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orbit equivalent to a Z-action?

While this appears largely out of reach of current methods, a
variant of this might be more tractable:

elLet G be countable amenable. Given a minimal Cantor G-action
«, does there exist a minimal Cantor Z-action which preserves the

same Borel probability measures as a7
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Sets of invariant measures for minimal Cantor Z-actions

Theorem (Ibarlucia—M. 2015)
Let X be a Cantor space and K C P(X) such that:

e K is compact and nonempty.

e Every element of K is atomless and has full support.

e VA, B € Clopen(X) s.t. u(A) < u(B) for all p € K,
3C € Clopen(X) s.t. C C B and pu(A) = p(C) for all pn € K.

Then there exists a minimal homeomorphism ¢ of X s. t.
K = {p: p is ¢-invariant }

The first two conditions are obviously necessary (for any minimal
action of any countable amenable group).

The last one is also necessary, because of a result of Glasner—Weiss
using properties of the topological full group.
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Definition (Buck 2013, Kerr 2017)
a: G ~ X has dynamical comparison if :

VA, B € Clopen(X)* (Vu € P(a) u(A) < u(B)) = Iy € [[o]] YA C B

If a minimal Cantor action has dynamical comparison, then there
exists a minimal Z-action with the same invariant Borel probability

measures.

Originally proved for minimal Z-actions by Glasner and Weiss
(1995), this property is now known to hold for

e Actions of groups of local subexponential growth
(Downarowicz—Zhang 2019).

e Free actions of elementary amenable groups (Kerr-Narishkyn
2021).
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Fix a: G ~ X. For a bounded, clopen A C X x N let [A] denote

the (clopen) equidecomposability class of A for the natural action

a: G x6(N) ~ X xN.

Then set [A] + [B] = [A L B] where [A] = [A], [B] = [B] and
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We obtain a commutative monoid which we denote T (). It is a

refinement monoid: if x; + xo = y1 + y» then there exist z; ; such

that xi =zj1 +zpand y; =21 + 2 fori,j € {1,2}.

We order T («) using the algebraic preorder: '_L(,);.tg):‘_,_(g)
(a<b)e (Fca+c=0b) o
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Definition
A state is a morphism p: (T(«),+) — [0, +00]. It is normalized if

1([X]) = 1. | denote by P(«) the set of normalized states.

Normalized states correspond to G-invariant Radon probability
measures on X, via the relation fi(A) = u([A]).
Theorem (Tarski)
Given a € T(«), there exists a state p such that u(a) = 1 iff
(n+1)a £ nafor all n € N.
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Dynamical comparison and almost unperforation

Proposition

e Assume that G is amenable. Then « has dynamical
comparison iff for every order unit b € T(«) and every a such
that (n+ 1)a < nb for some n, one has a < b.

e If « is minimal then « has dynamical comparison iff T(«) is
almost unperforated (and if P(a)) = ) then a < b for all
nonzero a, b € T(«)).

This statement has a precursor in Kerr (2018), a version valid for
all compact metrizable spaces is given by Ma (2019) and there is a
related statement for second-countable ample groupoids by
Ara—Bonicke—Bosa-Li (2020). Kerr was the first to notice the
connection with clopen type semigroups.
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Weak comparability and cancellativity

On this slide we assume that « is minimal.
Proposition (M.)

e a has dynamical comparison iff T(«) has the weak
comparability property:

Va#0 3k € N* Vb (kb < [X]) = (b < a)

o}%"wg
E If P(«) # 0 and « has dynamical comparison then T(«) is
cancellative: whenever u+ v = u+ w one has v = w.

This follows from work of Ara—Pardo (1996) and
Ara—Goodearl-Pardo-Tyukavkin (1995) on refinement monoids.

(and | do not know of a more direct proof that dynamical

comparison and minimality imply cancellativity !) 9
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Existence of a dense locally finite subgroup in [[o]]

Definition
T () is unperforated if

Va,be T(a) VneN* na<nb=a<b

Theorem (M.)
Assume that ov: G ~ X is a minimal action of G on a Cantor

space such that P(a) # (. Then [[a]] has a dense, locally finite
subgroup iff T(«) is unperforated.

For minimal Z-actions certain dense locally finite subgroups of [[]]
play a key role in the Giordano—Putnam—Skau classification.

