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One reason to consider sets of invariant measures

This work is loosely motivated by the following open problem:

• Let G be countable amenable. Is every minimal Cantor G -action

orbit equivalent to a Z-action?

While this appears largely out of reach of current methods, a

variant of this might be more tractable:

•Let G be countable amenable. Given a minimal Cantor G -action

α, does there exist a minimal Cantor Z-action which preserves the

same Borel probability measures as α?
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Sets of invariant measures for minimal Cantor Z-actions

Theorem (Ibarlućıa–M. 2015)
Let X be a Cantor space and K ⊂ P(X ) such that:

• K is compact and nonempty.

• Every element of K is atomless and has full support.

• ∀A,B ∈ Clopen(X ) s.t. µ(A) < µ(B) for all µ ∈ K ,

∃C ∈ Clopen(X ) s.t. C ⊂ B and µ(A) = µ(C ) for all µ ∈ K .

Then there exists a minimal homeomorphism ϕ of X s. t.

K = {µ : µ is ψ-invariant}

The first two conditions are obviously necessary (for any minimal

action of any countable amenable group).

The last one is also necessary, because of a result of Glasner–Weiss

using properties of the topological full group.
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The topological full group

From now on G is an infinite countable group; X is compact,

0-dimensional, Hausdorff.

Definition
Given an action α : G y X , the topological full group [[α]] consists

of all homeomorphisms γ for which there exists a clopen partition

(Ui )i∈I s.t. γ coincides with some gi ∈ G on each Ui .
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Dynamical comparison

Definition (Buck 2013, Kerr 2017)
α : G y X has dynamical comparison if :

∀A,B ∈ Clopen(X )∗ (∀µ ∈ P(α) µ(A) < µ(B))⇒ ∃γ ∈ [[α]] γA ⊂ B

If a minimal Cantor action has dynamical comparison, then there

exists a minimal Z-action with the same invariant Borel probability

measures.

Originally proved for minimal Z-actions by Glasner and Weiss

(1995), this property is now known to hold for

• Actions of groups of local subexponential growth

(Downarowicz–Zhang 2019).

• Free actions of elementary amenable groups (Kerr-Narishkyn

2021).
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The clopen type semigroup

Say that A ⊆ X × N is bounded if A ∩ (X × {n}) = ∅ for large

enough n.

Fix α : G y X . For a bounded, clopen A ⊂ X × N let [A] denote

the (clopen) equidecomposability class of A for the natural action

α̃ : G ×S(N) y X × N.

Then set [A] + [B] = [Ã t B̃] where [Ã] = [A], [B̃] = [B] and

Ã ∩ B̃ = ∅.

We obtain a commutative monoid which we denote T (α). It is a

refinement monoid: if x1 + x2 = y1 + y2 then there exist zi ,j such

that xi = zi ,1 + zi ,2 and yj = z1,j + z2,j for i , j ∈ {1, 2}.

We order T (α) using the algebraic preorder:

(a ≤ b)⇔ (∃c a + c = b)
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States and invariant measures

Definition
A state is a morphism µ : (T (α),+)→ [0,+∞]. It is normalized if

µ([X ]) = 1. I denote by P(α) the set of normalized states.

Normalized states correspond to G -invariant Radon probability

measures on X , via the relation µ̃(A) = µ([A]).

Theorem (Tarski)
Given a ∈ T (α), there exists a state µ such that µ(a) = 1 iff

(n + 1)a 6≤ na for all n ∈ N.
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Dynamical comparison seen in T (α)

Proposition
α : G y X has dynamical comparison iff

∀a, b ∈ T (α)∗ (∀µ ∈ P(α) µ(a) < µ(b))⇒ (a ≤ b)

A closely related statement appears in Ara–Bönicke–Bosa–Li

(2020); the proof is already present in Downarowicz–Zhang (2019).

Definition
T (α) is almost unperforated if

∀a, b ∈ T (α) ∀n ∈ N (n + 1)a ≤ nb ⇒ a ≤ b
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Dynamical comparison and almost unperforation

Proposition

• Assume that G is amenable. Then α has dynamical

comparison iff for every order unit b ∈ T (α) and every a such

that (n + 1)a ≤ nb for some n, one has a ≤ b.

• If α is minimal then α has dynamical comparison iff T (α) is

almost unperforated (and if P(α) = ∅ then a ≤ b for all

nonzero a, b ∈ T (α)).

This statement has a precursor in Kerr (2018), a version valid for

all compact metrizable spaces is given by Ma (2019) and there is a

related statement for second-countable ample groupoids by

Ara–Bönicke–Bosa–Li (2020). Kerr was the first to notice the

connection with clopen type semigroups.

8



Dynamical comparison and almost unperforation

Proposition

• Assume that G is amenable. Then α has dynamical

comparison iff for every order unit b ∈ T (α) and every a such

that (n + 1)a ≤ nb for some n, one has a ≤ b.

• If α is minimal then α has dynamical comparison iff T (α) is

almost unperforated (and if P(α) = ∅ then a ≤ b for all

nonzero a, b ∈ T (α)).

This statement has a precursor in Kerr (2018), a version valid for

all compact metrizable spaces is given by Ma (2019) and there is a

related statement for second-countable ample groupoids by
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Weak comparability and cancellativity

On this slide we assume that α is minimal.

Proposition (M.)

