
group is below the trivial group in classification strength.
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CLASSIFICATION STRENGTH
CLI GROUPS

A Polish group G is cli iff it has a complete left-invariant compatible metric.

Theorem (Hjorth)

If G is cli then it does not classify =+

So if G is cli then G is not above S∞ in classification strength.
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CLASSIFICATION STRENGTH
CLI GROUPS

Theorem
For G = Aut(M), then TFAE

1. G cli;

2. (Gao) there is no non-trivial Lω1,ω-embedding of M into M;

3. (Gao) there is no uncountable model of the Scott sentence of M;

4. (Gao) M is the quasi-definable closure of ∅;

5. (Deissler) Drk(a, ∅) < ∞ for every a ∈ M;

6. (Deissler) Drk(a, ∅) < ω1 for every a ∈ M;

7. (Gao, Hjorth, Thompson) G has the pinned property in any model of ZFC;
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CLASSIFICATION STRENGTH
CLI GROUPS

This result has been extended to general Polish groups in several ways
(won’t discuss)

Together with Aristotelis, we are exploring a hierarchy of cli Polish groups
and showing that it is strictly-increasing with respect to classification
strength.

A hierarchy of groups below a the automorphism group of a "universal
group tree", strictly increasing with respect to classification strength,
studied by Clemens-Coskey.
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INVOLVING S∞

S∞ is the Polish group of permutations of a countably-infinite set.

A Polish group is non-Archimedean iff it is involved by S∞. But what about
Polish groups involving S∞?

Two previously-known sufficient conditions

1. (Baldwin-Friedman-Koerwien-Laskowski) If Age(M) satisfies
disjoint/strong amalgamation, then Aut(M) involves S∞;

2. (Hjorth) For any Polish group G, if Eω1 ≤aB EG
X then G involves S∞.
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INVOLVING S∞
MAIN THEOREM

Recall:

Proposition 2 (Mackey, Hjorth)

If G involves H then H ⪯CS G.

Perhaps we can find a “weak" converse?

Perhaps H ⪯CS G implies that G involves the quotient of H by a "small"
normal subgroup, or G involves a "large" subgroup of H?

This seems unlikely, and would trivialize a lot of work in the field of
invariant descriptive set theory.

However, we will see that it is true in the case that H is S∞!
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INVOLVING S∞
MAIN THEOREM

Theorem (A.)
Let G = Aut(M) be a non-Archimedean Polish group. Then TFAE

1. S∞ ⪯CS G

2. G involves S∞;
3. Age(M) satisfies disjoint amalgamation relative to an nontrivial

automorphism-invariant finitary closure operator cl;
4. Krk(a, ∅) = ∞ for some a ∈ M;
5. Krk(a, ∅) ≥ α for every countable α;
6. M has a nontrivial indiscernible support function;
7. G classifies =+;
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4. Krk(a, ∅) = ∞ for some a ∈ M;
5. Krk(a, ∅) ≥ α for every countable α;
6. M has a nontrivial indiscernible support function;
7. G classifies =+;

Mackey, Hjorth implies (2) → (1), (1) → (7) is by definition, the rest is new
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INVOLVING S∞
MAIN THEOREM

Theorem (A.)
Let G = Aut(M) be a non-Archimedean Polish group. Then TFAE

1. S∞ ⪯CS G
2. G involves S∞;
3. Age(M) satisfies disjoint amalgamation relative to an nontrivial

automorphism-invariant finitary closure operator cl;
4. Krk(a, ∅) = ∞ for some a ∈ M;
5. Krk(a, ∅) ≥ α for every countable α;
6. M has a nontrivial indiscernible support function;
7. G classifies =+;

By a result of Hjorth, we can also add

8. G induces an orbit equivalence relation with arbitrarily large virtual classes
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INVOLVING S∞
MAIN THEOREM

Theorem (A.)
Let G = Aut(M) be a non-Archimedean Polish group. Then TFAE

1. S∞ ⪯CS G
2. G involves S∞;
3. Age(M) satisfies disjoint amalgamation relative to an nontrivial

automorphism-invariant finitary closure operator cl;
4. Krk(a, ∅) = ∞ for some a ∈ M;
5. Krk(a, ∅) ≥ α for every countable α;
6. M has a nontrivial indiscernible support function;
7. G classifies =+;