10



Existence of a dense locally finite subgroup in [[o]]

A few words on the proof:

11



Existence of a dense locally finite subgroup in [[o]]

A few words on the proof:

e If [[]] has a dense, locally finite subgroup then it is easy to see
that T(«) is unperforated.

11



Existence of a dense locally finite subgroup in [[o]]

A few words on the proof:

e If [[]] has a dense, locally finite subgroup then it is easy to see
that T(«) is unperforated.

e For the converse, use a result of Ara—Goodearl (2015) which
shows (assuming unperforation) that T(«) is an inductive limit of
finitely generated refinement monoids (their generators can then be
used to build the finite groups we are looking for).
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Co-invariants

Definition
Fix an action a of G on X. The group of co-invariants H(«) is

C(X,Z)/{(f —fog: g€ G)
One can equivalently view T(«) as C(X,N)/ ~ where f ~ g iff

n

dh; € C(X,N) and gi € G s.t. f = Zh,-, g = Zh;og,-.
i=1 i=1

This gives a surjective homomorphism from T(«) to the positive
cone H(a)%; it is injective iff T(a) is cancellative (actually H(«)
is the Grothendieck group of T(«)).

Matui gave examples of free minimal Cantor actions a of Z2 in
which H(«) has torsion. For such actions T («) cannot be
unperforated, so [[«]] does not have a dense locally finite group.
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The Stone-Ceth compactification

Equidecomposable clopen subsets for G ~ 3G are the same thing
as equidecomposable subsets of G (acting on itself by translation).

Theorem
e T(G ~ G) is unperforated (Konig 1926).
e < is a partial order on T(8G) (Banach 1924)

Hence G ~ G has dynamical comparison when G is amenable :
if A,B C G are s.t. u(A) < u(B) for any G-invariant f.a.p.m,
there exist Ay,... A, &1,...,8n S.t.

|i|A,-:Aand |Jg,-A,-C B
i=1 i=1
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The universal minimal flow

Every topological group admits a universal minimal flow ©G (a
minimal G-flow that factors onto every other minimal G-flow).

For discrete G, any minimal subflow of 3G is isomorphic to uG;
the action G ~ G is free; and there is an equivariant retraction
r: 86G — uG.

Proposition (M.)
T(G ~ uG) is isomorphic to a submonoid of T(G ~ 5G). Hence

it is unperforated and < is a partial order on T(G ~ puG).
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A consequence on factors

Theorem (M.)
Let G be a countable group. Every minimal Cantor G-action is a

factor of a minimal Cantor G-action « such that:

e « is free;
e T(«) is unperforated (hence a has dynamical comparison)

e < is a partial order on T(«)

Proof: Use the fact that ;G has these properties to build a Cantor
action G ~ Y which also has them and s.t. m: uG — X factors
through Y. O

For amenable G, the fact that any minimal action is a factor of a
free minimal action with dynamical comparison also follows from
work of Conley—Jackson—Kerr—Marks—Seward—Tucker-Drob (2017)
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The Polish space of minimal actions

The space Act(G) of all actions of G on a Cantor X is a Gs subset
of Homeo(X)®, hence a Polish space.

Minimal actions form a Gs subset Min(G) C Act(G).

What about generic properties in Min(G)? The conjugation action
Homeo(X) ~ Min(G) is topologically transitive (for any G).

Thus any Baire measurable, conjugacy invariant subset of Min(G)
is either meagre or comeagre.

16
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Genericity in Min(G)

Proposition (M.)
The following properties are Gz in Min(G); the first five are dense.

. Freeness.
. Dynamical comparison (=

1
2
3.
4
5

Unperforation of T(«).

. Cancellativity of T(«).

. < being a partial order on

[6.

Unique ergodicity.

T («) almost unperforated).
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Some questions on Min(G) and Act(G)

For the questions | focus on the minimal Cantor case.

e When does there exist a comeager conjugacy class in Min(G)?
True for G = Z (universal odometer, Hochman 2007).

e What is the closure of Min(G) in Act(G)? Known for Z
(Bezuglyi-Dooley—Kwiatkowski 2006). For G locally finite and
infinite Min(G) turns out to be dense in Act(G).

e For amenable G, is unique ergodicity generic in Min(G)?

e Does every countable group admit a uniquely ergodic, free
Cantor action? True for amenable G (Rosenthal 1985)
Every group admits a free, minimal Cantor action with an
invariant probability measure (Elek 2020).
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Thank you for your attention!



