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Classical edge colorings

Theorem (Vizing, Gupta)

Let G = (V ,E ) be a (simple) graph of degree bounded by
∆ < +∞. Then there is a map c : E → [∆ + 1] such that
c(e) ̸= c(f ) whenever e ∩ f ̸= ∅.1

(a) such a map c is called a proper edge coloring,

(b) chromatic index of G , χ′(G ), is the smallest number of colors
needed for a proper edge coloring of G ,

(c) Vizing’s theorem ⇒ χ′(G ) ∈ {∆(G ),∆(G ) + 1}, where
∆(G ) = max{degG (v) : v ∈ V }

1All graphs in this talk are assumed to have unifrmly bounded degree, and
[k] = {1, . . . , k}.
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Measurable edge colorings

A Borel graph G is a triplet (V ,B,E ), where (V ,B) is a standard
Borel space, (V ,E ) is a graph and E is a Borel subset of [V ]2 (the
set of unordered pairs of V endowed with the Borel structure
inherited from V × V ).

A proper Borel edge coloring of G with k colors is a Borel map
c : E → [k] that is a proper edge coloring.

▶ the Borel chromatic index of G, χ′
B(G), is the smallest

number of colors needed for a proper Borel edge coloring of G,
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Borel colorings

Theorem (Kechris–Solecki–Todorčević)

Let G be a Borel graph such that ∆(G) < +∞. Then
χ′
B(G) ≤ 2∆(G)− 1.

▶ Laczkovich gave an example of 2-regular acylic Borel bipartite
Borel graph G such that χ′

B(G) = 3.

Theorem (Marks)

For every ∆ > 2 and every k ∈ {∆, ..., 2∆− 1}, there is a
∆-regular acyclic Borel bipartite Borel graph G such that
χ′
B(G) = k.

▶ In particular, Vizing’s theorem fails in the Borel context.



Measurable analogues of Vizing’s theorem

Question (Abért)

Can every ∆-regular graphing without multiple edges be properly
edge colored by ∆+ 1 colors?

Question (Marks)

Given any ∆-regular Borel graph G on a standard Borel probability
space (V , µ), must there be a µ-measurable edge coloring of G
with ∆+ 1 colors?

Question (Kechris–Marks, Problem 6.13)

Let G be a Borel graph on a Polish space with ∆(G) < +∞. Is it
true that χ′

M(G) ≤ ∆+ 1? Is it true that χ′
BM(G) ≤ ∆+ 1?
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Measurable setting

Let G = (V ,B,E ) be a Borel graph and µ be a Borel probability
measure on (V ,B).

Definition
The µ-measurable chromatic index of G, χ′

µ(G) is defined as
the minimum k ∈ N such that there is a µ-null set X ⊆ V such
that χ′

B(G ↾ (V \ X )) = k .

▶ equivalently:

(a) there is a µ-measurable map c : E → [k] that is a proper edge
coloring,

(b) there is a Borel map c : E → [k] that is a proper edge coloring
at µ-almost every vertex v ∈ V ,

▶ the measurable chromatic index of G, χ′
M(G), is defined as

supremum of χ′
µ(G) over all Borel probability measures µ on

(V ,B),
▶ ∆(G) ≤ χ′(G) ≤ χ′

µ(G) ≤ χ′
M(G) ≤ χ′

B(G) ≤ 2∆(G)− 1
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Graphings

Let G = (V ,B,E ) be a Borel graph and µ be a Borel probability
measure on (V ,B).
▶ We say that µ is G-invariant if∫

A
degB(v) dµ(v) =

∫
B
degA(w) dµ(w)

holds for every two Borel sets A,B ⊆ V , where
degY (v) = |{w ∈ Y : {v ,w} ∈ E}|.

In this case, the quadruple (V ,B,E , µ) is called a graphing.
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Positive results for graphings

Theorem (Csóka–Lippner–Pikhurko)

Let G = (V ,B,E , µ) be a graphing. Then

χ′
µ(G) ≤ ∆(G) + O(

√
∆(G)),

and χ′
µ(G) ≤ ∆(G) + 1 if G does not contain odd cycles.

Theorem (G–Pikhurko)

Let G = (V ,B,E , µ) be a graphing. Then χ′
µ(G) ≤ ∆(G) + 1.