Using the same Hjorth result, and a result of Larson-Zapletal, we can add

9. G has the unpinned property in the Solovay model.
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INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

We use the orbit continuity lemma:

Theorem (Hjorth, Lupini-Panagiotopoulos)

Let EG
X and EH

Y be orbit equivalence relations and f : X → Y a Baire-measurable
homomorphism. Let G0 ≤ G be a countable dense subgroup. Then there is a
comeager subset C ⊆ X satisfying

1. f is continuous on C;
2. for every x ∈ C, there is a comeager set of g ∈ G such that g · x ∈ C;
3. for every x ∈ C and g ∈ G0, g · x ∈ C;
4.

15 / 35



INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

We use the orbit continuity lemma:

Theorem (Hjorth, Lupini-Panagiotopoulos)

Let EG
X and EH

Y be orbit equivalence relations and f : X → Y a Baire-measurable
homomorphism. Let G0 ≤ G be a countable dense subgroup. Then there is a
comeager subset C ⊆ X satisfying

1. f is continuous on C;
2. for every x ∈ C, there is a comeager set of g ∈ G such that g · x ∈ C;
3. for every x ∈ C and g ∈ G0, g · x ∈ C;
4. for every x0 ∈ C and g ∈ G0 and open V ⊆ H such that f (g · x0) ∈ V · f (x0),

there is W ∋ g open such that for a comeager set of w ∈ W,
f (w · x0) ∈ V · f (x0).
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INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

A support function of M is a function

supp : Pfin(M) → Pfin(ω)

satisfying
▶ supp(∅) = ∅;
▶ A ⊆ B implies supp(A) ⊆ supp(B)

nontrivial iff
▶ supp(A) ̸= ∅ for some A

and indiscernible iff
▶ for any A ⊆ B and u ⊆ v with supp(A) = u and supp(B) = v, if w ∼=u v

then there is some C ∼=A B with supp(C) = w.
Here, C ∼=A B means there is an automorphism π of M satisfying π[C] = B
with π ↾ A = idA, and w ∼=u v simply means |w \ u| = |v \ u|.
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INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

▶ Our argument relies on choosing a different presentation of =+ which
behaves better with respect to the orbit continuity lemma.

▶ Let A be a countably-infinite set and ∆ a countably-infinite group and
α : ∆ ↷ A a free action.

▶ Let Q = Aut(A, α) be the non-Archimedean Polish group of
permutations π of A satisfying π(δ · a) = δ · π(a) for every a ∈ A and
δ ∈ ∆.

▶ Let Z be the Polish space RA with the natural action Q ↷ Z.

▶ It’s straightforward to check EQ
Z ∼B =+
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INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

▶ Recall A is a countably-infinite set and ∆ a countably-infinite group
and α : ∆ ↷ A a free action.

▶ Recall Q = Aut(A, α) the non-Archimedean Polish group of
permutations π of A satisfying π(δ · a) = δ · π(a) for every a ∈ A and
δ ∈ ∆.

▶ Let T ⊆ A intersect every ∆-orbit exactly once.

▶ Then the sets Stabu(Q) for every finite u ⊆ T form a countable local
basis of the identity of Q.
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INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

(A) Let G = Aut(M) ↷ X and f : Z → X be a Borel reduction;

(B) Let C ⊆ X be as in the orbit continuity lemma, and fix x0 ∈ C;

(C) Say that u ⊆ T supports A ⊆ M iff there is an open neighborhood
U ∋ x0 such that for every x ∈ U ∩ C, f (wx) ∈ StabA(G) · f (x);

(D) Argue that if u and v both support A, then so does u ∩ v;

(E) Define supp(A) to be the minimal u which supports A.
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INVOLVING S∞
CLASSIFIES =+ IMPLIES NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION

Why indiscernible?

▶ Recall Z is the Polish space RA

▶ Let z ∈ Z be generic.

▶ The ∆-orbits are indiscernible in a very strong sense.

