The generic action of a free group is hyperfinite (joint with Sumun lyer)

Forte Shinko

UCLA

May 17, 2023

Forte Shinko (UCLA)

The generic action of a free group is hyperfini

_____May 17, 2023

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Every compact Polish space embeds in the Hilbert cube $[0,1]^{\mathbb{N}}$.

Every compact Polish space embeds in the Hilbert cube $[0,1]^{\mathbb{N}}$. The collection $K([0,1]^{\mathbb{N}})$ of closed subspaces of $[0,1]^{\mathbb{N}}$ is a Polish space.

Every compact Polish space embeds in the Hilbert cube $[0,1]^{\mathbb{N}}$. The collection $K([0,1]^{\mathbb{N}})$ of closed subspaces of $[0,1]^{\mathbb{N}}$ is a Polish space.

"The generic compact space satisfies ϕ ."

 $\iff \text{``The generic closed subspace of } [0,1]^{\mathbb{N}} \text{ satisfies } \phi. \text{''}$

 $\iff \left\{ X \in K \Big([0,1]^{\mathbb{N}} \Big) : X \text{ satisfies } \phi \right\} \text{ is comeager}.$

Every compact Polish space embeds in the Hilbert cube $[0,1]^{\mathbb{N}}$. The collection $K([0,1]^{\mathbb{N}})$ of closed subspaces of $[0,1]^{\mathbb{N}}$ is a Polish space.

"The generic compact space satisfies ϕ ."

 $\iff \text{``The generic closed subspace of } [0,1]^{\mathbb{N}} \text{ satisfies } \phi. \text{''} \\ \iff \left\{ X \in K \Big([0,1]^{\mathbb{N}} \Big) : X \text{ satisfies } \phi \right\} \text{ is comeager.}$

For instance,

Every compact Polish space embeds in the Hilbert cube $[0,1]^{\mathbb{N}}$. The collection $K([0,1]^{\mathbb{N}})$ of closed subspaces of $[0,1]^{\mathbb{N}}$ is a Polish space.

"The generic compact space satisfies ϕ ."

 $\iff \text{``The generic closed subspace of } [0,1]^{\mathbb{N}} \text{ satisfies } \phi. \text{''} \\ \iff \left\{ X \in K \Big([0,1]^{\mathbb{N}} \Big) : X \text{ satisfies } \phi \right\} \text{ is comeager.}$

For instance,

The generic closed subspace of $[0,1]^{\mathbb{N}}$ is homeomorphic to $2^{\mathbb{N}}$.

 Γ countable discrete group.

 Γ countable discrete group.

Compact Γ -space

:= compact Polish space with a continuous action of Γ

 Γ countable discrete group.

Compact Γ -space

 $:= \operatorname{compact}$ Polish space with a continuous action of Γ

Every compact Γ -space is a **subshift**,

 Γ countable discrete group.

Compact Γ -space

 $:= \operatorname{compact}$ Polish space with a continuous action of Γ

Every compact $\Gamma\text{-space}$ is a subshift, i.e. a closed invariant subset of (Hilbert cube)^{\Gamma}.

3/22

 Γ countable discrete group.

Compact Γ -space

 $:= \operatorname{compact}$ Polish space with a continuous action of Γ

Every compact $\Gamma\text{-space}$ is a subshift, i.e. a closed invariant subset of (Hilbert cube)^{\Gamma}.

The collection of subshifts of (Hilbert cube) $^{\Gamma}$ is a Polish space.

3/22

 Γ countable discrete group.

Compact Γ -space

 $:= \operatorname{compact}$ Polish space with a continuous action of Γ

Every compact Γ -space is a **subshift**, i.e. a closed invariant subset of (Hilbert cube)^{Γ}. The collection of subshifts of (Hilbert cube)^{Γ} is a Polish space.

"The generic compact Γ -space satisfies ϕ ."

 $\iff \text{``The generic subshift of (Hilbert cube)}^{\Gamma} \text{ satisfies } \phi. \text{''}$

Forte Shinko (UCLA) The generic action of a free group is hyperfini Ma

"The generic compact Γ -space" is a robust notion.

