Clopen type semigroups of actions on zero-dimensional compact spaces

J. Melleray

Caltech Logic seminar, Feb. 28, 2023

This work is loosely motivated by the following open problem:

• Let G be countable amenable. Is every minimal Cantor G-action orbit equivalent to a \mathbb{Z} -action?

This work is loosely motivated by the following open problem:

• Let G be countable amenable. Is every minimal Cantor G-action orbit equivalent to a \mathbb{Z} -action?

While this appears largely out of reach of current methods, a variant of this might be more tractable:

•Let G be countable amenable. Given a minimal Cantor G-action α , does there exist a minimal Cantor \mathbb{Z} -action which preserves the same Borel probability measures as α ?

Sets of invariant measures for minimal Cantor \mathbb{Z} -actions

Theorem (Ibarlucía–M. 2015) Let X be a Cantor space and $K \subset \mathbb{P}(X)$ such that:

• K is compact and nonempty.

Sets of invariant measures for minimal Cantor Z-actions

Theorem (Ibarlucía–M. 2015) Let X be a Cantor space and $K \subset \mathbb{P}(X)$ such that:

- K is compact and nonempty.
- Every element of K is atomless and has full support.

Sets of invariant measures for minimal Cantor $\ensuremath{\mathbb{Z}}\xspace$ -actions

Theorem (Ibarlucía–M. 2015)

Let X be a Cantor space and $K \subset \mathbb{P}(X)$ such that:

- K is compact and nonempty.
- Every element of K is atomless and has full support.
- ∀A, B ∈ Clopen(X) s.t. μ(A) < μ(B) for all μ ∈ K,
 ∃C ∈ Clopen(X) s.t. C ⊂ B and μ(A) = μ(C) for all μ ∈ K.

Sets of invariant measures for minimal Cantor $\ensuremath{\mathbb{Z}}\xspace$ -actions

Theorem (Ibarlucía-M. 2015)

Let X be a Cantor space and $K \subset \mathbb{P}(X)$ such that:

- *K* is compact and nonempty.
- Every element of K is atomless and has full support.
- $\forall A, B \in \text{Clopen}(X) \text{ s.t. } \mu(A) < \mu(B) \text{ for all } \mu \in K,$ $\exists C \in \text{Clopen}(X) \text{ s.t. } C \subset B \text{ and } \mu(A) = \mu(C) \text{ for all } \mu \in K.$

Then there exists a minimal homeomorphism φ of X s. t. $K = \{\mu : \mu \text{ is } \psi \text{-invariant}\}$

Theorem (Ibarlucía–M. 2015)

Let X be a Cantor space and $\acute{K} \subset \mathbb{P}(X)$ such that:

- *K* is compact and nonempty.
- Every element of K is atomless and has full support.
- $\forall A, B \in \text{Clopen}(X) \text{ s.t. } \mu(A) < \mu(B) \text{ for all } \mu \in K,$ $\exists C \in \text{Clopen}(X) \text{ s.t. } C \subset B \text{ and } \mu(A) = \mu(C) \text{ for all } \mu \in K.$

Then there exists a minimal homeomorphism φ of X s. t. $K = \{\mu : \mu \text{ is } \psi \text{-invariant}\}$

The first two conditions are obviously necessary (for any minimal action of any countable amenable group).

Theorem (Ibarlucía–M. 2015) Let X be a Cantor space and $K \subset \mathbb{P}(X)$ such that:

- K is compact and nonempty.
- Every element of K is atomless and has full support.
- $\forall A, B \in \text{Clopen}(X) \text{ s.t. } \mu(A) < \mu(B) \text{ for all } \mu \in K,$ $\exists C \in \text{Clopen}(X) \text{ s.t. } C \subset B \text{ and } \mu(A) = \mu(C) \text{ for all } \mu \in K.$

Then there exists a minimal homeomorphism φ of X s. t. $K = \{\mu : \mu \text{ is } \psi \text{-invariant}\}$

The first two conditions are obviously necessary (for any minimal action of any countable amenable group).

The last one is also necessary, because of a result of Glasner-Weiss using properties of the *topological full group*.