• α has dynamical comparison iff T (α) has the weak

comparability property:

∀a 6= 0 ∃k ∈ N∗ ∀b (kb ≤ [X ])⇒ (b ≤ a)

• If P(α) 6= ∅ and α has dynamical comparison then T (α) is

cancellative: whenever u + v = u + w one has v = w .

This follows from work of Ara–Pardo (1996) and

Ara–Goodearl–Pardo–Tyukavkin (1995) on refinement monoids.

(and I do not know of a more direct proof that dynamical

comparison and minimality imply cancellativity !)
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Existence of a dense locally finite subgroup in [[α]]

Definition
T (α) is unperforated if

∀a, b ∈ T (α) ∀n ∈ N∗ na ≤ nb ⇒ a ≤ b

Theorem (M.)
Assume that α : G y X is a minimal action of G on a Cantor

space such that P(α) 6= ∅. Then [[α]] has a dense, locally finite

subgroup iff T (α) is unperforated.

For minimal Z-actions certain dense locally finite subgroups of [[α]]

play a key role in the Giordano–Putnam–Skau classification.
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Existence of a dense locally finite subgroup in [[α]]

A few words on the proof:

• If [[α]] has a dense, locally finite subgroup then it is easy to see

that T (α) is unperforated.

• For the converse, use a result of Ara–Goodearl (2015) which

shows (assuming unperforation) that T (α) is an inductive limit of

finitely generated refinement monoids (their generators can then be

used to build the finite groups we are looking for).
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Co-invariants

Definition
Fix an action α of G on X . The group of co-invariants H(α) is

C (X ,Z)/〈f − f ◦ g : g ∈ G 〉

One can equivalently view T (α) as C (X ,N)/ ∼ where f ∼ g iff

∃hi ∈ C (X ,N) and gi ∈ G s.t. f =
n∑

i=1

hi , g =
n∑

i=1

hi ◦ gi .

This gives a surjective homomorphism from T (α) to the positive

cone H(α)+; it is injective iff T (α) is cancellative (actually H(α)

is the Grothendieck group of T (α)).

Matui gave examples of free minimal Cantor actions α of Z2 in

which H(α) has torsion. For such actions T (α) cannot be

unperforated, so [[α]] does not have a dense locally finite group.
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The Stone-Cečh compactification

Equidecomposable clopen subsets for G y βG are the same thing

as equidecomposable subsets of G (acting on itself by translation).

Theorem

• T (G y βG ) is unperforated (König 1926).

• ≤ is a partial order on T (βG ) (Banach 1924)

Hence G y βG has dynamical comparison when G is amenable :

if A,B ⊂ G are s.t. µ(A) < µ(B) for any G -invariant f.a.p.m,

there exist A1, . . .An, g1, . . . , gn s.t.

n⊔
i=1

Ai = A and
n⊔

i=1

giAi ⊂ B
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The universal minimal flow

Every topological group admits a universal minimal flow µG (a

minimal G -flow that factors onto every other minimal G -flow).

For discrete G , any minimal subflow of βG is isomorphic to µG ;

the action G y µG is free; and there is an equivariant retraction

r : βG → µG .

Proposition (M.)
T (G y µG ) is isomorphic to a submonoid of T (G y βG ). Hence

it is unperforated and ≤ is a partial order on T (G y µG ).
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A consequence on factors

Theorem (M.)
Let G be a countable group. Every minimal Cantor G -action is a

factor of a minimal Cantor G -action α such that:

• α is free;

• T (α) is unperforated (hence α has dynamical comparison)

• ≤ is a partial order on T (α)

Proof: Use the fact that µG has these properties to build a Cantor

action G y Y which also has them and s.t. π : µG → X factors

through Y . �

For amenable G , the fact that any minimal action is a factor of a

free minimal action with dynamical comparison also follows from

work of Conley–Jackson–Kerr–Marks–Seward–Tucker-Drob (2017)
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The Polish space of minimal actions

The space Act(G ) of all actions of G on a Cantor X is a Gδ subset

of Homeo(X )G , hence a Polish space.

Minimal actions form a Gδ subset Min(G ) ⊂ Act(G ).

What about generic properties in Min(G )? The conjugation action

Homeo(X ) y Min(G ) is topologically transitive (for any G ).

Thus any Baire measurable, conjugacy invariant subset of Min(G )

is either meagre or comeagre.
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Genericity in Min(G )

Proposition (M.)
The following properties are Gδ in Min(G ); the first five are dense.

1. Freeness.

2. Dynamical comparison (= T (α) almost unperforated).

3. Unperforation of T (α).

4. Cancellativity of T (α).

5. ≤ being a partial order on T (α).

6. Unique ergodicity.
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Some questions on Min(G ) and Act(G )

For the questions I focus on the minimal Cantor case.

• When does there exist a comeager conjugacy class in Min(G )?

True for G = Z (universal odometer, Hochman 2007).

• What is the closure of Min(G ) in Act(G )? Known for Z
(Bezuglyi–Dooley–Kwiatkowski 2006). For G locally finite and

infinite Min(G ) turns out to be dense in Act(G ).

• For amenable G , is unique ergodicity generic in Min(G )?

• Does every countable group admit a uniquely ergodic, free

Cantor action? True for amenable G (Rosenthal 1985)

Every group admits a free, minimal Cantor action with an

invariant probability measure (Elek 2020).
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Thank you for your attention!
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