"The generic compact Γ -space" is a robust notion. Hochman:

"The generic compact Γ -space" is a robust notion. Hochman:

```
"The generic subshift of (Hilbert cube)<sup>\Gamma</sup> satisfies \phi."

(1)

"The generic action \Gamma \curvearrowright 2^{\mathbb{N}} satisfies \phi."
```

"The generic compact Γ -space" is a robust notion. Hochman:

```
"The generic subshift of (Hilbert cube)<sup>\Gamma</sup> satisfies \phi."

(1)

"The generic action \Gamma \curvearrowright 2^{\mathbb{N}} satisfies \phi."
```

Topology on space of actions = subspace topology from $Homeo(2^{\mathbb{N}})^{\Gamma}$.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Every compact Γ -space X induces an equivalence relation.

Every compact Γ -space X induces an equivalence relation.

$$x \mathrel{E} y \iff \exists \gamma \left[\gamma \cdot x = y \right]$$

Every compact Γ -space X induces an equivalence relation.

$$x \mathrel{E} y \iff \exists \gamma \left[\gamma \cdot x = y \right]$$

This is a countable Borel equivalence relation (CBER).

Every compact Γ -space X induces an equivalence relation.

$$x \mathrel{E} y \iff \exists \gamma \left[\gamma \cdot x = y \right]$$

This is a **countable Borel equivalence relation (CBER)**. Mostly concerned with properties of equivalence relations:

Every compact Γ -space X induces an equivalence relation.

$$x \mathrel{E} y \iff \exists \gamma \left[\gamma \cdot x = y \right]$$

This is a **countable Borel equivalence relation (CBER)**. Mostly concerned with properties of equivalence relations:

Finite (every class is finite)

Every compact Γ -space X induces an equivalence relation.

$$x \mathrel{E} y \iff \exists \gamma \left[\gamma \cdot x = y \right]$$

This is a **countable Borel equivalence relation (CBER)**. Mostly concerned with properties of equivalence relations:

- Finite (every class is finite)
- Hyperfinite

Every compact Γ -space X induces an equivalence relation.

$$x \mathrel{E} y \iff \exists \gamma \left[\gamma \cdot x = y \right]$$

This is a **countable Borel equivalence relation (CBER)**. Mostly concerned with properties of equivalence relations:

- Finite (every class is finite)
- Hyperfinite
- Measure-hyperfinite

Forte Shinko (UCLA) The generic action of a free group is hyperfini Ma

Simplest case: Γ finite.

Simplest case: Γ finite. Corresponding CBER notion: **finite** CBER,

Simplest case: Γ finite.

Corresponding CBER notion: finite CBER, meaning it has finite classes.

Simplest case: Γ finite. Corresponding CBER notion: finite CBER, meaning it has finite classes. Next: Γ locally finite

Simplest case: Γ finite. Corresponding CBER notion: finite CBER, meaning it has finite classes. Next: Γ locally finite

$$\Gamma = \bigcup_n \Gamma_n$$

Simplest case: Γ finite.

Corresponding CBER notion: finite CBER, meaning it has finite classes. Next: Γ locally finite

 $\Gamma = \bigcup_n \Gamma_n$

where $\Gamma_0 \leq \Gamma_1 \leq \Gamma_2 \leq \cdots$ are finite.

Simplest case: Γ finite.

Corresponding CBER notion: finite CBER, meaning it has finite classes. Next: Γ locally finite

 $\Gamma = \bigcup_n \Gamma_n$ where $\Gamma_0 \leq \Gamma_1 \leq \Gamma_2 \leq \cdots$ are finite. Corresponding CBER notion: hyperfinite CBER

Simplest case: Γ finite.

Corresponding CBER notion: finite CBER, meaning it has finite classes. Next: Γ locally finite

 $\Gamma = \bigcup_n \Gamma_n$

where $\Gamma_0 \leq \Gamma_1 \leq \Gamma_2 \leq \cdots$ are finite. Corresponding CBER notion: hyperfinite CBER

$$E = \bigcup_{n} E_{n}$$

Important property: Hyperfinite

Simplest case: Γ finite.

Corresponding CBER notion: finite CBER, meaning it has finite classes. Next: Γ locally finite

 $\Gamma = \bigcup_n \Gamma_n$ where $\Gamma_0 \leq \Gamma_1 \leq \Gamma_2 \leq \cdots$ are finite. Corresponding CBER notion: hyperfinite CBER

$$E = \bigcup_{n} E_{n}$$

where $E_0 \leq E_1 \leq \cdots$ are CBERs with finite classes.