The topological full group

From now on G is an infinite countable group; X is compact, 0-dimensional, Hausdorff.

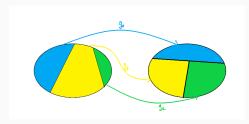
From now on G is an infinite countable group; X is compact, 0-dimensional, Hausdorff.

Definition

Given an action $\alpha : G \curvearrowright X$, the topological full group $[[\alpha]]$ consists of all homeomorphisms γ for which there exists a clopen partition $(U_i)_{i \in I}$ s.t. γ coincides with some $g_i \in G$ on each U_i . From now on G is an infinite countable group; X is compact, 0-dimensional, Hausdorff.

Definition

Given an action α : $G \curvearrowright X$, the topological full group $[[\alpha]]$ consists of all homeomorphisms γ for which there exists a clopen partition $(U_i)_{i \in I}$ s.t. γ coincides with some $g_i \in G$ on each U_i .



Definition (Buck 2013, Kerr 2017) $\alpha: G \curvearrowright X$ has dynamical comparison if :

$\left(\begin{array}{c} \forall A, B \in \operatorname{Clopen}(X)^*_{\gamma} (\forall \mu \in \mathbb{P}(\alpha) \ \mu(A) < \mu(B)) \Rightarrow \exists \gamma \in [[\alpha]] \ \gamma A \subset B \\ \mathsf{formula} \qquad \mathsf{(vpc Point \mu(\gamma A) = \mu(A))} \end{array} \right)$

Definition (Buck 2013, Kerr 2017) $\alpha: G \curvearrowright X$ has dynamical comparison if :

 $\forall A, B \in \operatorname{Clopen}(X)^* \left(\forall \mu \in \mathbb{P}(\alpha) \ \mu(A) < \mu(B) \right) \Rightarrow \exists \gamma \in \left[\left[\alpha \right] \right] \gamma A \subset B$

If a minimal Cantor action has dynamical comparison, then there exists a minimal \mathbb{Z} -action with the same invariant Borel probability measures.

Definition (Buck 2013, Kerr 2017) $\alpha: G \curvearrowright X$ has dynamical comparison if :

 $\forall A, B \in \operatorname{Clopen}(X)^* (\forall \mu \in \mathbb{P}(\alpha) \ \mu(A) < \mu(B)) \Rightarrow \exists \gamma \in [[\alpha]] \ \gamma A \subset B$

If a minimal Cantor action has dynamical comparison, then there exists a minimal \mathbb{Z} -action with the same invariant Borel probability measures.

Originally proved for minimal \mathbb{Z} -actions by Glasner and Weiss (1995), this property is now known to hold for

• Actions of groups of local subexponential growth (Downarowicz–Zhang 2019).

Definition (Buck 2013, Kerr 2017) $\alpha: G \curvearrowright X$ has dynamical comparison if :

 $\forall A, B \in \operatorname{Clopen}(X)^* \left(\forall \mu \in \mathbb{P}(\alpha) \ \mu(A) < \mu(B) \right) \Rightarrow \exists \gamma \in \left[\left[\alpha \right] \right] \gamma A \subset B$

If a minimal Cantor action has dynamical comparison, then there exists a minimal \mathbb{Z} -action with the same invariant Borel probability measures.

Originally proved for minimal \mathbb{Z} -actions by Glasner and Weiss (1995), this property is now known to hold for

- Actions of groups of local subexponential growth (Downarowicz–Zhang 2019).
- Free actions of elementary amenable groups (Kerr-Narishkyn 2021).

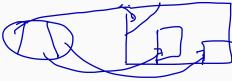
The clopen type semigroup

Say that $A \subseteq X \times \mathbb{N}$ is *bounded* if $A \cap (X \times \{n\}) = \emptyset$ for large enough *n*.

The clopen type semigroup

Say that $A \subseteq X \times \mathbb{N}$ is *bounded* if $A \cap (X \times \{n\}) = \emptyset$ for large enough *n*.

Fix $\alpha: G \curvearrowright X$. For a bounded, clopen $A \subset X \times \mathbb{N}$ let [A] denote the (clopen) equidecomposability class of A for the natural action $\tilde{\alpha}: G \times \mathfrak{S}(\mathbb{N}) \curvearrowright X \times \mathbb{N}$.