This answers the question of Abért.
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A sample of related positive results

Many new results in recent years (work of Bencs, Bernshteyn, Bowen, Chandgotia, Gao,

Hrušková, Jackson, Krohne, Qian, Rozhoň, Seward, Thornton, Tóth, Unger, Weilacher, ...).

For example:

▶ Bernshteyn extended and applied the method of G–Pikhurko
in the context of distributed algorithms.

▶ Free Borel actions of Zd admit proper Borel edge coloring
with 2d colors (independently by Bencs–Hrušková–Tóth, and Chandgotia–Unger, and

G–Rozhoň, and Weilacher).

▶ Qian and Weilacher found connections of the topological
relaxation to computable combinatorics which allowed them
to derive an upper bound of ∆(G) + 2 colors for the Baire
measurable analogue of Vizing’s theorem.



Main result

Theorem
Let G = (V ,B,E ) be a Borel graph such that ∆(G) < +∞ and µ
be a Borel probability measure on (V ,B). Then χ′

µ(G) ≤ ∆+ 1.

Ingredients in the proof:

(I) technique of augmenting iterated Vizing chains introduced in
G–Pikhurko,

(II) replacing µ with an equivalent but “tame” measure ν.
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General strategy

A partial Borel edge coloring (of G) is a Borel map
c : dom(c) → [∆(G) + 1] that satisfies c(e) ̸= c(f ) whenever
e ∩ f ̸= ∅ and e, f ∈ dom(c), where dom(c) is a Borel subset of E .

If we do not want to specify the domain we write simply
c ;E → [∆(G) + 1], and we set Uc = V \ dom(c).

Strategy: Inductively improve given partial Borel coloring.
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General strategy

Given c ;E → [∆(G) + 1]

(a) Assign to each e ∈ Uc an augmenting connected subgraph (a
chain of edges) Vc(e) ⊆ dom(c) with the property:

(•) ∃ ce ;E → [∆(G) + 1] such that dom(ce) = dom(c) ∪ {e} and
c ↾ E \ Vc(e) = ce ↾ E \ Vc(e).

(b) Take a maximal collection {Vc(e)}e∈I such that
Vc(e) ∩ Vc(f ) = ∅ for every e ̸= f ∈ I , and augment all
{Vc(e)}e∈I simultaneously to create c ′;E → [∆(G) + 1] such
that dom(c ′) = dom(c) ∪ {e}e∈I .

(c) Start with c0 = ∅, and iterate this procedure to create a
sequence of partial colorings {cn}∞n=1 with the hope that

c(e) = lim
n→∞

cn(e)

is defined off of a µ-null set.
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(I) Augmenting chains

Let e = {x , y} ∈ Uc , and pick

▶ α ∈ mc(x) = [∆(G)+1] \ {c(f ) : x ∈ f } (colors missing at x),

▶ β ∈ mc(y) = [∆(G) + 1] \ {c(f ) : y ∈ f }.

Define Pc(x , e) to be the concatenation of e and the maximal α/β
path starting at y .
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(I) Augmenting chains

If we are lucky and Pc(x , e) does not come back to x , then
Pc(x , e) is augmenting.



(I) Augmenting chains

Up to a little reshuffling of colors around x , this can be always
achieved. The augmenting chain is called Vizing’s chain, and it is
of the form Wc(x , e) = F⌢P(α/β). (Augmenting these chains one-by-one gives the

proof of Vizing’s theorem for finite graphs.)



(I) Approximate edge colorings

How do augmenting chains connect with the measure µ?

Proposition

Let G be a graphing and c;E → [∆(G) + 1] be such that

|Wc(x , e)| ≥ L+∆ for some L ∈ N. Then µ(Uc) ≤ 2∆3

L .

Proof Define an auxiliary graph Hc with vertex set Uc ⊔ dom(c)
and (e, f ) ∈ Hc if f ∈ P where Wc(x , e) = F⌢P.
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(I) Approximate edge colorings

We have degHc
(e) ≥ L for every e ∈ Uc and degHc

(f ) ≤ 2∆3 for
every e ∈ dom(c).

The fact that µ is G-invariant gives

Lµ(Uc) ≤
∫
Uc

degHc
(e) =

∫
dom(c)

degHc
(f ) ≤ 2∆3.



(I) Approximate edge colorings

Elek–Lippner type argument shows that given d ;E → [∆(G) + 1],
it is always possible to modify colors of at most O(L)µ(Ud) edges
to produce c ;E → [∆(G) + 1] such that |Wc(x , e)| ≥ L for every
e ∈ Uc and dom(d) ⊆ dom(c).