Forte Shinko (UCLA) The generic action of a free group is hyperfini

The following are equivalent for a CBER E:

The following are equivalent for a CBER E:

The following are equivalent for a CBER E:

- 2 E is the orbit equivalence relation of some \mathbb{Z} -action.

The following are equivalent for a CBER E:

- 2 E is the orbit equivalence relation of some \mathbb{Z} -action.

The following are equivalent for a CBER E:

- 2 E is the orbit equivalence relation of some \mathbb{Z} -action.

where E_0 is the orbit equivalence relation of $(\mathbb{Z}/2)^{<\omega} \curvearrowright 2^{\mathbb{N}}$.

The following are equivalent for a CBER E:

- 2 E is the orbit equivalence relation of some \mathbb{Z} -action.

where E_0 is the orbit equivalence relation of $(\mathbb{Z}/2)^{<\omega} \curvearrowright 2^{\mathbb{N}}$.

Example

 $F_2 \curvearrowright 2^{F_2}$ non-hyperfinite (F_2 nonamenable).

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Let E be a CBER on X.

Let E be a CBER on X.

If μ is a Borel probability measure on X:

Let *E* be a CBER on *X*. If μ is a Borel probability measure on *X*:

E is μ -hyperfinite

 $:= E{\restriction} Y \text{ is hyperfinite for some } \mu\text{-conull } Y$

Let E be a CBER on X. If μ is a Borel probability measure on X:

E is μ -hyperfinite

 $:= E {\upharpoonright} Y$ is hyperfinite for some μ -conull Y

 $E \text{ is measure-hyperfinite} \\ := E \text{ is } \mu\text{-hyperfinite for every } \mu$

Let E be a CBER on X. If μ is a Borel probability measure on X:

E is μ -hyperfinite

 $:= E {\upharpoonright} Y$ is hyperfinite for some μ -conull Y

 $E \text{ is measure-hyperfinite} \\ := E \text{ is } \mu\text{-hyperfinite for every } \mu$

 Γ is amenable iff 2^{Γ} is measure-hyperfinite.

Let E be a CBER on X. If μ is a Borel probability measure on X:

E is μ -hyperfinite

 $:= E {\upharpoonright} Y$ is hyperfinite for some μ -conull Y

 $E \text{ is measure-hyperfinite} \\ := E \text{ is } \mu\text{-hyperfinite for every } \mu$

 Γ is amenable iff 2^{Γ} is measure-hyperfinite. Big open conjecture:

Let E be a CBER on X. If μ is a Borel probability measure on X:

E is μ -hyperfinite

 $:= E{\upharpoonright} Y \text{ is hyperfinite for some } \mu\text{-conull } Y$

 $E \text{ is measure-hyperfinite} \\ := E \text{ is } \mu\text{-hyperfinite for every } \mu$

 Γ is amenable iff 2^{Γ} is measure-hyperfinite. Big open conjecture:

Conjecture

Measure-hyperfinite is equivalent to hyperfinite.

Forte Shinko (UCLA) The generic action of a free group is hyperfini Ma

Let F_n be the free group on n generators (n can be infinite).

Let F_n be the free group on n generators (n can be infinite). Every $\Gamma \curvearrowright X$ lifts to $F_{\infty} \curvearrowright X$ (same equivalence relation).

Let F_n be the free group on n generators (n can be infinite). Every $\Gamma \curvearrowright X$ lifts to $F_{\infty} \curvearrowright X$ (same equivalence relation). Suffices to consider free groups.

Let F_n be the free group on n generators (n can be infinite). Every $\Gamma \curvearrowright X$ lifts to $F_{\infty} \curvearrowright X$ (same equivalence relation). Suffices to consider free groups.

Theorem (Frisch-Kechris-Shinko-Vidnyánszky)

The generic subshift of (Hilbert cube)^{F_n} is measure-hyperfinite.

Forte Shinko (UCLA) The generic action of a free group is hyperfini M

{measure-hyperfinite} ∪ {free measure-hyperfinite} ∥ {free topologically amenable}

{measure-hyperfinite} ∪ {free measure-hyperfinite} ∥ {free topologically amenable}

Show dense G_{δ} .

{measure-hyperfinite} UI {free measure-hyperfinite} II {free topologically amenable}

Show dense G_{δ} . Dense is easy.

{measure-hyperfinite} ∪| {free measure-hyperfinite} ∥ {free topologically amenable}

Show dense G_{δ} . Dense is easy. Free topologically amenable is Σ_1^1 .