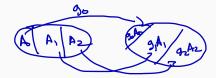


The clopen type semigroup

Say that $A \subseteq X \times \mathbb{N}$ is *bounded* if $A \cap (X \times \{n\}) = \emptyset$ for large enough *n*.

Fix $\alpha : G \curvearrowright X$. For a bounded, clopen $A \subset X \times \mathbb{N}$ let [A] denote the (clopen) equidecomposability class of A for the natural action $\tilde{\alpha} : G \times \mathfrak{S}(\mathbb{N}) \curvearrowright X \times \mathbb{N}$.

Then set $[A] + [B] = [\tilde{A} \sqcup \tilde{B}]$ where $[\tilde{A}] = [A]$, $[\tilde{B}] = [B]$ and $\tilde{A} \cap \tilde{B} = \emptyset$.



Say that $A \subseteq X \times \mathbb{N}$ is *bounded* if $A \cap (X \times \{n\}) = \emptyset$ for large enough *n*.

Fix $\alpha : G \curvearrowright X$. For a bounded, clopen $A \subset X \times \mathbb{N}$ let [A] denote the (clopen) equidecomposability class of A for the natural action $\tilde{\alpha} : G \times \mathfrak{S}(\mathbb{N}) \curvearrowright X \times \mathbb{N}$.

Then set $[A] + [B] = [\tilde{A} \sqcup \tilde{B}]$ where $[\tilde{A}] = [A]$, $[\tilde{B}] = [B]$ and $\tilde{A} \cap \tilde{B} = \emptyset$.

We obtain a commutative monoid which we denote $T(\alpha)$. It is a *refinement monoid*: if $x_1 + x_2 = y_1 + y_2$ then there exist $z_{i,j}$ such that $x_i = z_{i,1} + z_{i,2}$ and $y_j = z_{1,j} + z_{2,j}$ for $i, j \in \{1, 2\}$.

Say that $A \subseteq X \times \mathbb{N}$ is *bounded* if $A \cap (X \times \{n\}) = \emptyset$ for large enough *n*.

Fix $\alpha : G \curvearrowright X$. For a bounded, clopen $A \subset X \times \mathbb{N}$ let [A] denote the (clopen) equidecomposability class of A for the natural action $\tilde{\alpha} : G \times \mathfrak{S}(\mathbb{N}) \curvearrowright X \times \mathbb{N}$.

Then set $[A] + [B] = [\tilde{A} \sqcup \tilde{B}]$ where $[\tilde{A}] = [A]$, $[\tilde{B}] = [B]$ and $\tilde{A} \cap \tilde{B} = \emptyset$.

We obtain a commutative monoid which we denote $T(\alpha)$. It is a *refinement monoid*: if $x_1 + x_2 = y_1 + y_2$ then there exist $z_{i,j}$ such that $x_i = z_{i,1} + z_{i,2}$ and $y_j = z_{1,j} + z_{2,j}$ for $i, j \in \{1, 2\}$.

We order $T(\alpha)$ using the algebraic preorder: $(a \le b) \Leftrightarrow (\exists c \ a + c = b)$ $\mu(a) + \mu(c) = \mu(b)$

Definition

A state is a morphism $\mu \colon (T(\alpha), +) \to [0, +\infty]$. It is normalized if $\mu([X]) = 1$. I denote by $\mathbb{P}(\alpha)$ the set of normalized states.

Definition

A state is a morphism $\mu \colon (T(\alpha), +) \to [0, +\infty]$. It is normalized if $\mu([X]) = 1$. I denote by $\mathbb{P}(\alpha)$ the set of normalized states.

Normalized states correspond to *G*-invariant Radon probability measures on *X*, via the relation $\tilde{\mu}(A) = \mu([A])$.

Definition

A state is a morphism $\mu \colon (T(\alpha), +) \to [0, +\infty]$. It is normalized if $\mu([X]) = 1$. I denote by $\mathbb{P}(\alpha)$ the set of normalized states.