Proposition (Approximate Vizing for graphings)

For every ϵ > 0, there is a partial Borel proper edege coloring
c ;E → [∆ + 1] such that µ(Uc) ≤ ϵ.
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(I) Iterated Vizing chains

Unfortunately, the price that we have to pay for the modification,
O(L), is of the same order as µ(Uc)

−1. Hence iterating this
process will not produce d(e) = limn→∞ dn(e).

New idea in G–Pikhurko yields degHc
(e) ≥ L2 for e ∈ Uc :
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(II) Quasi-invariant measures

Let G = (V ,B,E ) be a Borel graph such that ∆(G) < +∞. Then
the connectivity component relation of G, FG , is a countable
Borel equivalence relation (CBER), i.e., the connectivity
component [v ]G of each v ∈ V is at most countable.

Definition
Let µ be a Borel probability measure on (V ,B). We say that µ is
G-quasi invariant if µ([A]G) = 0, whenever µ(A) = 0.
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(II) Quasi-invariant measures

Fundamental tool ⇝ Radon-Nikodym cocycle

A Borel function ρµ : FG → R>0 with the property that

µ(g(C )) =

∫
C
ρµ(x , g(x)) dµ(x)

for every C ∈ B and injective Borel map g : C → V such that
(v , g(v)) ∈ FG .



(II) Vizing chains

The length of the chain Wc(x , e) is not measured by the number
of edges but by the weight∑

w∈Wc (x ,e)

ρµ(x ,w).

⇝ chains of finite weight can be infinite (not that problematic)

⇝ chains of large weight can be very short (the main issue for
iterated Vizing chains)
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(II) Bounded cocycle

Theorem
Let G be a Borel graph and µ be a G-quasi-invariant Borel
probability measure on (V ,B). Then there is an equivalent Borel
probability measure ν on (V ,B) such that

1

4∆
≤ ρν(x , y) ≤ 4∆

for every edge (x , y) ∈ E.

⇝ if distG(x , y) = k ∈ N, then ρν(x , y) ≤ (4∆)k , where distG is
the graph distance on G.

⇝ chains of weight L have size Ω(log(L))
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(II) Bounded cocycle

Sketch of the argument:

(a) Averaging the cocycle ρµ to define everywhere positive
Ω ∈ L1(µ) such that 1∫

Ω dµ
Ω = ν

µ .

(b) Showing that ρν(x , y) =
Ω(y)
Ω(x)ρµ(x , y) has the desired

properties. Technical but direct computation once we describe
Ω.



(II) Bounded cocycle

(a) Suppose that α is a probability distribution on n, i.e.,
α : n → (0, 1] such that

∑n
i=1 α(i) = 1.

The cocycle is then defined as ρα(i , j) =
α(j)
α(i) .

How to get the uniform distribution by averaging?

Define

Ω(k) =
n∑

j=1

ρα(k , j) =
1

α(k)
.

Then we have
∫
n Ωdα = n and β that satisfies 1

nΩ = dβ
dα is the

uniform distribution on n.

Indeed, we have

ρβ(k, ℓ) =
Ω(ℓ)

Ω(k)
ρα(k , ℓ) =

α(k)

α(ℓ)

α(ℓ)

α(k)
= 1.
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(II) Bounded cocycle

(a) For v ∈ V , we define

Ω(v) =
∞∑
k=0

1

2k

∑
dist(v ,w)=k

1

∆k
ρµ(v ,w).

Need to show that Ω ∈ L1(µ), in particular, Ω(v) is finite µ-almost
everywhere.

In reality formula is more complicated that is why we get the
estimate 2∆ on the next slide.



(II) Bounded cocycle

(b) We have for every edge (x , y) ∈ E

Ω(y)ρµ(x , y) =

 ∞∑
k=0

1

2k

∑
dist(y ,w)=k

1

∆k
ρµ(y ,w)

 ρµ(x , y)

=
∞∑
k=0

1

2k

∑
dist(y ,w)=k

1

∆k
ρµ(x ,w)

≤ 2∆

 ∞∑
k=0

1

2k

∑
dist(x ,w)=k

1

∆k
ρµ(x ,w)

 = 2∆Ω(x).

⇝ ρν(x , y) =
Ω(y)
Ω(x)ρµ(x , y) ≤ 2∆



Thank you!


