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The Lovász Local Lemma

The Lovász Local Lemma (the LLL) is a powerful probabilistic tool.

• Introduced by ERDŐS and LOVÁSZ in ’75.

• Useful for proving existence results.

• Used throughout combinatorics.

• Recently found a number of applications in other areas
(topological dynamics, ergodic theory, descriptive set theory).

I will survey some recent work on the LLL in the
Borel/continuous/measurable/Baire-measurable context.

Deep connections to distributed algorithms.
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Distributed algorithms

LOCAL model of distributed computation (LINIAL ’92).

• Each vertex of G is an independent agent.

• Vertices can pass messages to their neighbors.

• Eventually, each vertex has to decide on its part of the solution.

• Complexity: the number of communication rounds.

Deterministic and randomized versions.
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Definitions and notation

A framework for the LLL: constraint satisfaction problems.

Fix a set X and a positive integer k = {0,1, . . . ,k −1}.

A k-coloring of X is a function f : X → k.

A constraint is a set B of functions D → k, where D is a finite subset
of X called the domain of B . Write dom(B) := D .

A function f : X → k violates B if f |D ∈ B . Otherwise, f satisfies B .

The functions in B are “bad” and we want to avoid them.

A constraint satisfaction problem (a CSP for short) is a set B of
constraints. To indicate that B is a CSP, we write B : X →? k.

A solution to a CSP B is a function f : X → k that satisfies all the
constraints B ∈B.

Throughout we’ll assume that supB∈B |dom(B)| <∞.
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Definitions and notation

Let B : X →? k be a CSP. The probability of a constraint B ∈B is

P[B ] := |B |
k |dom(B)| = prob. B is violated by a random coloring.

The degree of a constraint B ∈B is

deg(B) := |{B ′ ∈B \ {B} : dom(B)∩dom(B ′) ̸= ;}|.

Let p(B) := supB∈BP[B ] and d(B) := supB∈B deg(B).

The LLL guarantees the existence of a solution based on a
numerical relationship between p(B) and d(B). Namely:

Theorem (ERDŐS–LOVÁSZ ’75): the Lovász Local Lemma

If e ·p(B) · (d(B)+1) É 1, then B has a solution.

More general versions also exist.
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Example: coloring R

Proposition

Let m, k Ê 2 be integers satisfying m > 100k logk. Then, for any set
S of m real numbers, there is a coloring f : R→ k such that each
translation of S contains elements of all k colors.

Proof sketch. Let S be a set of m = ⌈100k logk⌉ real numbers.

For each x ∈R, let Bx be a constraint with domain x +S consisting
of all colorings ϕ : (x +S) → k that don’t use all k colors.

Set B := {Bx : x ∈R}. This is a CSP and we want a solution to B.

p(B) É k(k −1)m

km = k

(
1− 1

k

)m

É k e−m/k < k−99.

Each translate of S intersects É m2 others, so d(B) É m2 = k2+o(1).

We have e ·p(B) · (d(B)+1) < 1
LLL−−→ there is a solution. ■
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Example: coloring R

Proposition

Let m, k Ê 2 be integers satisfying m > 100k logk. Then, for any set
S of m real numbers, there is a coloring f : R→ k such that each
translation of S contains elements of all k colors.

Note that there are uncountably many constraints. The proof uses a
compactness argument.

Can we find a “nice” coloring f : R→ k as above?

Theorem (CSÓKA–GRABOWSKI–MÁTHÉ–PIKHURKO–TYROS ’16)

There is a Borel function f : R→ k as above.

Can make f continuous away from a countable set of points.
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The LLL in the Borel setting

Let X a Polish space.

Let B : X →? k a Borel CSP (as a subset of [[X ×k]<∞]<∞).

Can we use the LLL to find a Borel solution f : X → k?

Bad example:

Let G be a d-regular graph. An orientation of G is sinkless if the
outdegree of every vertex is at least 1.

A sinkless orientation of G is a solution to a CSP

Bsinkless = {Bx }x∈V (G) : E(G) →? 2.