Normalized states correspond to G-invariant Radon probability measures on X, via the relation $\tilde{\mu}(A) = \mu([A])$.

Theorem (Tarski) Given $a \in T(\alpha)$, there exists a state μ such that $\mu(a) = 1$ iff $(n+1)a \leq na$ for all $n \in \mathbb{N}$. Level $\leq \mathbb{N}$

Dynamical comparison seen in $T(\alpha)$

Proposition $\alpha: G \curvearrowright X$ has dynamical comparison iff

 $\forall a, b \in T(\alpha)^* (\forall \mu \in \mathbb{P}(\alpha) \ \mu(a) < \mu(b)) \Rightarrow (a \leq b)$

Dynamical comparison seen in $T(\alpha)$

Proposition $\alpha: G \curvearrowright X$ has dynamical comparison iff

$$\forall a, b \in T(\alpha)^* (\forall \mu \in \mathbb{P}(\alpha) \ \mu(a) < \mu(b)) \Rightarrow (a \le b)$$

A closely related statement appears in Ara–Bönicke–Bosa–Li (2020); the proof is already present in Downarowicz–Zhang (2019).

Proposition $\alpha: G \curvearrowright X$ has dynamical comparison iff

$$\forall \mathsf{a}, \mathsf{b} \in \mathsf{T}(\alpha)^* \left(\forall \mu \in \mathbb{P}(\alpha) \ \mu(\mathsf{a}) < \mu(\mathsf{b}) \right) \Rightarrow (\mathsf{a} \leq \mathsf{b})$$

A closely related statement appears in Ara–Bönicke–Bosa–Li (2020); the proof is already present in Downarowicz–Zhang (2019).

Definition $T(\alpha)$ is almost unperforated if

 $\forall a, b \in T(\alpha) \ \forall n \in \mathbb{N} \quad (n+1)a \le nb \Rightarrow a \le b$

Dynamical comparison and almost unperforation

Proposition

Yath a Enb

• Assume that G is amenable. Then α has dynamical comparison iff for every order unit $b \in T(\alpha)$ and every a such that $(n+1)a \le nb$ for some n, one has $a \le b$.

Dynamical comparison and almost unperforation

Proposition

- Assume that G is amenable. Then α has dynamical comparison iff for every order unit b ∈ T(α) and every a such that (n+1)a ≤ nb for some n, one has a ≤ b.
- If α is minimal then α has dynamical comparison iff T(α) is almost unperforated (and if P(α) = Ø then a ≤ b for all nonzero a, b ∈ T(α)).

Dynamical comparison and almost unperforation

Proposition

- Assume that G is amenable. Then α has dynamical comparison iff for every order unit b ∈ T(α) and every a such that (n+1)a ≤ nb for some n, one has a ≤ b.
- If α is minimal then α has dynamical comparison iff T(α) is almost unperforated (and if P(α) = Ø then a ≤ b for all nonzero a, b ∈ T(α)).

This statement has a precursor in Kerr (2018), a version valid for all compact metrizable spaces is given by Ma (2019) and there is a related statement for second-countable ample groupoids by Ara–Bönicke–Bosa–Li (2020). Kerr was the first to notice the connection with clopen type semigroups.

Weak comparability and cancellativity

On this slide we assume that α is minimal.

Proposition (M.)

α has dynamical comparison iff *T*(*α*) has the *weak comparability property*:

$$\forall a \neq 0 \ \exists k \in \mathbb{N}^* \ \forall b \ (kb \leq [X]) \Rightarrow (b \leq a)$$

Weak comparability and cancellativity

On this slide we assume that α is minimal.

Proposition (M.)

α has dynamical comparison iff *T*(*α*) has the *weak* comparability property:

$$\forall a \neq 0 \; \exists k \in \mathbb{N}^* \; \forall b \; (kb \leq [X]) \Rightarrow (b \leq a)$$

If P(α) ≠ Ø and α has dynamical comparison then T(α) is cancellative: whenever u + v = u + w one has v = w.

Weak comparability and cancellativity

On this slide we assume that α is minimal.

Proposition (M.)