▶ Let C = {{⟨z(δ0δ1δ) | δ ∈ ∆⟩ | δ1 ∈ ∆} | δ0 ∈ ∆}.

▶ In V(C), for any finite u, v,w ⊆ C with u ⊆ v,w and v ∼=u w, both v and
w have the same type over V(u).

▶ (In the paper, this is instead formalized in terms of generic ergodicity /
density of orbits)
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INVOLVING S∞
NONTRIVIAL INDISCERNIBLE SUPPORT FUNCTION IMPLIES NON-ORDINAL RANK

Before we define the Krk, we will first motivate it.

Theorem (Knight)

There exists a countable structure K = (K, <, fn)n∈ω satisfying
1. (K, <) is a linear order;
2. for every a ∈ K, {b ∈ K | b < a} = {fn(a) | n ∈ ω}; and
3. there is a nontrivial Lω1,ω-elementary embedding of K into K.

The structure K is referred to as "Knight’s model", though the construction
is not unique.

Proposition 3

1. (Gao) Aut(K) is not cli
2. (Hjorth) Aut(K) does not involve S∞ and in fact does not classify =+
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The automorphism group of Knight’s model was essentially the only
known example of a Polish group which is not cli but doesn’t involve S∞.

As a philosophical corollary of our results, Knight’s model is basically the
simplest such group.

Given a countable structure M (assumed to be ultrahomogeneous), define
Krk(a, b̄) for a ∈ M and b̄ ∈ M<ω as follows:

1. Krk(a, b̄) ≤ 0 iff for every a′ ∼=b̄ a, a′ = a;
2. Krk(a, b̄) ≤ α iff either

2.1 there is some c such that for every c′ ∼=b̄ c, Krk(a, c′b̄) < α; or
2.2 for every a′ ∼=b̄ a, either Krk(a′, ab̄) < α or Krk(a, a′b̄) < α

3. Krk(a, b̄) = ∞ iff Krk(a, b̄) > α for every ordinal α.
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1. If supp is a nontrivial indiscernible support function on M and
Krk(a, b̄) < ∞, then supp(ab̄) ⊆ supp(b̄).

2. This is proved by induction on Krk(a, b̄).

3. If supp is nontrivial, then there must be some a ∈ M such that
supp(a) ⊋ supp(∅) (small argument).

4. Then by contrapositive of lemma, Krk(a, ∅) = ∞.

5. By the usual arguments, if a countable structure has ordinal Krk, it
should be countable.
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INVOLVING S∞
ORDINAL RANK IMPLIES DISJOINT AMALGAMATION RELATIVE TO CL

Given an ultrahomogeneous structure M, a function

cl : P(M) → P(M)

is a closure operator iff
1. A ⊆ B implies cl(A) ⊆ cl(B);
2. A ⊆ cl(A);
3. cl(cl(A)) = cl(A)

automorphism-invariant iff
4. π[cl(A)] = cl(π[A]) for every automorphism π of M

nontrivial iff
5. cl(∅) ̸= M

and finitary iff
6. cl(A) =

⋃
{cl(A0) | A0 ⊆ A finite}.
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INVOLVING S∞
ORDINAL RANK IMPLIES DISJOINT AMALGAMATION RELATIVE TO CL

Given such cl, by its automorphism-invariance, we may view it as a family
of closure operators clA for each A ∈ Age(M) satisfying

clA(x) = clB(x) ∩ A

for every A ≤ B in Age(M) and x ⊆ A.
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INVOLVING S∞
ORDINAL RANK IMPLIES DISJOINT AMALGAMATION RELATIVE TO CL

We say Age(M) satisfies the disjoint property relative to cl iff for every
A,B, C ∈ Age(M) with A ≤ B and A ≤ C, there is some C ′ ∼=A C and D in
Age(M) satisfying:

1. B, C ′ ≤ D;
2. clD(B) ∩ C′ ⊆ clD(A);
3. clD(C′) ∩ B ⊆ clD(A).

Taking cl to be the identity recovers the usual notion of disjoint (strong)
amalgamation.
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INVOLVING S∞
ORDINAL RANK IMPLIES DISJOINT AMALGAMATION RELATIVE TO CL