Here Bx is the constraint with domain {e ∈ E(G) : e is incident to x}
saying that at least one edge must be leaving x.
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The LLL in the Borel setting

Let X a Polish space.

Let B : X →? k a Borel CSP (as a subset of [[X ×k]<∞]<∞).

Can we use the LLL to find a Borel solution f : X → k?

Bad example (cont’d):

Since G is d-regular, we have

d(Bsinkless) = d and p(Bsinkless) = 2−d .

Certainly, e ·p · (d +1) = e 2−d (d +1) ≪ 1 for large d . But:

Theorem (THORNTON ’20)

For any d ∈N, there exists a d-regular Borel graph G without a Borel
sinkless orientation.

Here and in what follows, Borel graphs are always on Polish spaces.
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The LLL in the Borel setting

Theorem

Let B : X →? k be a Borel CSP on a Polish space X such that

p(B) < 2−d(B).

Then B admits a Borel solution.

As the sinkless orientation example shows, < can’t be replaced by É.

Consequence of two facts:

• An efficient deterministic distributed algorithm for the LLL
under the condition p < 2−d (BRANDT–GRUNAU–ROZHOŇ ’20)

• Efficient deterministic distributed algorithms can be used to
construct Borel and even continuous solutions (AB ’23)

X is 0-dimensional + some natural topological assumptions on B:

If p(B) < 2−d(B), then B admits a continuous solution f : X → k.
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Another continuous version of the LLL

Given a CSP B, define the vertex degree and the order

vdeg(B) := max
x∈X

|{B ∈B : x ∈ dom(B)}|, ord(B) := max
B∈B

|dom(B)|.

Note: d(B) É vdeg(B)ord(B).

Theorem (AB ’23)

Under some natural topological assumptions: If

p(B) ·vdeg(B)ord(B) < 1,

then B has a continuous solution.

Sharp: can’t replace < by É.

2d(B) É 2vdeg(B)ord(B) vs. vdeg(B)ord(B)

Applications in topological dynamics (constructions of free
subshifts with desirable properties).
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Dependency graphs

Let B : X →? k be a CSP. The dependency graph of B:

• vertices⇝ the constraints in B

• edges⇝ pairs (B ,B ′) with dom(B)∩dom(B ′) ̸= ;

Theorem (CSÓKA–GRABOWSKI–MÁTHÉ–PIKHURKO–TYROS ’16, ’22)

Let B : X →? k be a Borel CSP on a Polish space X such that:

• e ·p(B) · (d(B)+1) É 1 (usual LLL assumption),

• the dependency graph of B is of subexponential growth.

Then B admits a Borel solution.

Applications to polynomial growth graphs:

Theorem (AB–YU)

Borel graphs of polynomial growth are hyperfinite.

May 10: UCLA Logic Colloquium by Jing Yu about this!
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Continuous solution? We don’t know!

But:

Under some natural topological assumptions: Suppose that

• e ·p(B) · (d(B)+1) É 1 (usual LLL assumption),
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Dependency graphs

Under some natural topological assumptions: Suppose that

• e ·p(B) · (d(B)+1) É 1 (usual LLL assumption),

• the dependency graph of B is of sufficiently slow growth
(polynomial is enough).

Then B admits a continuous solution.

The proof uses a deterministic distributed algorithm for the LLL
due to ROZHOŇ–GHAFFARI ’20.

The ROZHOŇ–GHAFFARI algorithm runs in time O(logc n) for some
constant c. To get a continuous solution need the growth rate of the
dependency graph to be below exp(o(r 1/c )). (Polynomial suffices.)
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Measurable versions of the LLL

The LLL is a probabilistic statement, so perhaps it should interact
well with measure theory.

Conjecture

Let B : X →? k be a Borel CSP on a Polish space X and let µ be a
probability measure on X . Suppose that e ·p(B) · (d(B)+1) É 1
(usual LLL assumption). Then B admits a µ-measurable solution.