α has dynamical comparison iff *T*(*α*) has the *weak comparability property*:

$$orall a
eq 0 \ \exists k \in \mathbb{N}^* \ orall b \ (kb \leq [X]) \Rightarrow (b \leq a)$$

• If $\mathbb{P}(\alpha) \neq \emptyset$ and α has dynamical comparison then $T(\alpha)$ is cancellative: whenever u + v = u + w one has v = w.

This follows from work of Ara–Pardo (1996) and Ara–Goodearl–Pardo–Tyukavkin (1995) on refinement monoids. (and I do not know of a more direct proof that dynamical comparison and minimality imply cancellativity !)

Existence of a dense locally finite subgroup in $[[\alpha]]$

Definition $T(\alpha)$ is *unperforated* if

$$\forall a, b \in T(\alpha) \ \forall n \in \mathbb{N}^* \quad na \leq nb \Rightarrow a \leq b$$

Definition $T(\alpha)$ is *unperforated* if

$$\forall a, b \in T(\alpha) \ \forall n \in \mathbb{N}^* \quad na \leq nb \Rightarrow a \leq b$$

Theorem (M.)

Assume that α : $G \curvearrowright X$ is a minimal action of G on a Cantor space such that $\mathbb{P}(\alpha) \neq \emptyset$. Then $[[\alpha]]$ has a dense, locally finite subgroup iff $T(\alpha)$ is unperforated.

Definition $T(\alpha)$ is *unperforated* if

$$\forall a, b \in T(\alpha) \ \forall n \in \mathbb{N}^* \quad na \leq nb \Rightarrow a \leq b$$

Theorem (M.)

Assume that $\alpha': G \curvearrowright X$ is a minimal action of G on a Cantor space such that $\mathbb{P}(\alpha) \neq \emptyset$. Then $[[\alpha]]$ has a dense, locally finite subgroup iff $\mathcal{T}(\alpha)$ is unperforated.

For minimal \mathbb{Z} -actions certain dense locally finite subgroups of $[[\alpha]]$ play a key role in the Giordano–Putnam–Skau classification.

A few words on the proof:

A few words on the proof:

• If [[α]] has a dense, locally finite subgroup then it is easy to see that $T(\alpha)$ is unperforated.

A few words on the proof:

• If $[[\alpha]]$ has a dense, locally finite subgroup then it is easy to see that $T(\alpha)$ is unperforated.

• For the converse, use a result of Ara–Goodearl (2015) which shows (assuming unperforation) that $T(\alpha)$ is an inductive limit of finitely generated refinement monoids (their generators can then be used to build the finite groups we are looking for).

Definition

Fix an action α of G on X. The group of *co-invariants* $H(\alpha)$ is $C(X,\mathbb{Z})/\langle f - f \circ g : g \in G \rangle$

Co-invariants

Definition

Fix an action α of G on X. The group of *co-invariants* $H(\alpha)$ is $C(X,\mathbb{Z})/\langle f - f \circ g : g \in G \rangle$

One can equivalently view $T(\alpha)$ as $C(X, \mathbb{N})/\sim$ where $f \sim g$ iff $\exists h_i \in C(X, \mathbb{N})$ and $g_i \in G$ s.t. $f = \sum_{i=1}^n h_i$, $g = \sum_{i=1}^n h_i \circ g_i$.

Definition

Fix an action α of G on X. The group of *co-invariants* $H(\alpha)$ is $C(X,\mathbb{Z})/\langle f - f \circ g : g \in G \rangle$

One can equivalently view $T(\alpha)$ as $C(X, \mathbb{N})/\sim$ where $f \sim g$ iff $\exists h_i \in C(X, \mathbb{N})$ and $g_i \in G$ s.t. $f = \sum_{i=1}^n h_i$, $g = \sum_{i=1}^n h_i \circ g_i$.