Equivalently,
1. for every finite A,B,C ⊆ M with C ⊆ A,B, there is some A′ ∼=C A such

that A′ ∩ cl(B) ⊆ cl(C) and cl(A′) ∩ B ⊆ C;

2. same as (1) but assuming |A \ C| = 1;
3. same as (1) but assuming |A \ C| = |B \ C| = 1;
4. for every C ⊆ M and a, b ∈ M, there is some a′ ∼=C a such that a′ ̸∈ cl(bC),

a′ ̸∈ cl(aC) and a ̸∈ cl(a′C).
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With equivalence (4) in mind, we can see the connection with Krk.
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INVOLVING S∞
ORDINAL RANK IMPLIES DISJOINT AMALGAMATION RELATIVE TO CL

▶ if we define a ∈ cl(c̄) iff Krk(a, c̄) < ∞, this is a disjointifying,
aut-invariant, finitary closure operator.

▶ In fact it will be the minimal such closure operator on M.

▶ Thus it is nontrivial iff Krk(a, ∅) = ∞ for some a.

▶ One can now mimic the argument from
Baldwin-Friedman-Koerwien-Laskowski to show Aut(M) involves S∞.
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PINNED PROPERTY

Theory of pinned/unpinned equivalence relations developed by Hjorth and
further explored by Larson and Zapletal.
Provides a very useful tool for proving negative results around Borel
reducibility.

Theorem (Hjorth)

Assuming AC, if G is cli then any orbit equivalence relation EG
X is pinned.

Furthermore, if E ≤B F and F is pinned, then E is pinned.
Conversely,

Corollary 1 (Hjorth, Gao, Thompson)

Assuming AC, if G is not cli, then there is an orbit equivalence relation EG
X which is

not pinned.
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PINNED PROPERTY

Definition 3.1
Given equivalence relation E on Polish X, a virtual E-class is a pair (P, τ) where
P is a forcing poset and τ is a P-name for an element of X such that

⊩P×P τ [Ġℓ] E τ [Ġr].

We write (P, τ) Ẽ (Q, σ) iff

⊩P×Q τ [Ġℓ] E σ[Ġr].

We say (P, τ) is trivial iff there is some x ∈ X such that

⊩P τ [Ġ] E x.
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We say (P, τ) is trivial iff there is some x ∈ X such that

⊩P τ [Ġ] E x.
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PINNED PROPERTY

It’s straightforward to check Ẽ defines an equivalence relation on the virtual
E-classes.

We identify E-classes with the trivial virtual E-classes.

Some examples
1. For any subset A ⊆ R, then P := coll(A, ω) and τ being the name for the

added enumeration of A form a virtual =+-class.

2. For any ordinal α, then P := coll(α, ω) and τ being a name for a LO on ω
with ordertype α form a virtual Eω1-class.
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PINNED PROPERTY

Definition 3.2
Say that E is pinned iff every virtual E-class is trivial.

A Polish group G has the pinned property iff every orbit equivalence relation EG
X is

pinned.

These notions need not be absolute! They depend very much on the amount
of choice, as we’ll see...

Theorem (Gao, Hjorth, Thompson)

Assuming AC, a Polish group has the pinned property iff it is cli.
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PINNED PROPERTY

Definition 3.3
The size of a virtual class (P, τ) is the least κ such that coll(ω, κ) forces that (P, τ)
is trivial.

An equivalence relation E is κ-pinned iff every virtual E-class has size at most κ.

Easy to check that if E ≤B F and F is κ-pinned then E is κ-pinned.

Some interesting results and open questions in the Larson-Zapletal book.
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PINNED PROPERTY

Theorem (Larson, Zapletal)

In the Solovay model constructed from a measurable cardinal, if E is an analytic
equivalence relation which is unpinned, at least one of the following holds:

1. =+≤B E; or
2. Eω1 ≤aB E.

Theorem (Hjorth)

If EG
X has virtual classes of arbitrarily-large size then G involves S∞.

Corollary 2

If G is non-Archimedean, then it has the pinned property in the Solovay model
constructed from a measurable cardinal iff it does not involve S∞.
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Thank you!
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