Equivalent formulation: want a Borel coloring that satisfies the
constraints away from a set of measure 0.

Theorem (AB ’19)

Can get a Borel coloring that satisfies the constraints away from a
set of measure É ε, for any given ε> 0.

Same conjecture for Baire-measurable solutions.
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Measurable versions of the LLL

Theorem (AB ’23)

Let B : X →? k be a Borel CSP on a Polish space X and let µ be a
probability measure on X . Suppose that 215 ·p(B) · (d(B)+1)8 É 1.
Then B admits a µ-measurable/Baire-measurable solution.

Sufficient for most combinatorial applications. For instance, we
often have p(B) < exp(−d(B)ε) for some constant ε> 0.

Intertwined with distributed algorithms.

The proof relies on an efficient randomized algorithm for the LLL
due to FISCHER and GHAFFARI ’17 and is used to show:

Corollary (informal; AB)

efficient rand. distributed algorithms =⇒ measurable solutions
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Summary so far

Does the LLL yield Borel/continuous solutions?

• NO in general

• YES if p < 2−d (sharp!)

• YES if p < vdeg−ord (sharp!)

• YES for Borel if the dependency graph is of subexp. growth

– Continuous? Open!
– YES for continuous if the growth rate of the dependency

graph is ≪ exp(−r ε) for a certain constant ε> 0.
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Summary so far

Does the LLL yield measurable solutions?

• Open with the usual condition p(d +1) É e−1

• YES with an ε error

• YES if p(d +1)8 É 2−15 (polynomial bound)

Does the LLL yield Baire-measurable solutions?

• Open with the usual condition p(d +1) É e−1

• YES if p(d +1)8 É 2−15 (polynomial bound)
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Component-finite graphs

A graph G is component-finite if every component of G is finite.

Borel combinatorics trivialize on component-finite graphs:

Easy fact

Let B : X →? k be a Borel CSP on a Polish space X that has a
solution. If the dependency graph of B is component-finite, then
B has a Borel solution.

Approximate a graph by component-finite subgraphs?

Definition

A Borel graph G is hyperfinite if there is an increasing sequence
G0 ⊆G1 ⊆ ·· · ⊆G of Borel component-finite subgraphs of G whose
union is G .
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Hyperfinite graphs

Definition

A Borel graph G is hyperfinite if there is an increasing sequence
G0 ⊆G1 ⊆ ·· · ⊆G of Borel component-finite subgraphs of G whose
union is G .

Unfortunately, hyperfiniteness rarely helps with Borel
combinatorics (CONLEY–JACKSON–MARKS–SEWARD–TUCKER-DROB ’19).

Theorem (CONLEY–JACKSON–MARKS–SEWARD–TUCKER-DROB ’19)

For every d ∈N, there exists a d-regular hyperfinite Borel graph G
with no cycles such that χB(G) = d +1.

χB = Borel chromatic # = min. # of colors in a Borel proper coloring

For a graph G of maximum degree d Ê 3,

• χ(G) É d if G has no (d +1)-clique (BROOKS ’41);

• χ(G) =O(d/logd) if G is triangle-free (JOHANSSON’ 96).
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Asymptotic separation index

Let G be a locally finite Borel graph.

For r ∈N, Gr is the graph with vertex set V (G) and edges between
vertices at distance É r in G .

Definition (CONLEY–JACKSON–MARKS–SEWARD–TUCKER-DROB ’20)

A locally finite Borel graph G has asymptotic separation index É s,
in symbols asi(G) É s, if for all r ∈N, Gr is a union of s +1 Borel
component-finite induced subgraphs.
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Asymptotic separation index

Definition (CONLEY–JACKSON–MARKS–SEWARD–TUCKER-DROB ’20)

A locally finite Borel graph G has asymptotic separation index É s,
in symbols asi(G) É s, if for all r ∈N, Gr is a union of s +1 Borel
component-finite induced subgraphs.

• For every locally finite Borel graph G , there is a comeager set
U ⊆V (G) such that the induced subgraph G[U ] has asiÉ 1.