This gives a surjective homomorphism from $T(\alpha)$ to the positive cone $H(\alpha)^+$; it is injective iff $T(\alpha)$ is cancellative (actually $H(\alpha)$ is the Grothendieck group of $T(\alpha)$). Using U = V + V in T(α) U = V in Grothendieck group of $T(\alpha)$

Definition

Fix an action α of G on X. The group of *co-invariants* $H(\alpha)$ is $C(X,\mathbb{Z})/\langle f - f \circ g : g \in G \rangle$

One can equivalently view $T(\alpha)$ as $C(X, \mathbb{N})/\sim$ where $f \sim g$ iff $\exists h_i \in C(X, \mathbb{N})$ and $g_i \in G$ s.t. $f = \sum_{i=1}^n h_i$, $g = \sum_{i=1}^n h_i \circ g_i$.

This gives a surjective homomorphism from $T(\alpha)$ to the positive cone $H(\alpha)^+$; it is injective iff $T(\alpha)$ is cancellative (actually $H(\alpha)$ is the Grothendieck group of $T(\alpha)$).

Matui gave examples of free minimal Cantor actions α of \mathbb{Z}^2 in which $H(\alpha)$ has torsion. For such actions $T(\alpha)$ cannot be unperforated, so $[[\alpha]]$ does not have a dense locally finite group.

Theorem

• $T(G \curvearrowright \beta G)$ is unperforated (König 1926).

Theorem

- $T(G \curvearrowright \beta G)$ is unperforated (König 1926).
- \leq is a partial order on $T(\beta G)$ (Banach 1924)

Theorem

- $T(G \frown \beta G)$ is unperforated (König 1926).
- \leq is a partial order on $T(\beta G)$ (Banach 1924)

Hence $G \curvearrowright \beta G$ has dynamical comparison when G is amenable : if $A, B \subset G$ are s.t. $\mu(A) < \mu(B)$ for any G-invariant f.a.p.m, there exist $A_1, \ldots A_n, g_1, \ldots, g_n$ s.t.

$$\bigsqcup_{i=1}^n A_i = A \text{ and } \bigsqcup_{i=1}^n g_i A_i \subset B$$

Every topological group admits a universal minimal flow μG (a minimal *G*-flow that factors onto every other minimal *G*-flow).

Every topological group admits a universal minimal flow μG (a minimal *G*-flow that factors onto every other minimal *G*-flow).

For discrete G, any minimal subflow of βG is isomorphic to μG ; the action $G \curvearrowright \mu G$ is free; and there is an equivariant retraction $r: \beta G \rightarrow \mu G$. Every topological group admits a universal minimal flow μG (a minimal *G*-flow that factors onto every other minimal *G*-flow).

For discrete G, any minimal subflow of βG is isomorphic to μG ; the action $G \curvearrowright \mu G$ is free; and there is an equivariant retraction $r: \beta G \rightarrow \mu G$.

Proposition (M.)

 $T(\dot{G} \frown \mu G)$ is isomorphic to a submonoid of $T(G \frown \beta G)$. Hence it is unperforated and \leq is a partial order on $T(G \frown \mu G)$.

Theorem (M.) Let G be a countable group. Every minimal Cantor G-action is a factor of a minimal Cantor G-action α such that:

• α is free;

Theorem (M.)

Let G be a countable group. Every minimal Cantor G-action is a factor of a minimal Cantor G-action α such that:

- α is free;
- $T(\alpha)$ is unperforated (hence α has dynamical comparison)

Theorem (M.)

Let G be a countable group. Every minimal Cantor G-action is a factor of a minimal Cantor G-action α such that:

- α is free;
- $T(\alpha)$ is unperforated (hence α has dynamical comparison)
- \leq is a partial order on $T(\alpha)$

Theorem (M.)

Let G be a countable group. Every minimal Cantor G-action is a factor of a minimal Cantor G-action α such that:

- α is free;
- $T(\alpha)$ is unperforated (hence α has dynamical comparison)
- \leq is a partial order on $T(\alpha)$

Proof: Use the fact that μG has these properties to build a Cantor action $G \curvearrowright Y$ which also has them and s.t. $\pi : \mu G \to X$ factors through Y.

Theorem (M.)

Let G be a countable group. Every minimal Cantor G-action is a factor of a minimal Cantor G-action α such that:

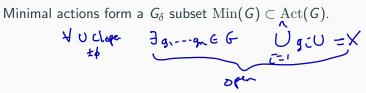
- α is free;
- $T(\alpha)$ is unperforated (hence α has dynamical comparison)
- \leq is a partial order on $T(\alpha)$

Proof: Use the fact that μG has these properties to build a Cantor action $G \curvearrowright Y$ which also has them and s.t. $\pi : \mu G \to X$ factors through Y.

For amenable G, the fact that any minimal action is a factor of a free minimal action with dynamical comparison also follows from work of Conley–Jackson–Kerr–Marks–Seward–Tucker-Drob (2017)

The space Act(G) of all actions of G on a Cantor X is a G_{δ} subset of $Homeo(X)^G$, hence a Polish space.

The space Act(G) of all actions of G on a Cantor X is a G_{δ} subset of Homeo(X)^G, hence a Polish space.



The space Act(G) of all actions of G on a Cantor X is a G_{δ} subset of $Homeo(X)^G$, hence a Polish space.

Minimal actions form a G_{δ} subset $Min(G) \subset Act(G)$.

What about generic properties in Min(G)? The conjugation action $Homeo(X) \curvearrowright Min(G)$ is topologically transitive (for any G).

- The space Act(G) of all actions of G on a Cantor X is a G_{δ} subset of $Homeo(X)^G$, hence a Polish space.
- Minimal actions form a G_{δ} subset $Min(G) \subset Act(G)$.
- What about generic properties in Min(G)? The conjugation action $Homeo(X) \curvearrowright Min(G)$ is topologically transitive (for any G).
- Thus any Baire measurable, conjugacy invariant subset of Min(G) is either meagre or comeagre.

The following properties are G_{δ} in Min(G); the first five are dense.

1. Freeness.

- 1. Freeness.
- 2. Dynamical comparison (= $T(\alpha)$ almost unperforated).

- 1. Freeness.
- 2. Dynamical comparison (= $T(\alpha)$ almost unperforated).
- 3. Unperforation of $T(\alpha)$.

- 1. Freeness.
- 2. Dynamical comparison (= $T(\alpha)$ almost unperforated).
- 3. Unperforation of $T(\alpha)$.
- 4. Cancellativity of $T(\alpha)$.

- 1. Freeness.
- 2. Dynamical comparison (= $T(\alpha)$ almost unperforated).
- 3. Unperforation of $T(\alpha)$.
- 4. Cancellativity of $T(\alpha)$.
- 5. \leq being a partial order on $T(\alpha)$.

- 1. Freeness.
- 2. Dynamical comparison (= $T(\alpha)$ almost unperforated).
- 3. Unperforation of $T(\alpha)$.
- 4. Cancellativity of $T(\alpha)$.
- 5. \leq being a partial order on $T(\alpha)$.
- 6. Unique ergodicity.

 When does there exist a comeager conjugacy class in Min(G)? True for G = Z (universal odometer, Hochman 2007).

- When does there exist a comeager conjugacy class in Min(G)? True for G = Z (universal odometer, Hochman 2007).
- What is the closure of Min(G) in Act(G)? Known for Z (Bezuglyi–Dooley–Kwiatkowski 2006). For G locally finite and infinite Min(G) turns out to be dense in Act(G).

- When does there exist a comeager conjugacy class in Min(G)? True for G = Z (universal odometer, Hochman 2007).
- What is the closure of Min(G) in Act(G)? Known for Z (Bezuglyi–Dooley–Kwiatkowski 2006). For G locally finite and infinite Min(G) turns out to be dense in Act(G).
- For amenable G, is unique ergodicity generic in Min(G)?

- When does there exist a comeager conjugacy class in Min(G)? True for G = Z (universal odometer, Hochman 2007).
- What is the closure of Min(G) in Act(G)? Known for Z (Bezuglyi–Dooley–Kwiatkowski 2006). For G locally finite and infinite Min(G) turns out to be dense in Act(G).
- For amenable G, is unique ergodicity generic in Min(G)?
- Does every countable group admit a uniquely ergodic, free Cantor action? True for amenable *G* (Rosenthal 1985) Every group admits a free, minimal Cantor action with an invariant probability measure (Elek 2020).

Thank you for your attention!