• If G is hyperfinite and µ is a probability measure on V (G), then
there is a µ-conull set U ⊆V (G) such that G[U ] has asiÉ 1.

• Graphs induced by actions of polynomial growth groups,
polycyclic groups, Z2 ≀Z, BS(1,2), . . .=⇒ asiÉ 1

• Graphs of polynomial growth have asiÉ 1 (AB–YU).

Open question

Does asi<∞ imply asiÉ 1?
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Asymptotic separation index and the LLL

Theorem (AB–WEILACHER)

Let B be a Borel CSP on a Polish space such that the dependency
graph of B has asiÉ s. If either

e s+1 ·p(B) · (d(B)+1)s+1 É 1 or 215 ·p(B) · (d(B)+1)8 É 1,

then B admits a Borel solution.

Corollary (AB–WEILACHER)

Let B be a Borel CSP on a Polish space. Suppose that

e2 ·p(B) · (d(B)+1)2 É 1.

Then B has a Baire-measurable solution.

Also, if the dependency graph is hyperfinite, then B admits a
µ-measurable solution for any probability measure µ.
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Some consequences

As mentioned before:

Theorem (informal; AB ’23)

efficient deterministic distributed algorithms =⇒ Borel &
continuous solutions

efficient randomized distributed algorithms =⇒ measurable &
Baire-measurable solutions

Corollary (informal; AB–WEILACHER)

efficient randomized distributed algorithms =⇒ Borel solutions on
graphs with finite asi

Corollary (AB–WEILACHER)

If G is a Borel graph of maximum degree d Ê 3 with asi(G) <∞, then:

• χB(G) É d if G has no (d +1)-clique;

• χB(G) =O(d/logd) if G is triangle-free.
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Summary

Does the LLL yield Borel/continuous solutions?

• NO in general

• YES if p < 2−d (sharp!)

• YES if p < vdeg−ord (sharp!)

• YES for Borel if the dependency graph is of subexp. growth

– Continuous? Open!
– YES for continuous if the growth rate of the dependency

graph is ≪ exp(−r ε) for some constant ε> 0.

• YES for Borel if

– p(d +1)2 É e−2 for asiÉ 1, or
– p(d +1)8 É 2−15 for asi<∞.
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Summary

Does the LLL yield measurable solutions?

• Open with the usual condition p(d +1) É e−1

• YES with an ε error

• YES if p(d +1)8 É 2−15

• YES if p(d +1)2 É e−2 and the dependency graph is hyperfinite

Does the LLL yield Baire-measurable solutions?

• Open with the usual condition p(d +1) É e−1

• YES if p(d +1)8 É 2−15

• YES if p(d +1)2 É e−2
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Proof ideas

Let B : X →? k be a Borel CSP on a Polish space X .

Suppose that:

• the dependency graph G of B has asi(G) É s;

• e s+1p(d +1)s+1 É 1, where p := p(B) and d := d(B).

Using the bound asi(G) É s, we split B into s +1 Borel sub-CSPs B0,
. . . , Bs with component-finite dependency graphs.

Since B satisfies the LLL bound, it (and each Bi ) has a solution.

We find Borel solutions to these CSPs one by one, obtaining an
increasing sequence of s +1 partial solutions. At each step, certain
extra constraints need to be added to ensure that the partial current
partial solution can be extended.

Keywords: method of conditional probabilities.
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Proof ideas

Let B : X →? k be a Borel CSP on a Polish space X .

Suppose that:

• the dependency graph G of B has asi(G) É s;

• 215p(d +1)8 É 1, where p := p(B) and d := d(B).

Using a certain distributed algorithm, for any N , C > 0 can reduce
solving B to solving a different Borel CSP B∗ such that:

• the dependency graph G of B∗ still has asi(G) É s;

• C p∗(d∗+1)N É 1, where p∗ := p(B∗) and d∗ := d(B∗).

Apply this with C = e s+1, N = s +1.
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