{measure-hyperfinite} ∪ {free measure-hyperfinite} ∥ {free topologically amenable}

Show dense G_{δ} . Dense is easy. Free topologically amenable is Σ_1^1 . Free measure-hyperfinite is a σ -ideal.

```
{measure-hyperfinite}
∪|
{free measure-hyperfinite}
∥
{free topologically amenable}
```

Show dense G_{δ} . Dense is easy. Free topologically amenable is Σ_1^1 . Free measure-hyperfinite is a σ -ideal.

Theorem (Kechris-Louveau-Woodin)

 $\Sigma_1^1 \implies G_\delta$ for a σ -ideal of compact sets.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Question

Does measure-hyperfinite imply hyperfinite??

Question

Does measure-hyperfinite imply hyperfinite??

Possibility:

Question

Does measure-hyperfinite imply hyperfinite??

Possibility:

The generic subshift is measure-hyperfinite, but not hyperfinite.

Question

Does measure-hyperfinite imply hyperfinite??

Possibility:

The generic subshift is measure-hyperfinite, but not hyperfinite. That's not the case:

Question

Does measure-hyperfinite imply hyperfinite??

Possibility:

The generic subshift is measure-hyperfinite, but not hyperfinite. That's not the case:

Theorem (Iyer-S)

The generic action $F_n \curvearrowright 2^{\mathbb{N}}$ is hyperfinite.

Generic action is hyperfinite

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Generic action is hyperfinite

Theorem (Iyer-S)

The generic action $F_n \curvearrowright 2^{\mathbb{N}}$ is hyperfinite.

Generic action is hyperfinite

Theorem (Iyer-S)

The generic action $F_n \curvearrowright 2^{\mathbb{N}}$ is hyperfinite.

Uses techniques from the following theorem:

Generic action is hyperfinite

Theorem (Iyer-S)

The generic action $F_n \curvearrowright 2^{\mathbb{N}}$ is hyperfinite.

Uses techniques from the following theorem:

```
Theorem (Kwiatkowska)
```

There is a comeager conjugacy class of actions $F_n \curvearrowright 2^{\mathbb{N}}$.

Generic action is hyperfinite

Theorem (Iyer-S)

The generic action $F_n \curvearrowright 2^{\mathbb{N}}$ is hyperfinite.

Uses techniques from the following theorem:

```
Theorem (Kwiatkowska)
```

There is a comeager conjugacy class of actions $F_n \curvearrowright 2^{\mathbb{N}}$.

Uses framework of projective Fraïssé theory.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Approximate $2^{\mathbb{N}}$ by clopen partitions:

Approximate $2^{\mathbb{N}}$ by clopen partitions:

 $2^{\mathbb{N}} = \varprojlim\{\text{finite sets}\}$

Approximate $2^{\mathbb{N}}$ by clopen partitions:

 $2^{\mathbb{N}} = \varprojlim\{\text{finite sets}\}$

Similarly,

Approximate $2^{\mathbb{N}}$ by clopen partitions:

 $2^{\mathbb{N}} = \varprojlim\{\text{finite sets}\}$

Similarly,

$$F_2 \curvearrowright 2^{\mathbb{N}} = \varprojlim \{ \text{surjective structures} \}$$

Approximate $2^{\mathbb{N}}$ by clopen partitions:

 $2^{\mathbb{N}} = \varprojlim\{\text{finite sets}\}$

Similarly,

$$F_2 \curvearrowright 2^{\mathbb{N}} = \varprojlim \{ \text{surjective structures} \}$$

Surjective structure = finite set equipped with two surjective relations.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

 $\mathcal{F} = \{$ surjective structures with epimorphisms $\}$

 $\mathcal{F} = \{$ surjective structures with epimorphisms $\}$

 \mathcal{F} is **not** a Fraïssé class.

 $\mathcal{F} = \{ \text{surjective structures with epimorphisms} \}$

 ${\mathcal F}$ is **not** a Fraïssé class. Non-amalgamable structure:

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

(Kechris-Rosendal) To get a comeager conjugacy class, only need to amalgamate over **cofinally many**.

(Kechris-Rosendal) To get a comeager conjugacy class, only need to amalgamate over **cofinally many**.

Sufficient condition for amalgamation:

(Kechris-Rosendal) To get a comeager conjugacy class, only need to amalgamate over **cofinally many**.

Sufficient condition for amalgamation: No forks.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Generic $F_2 \curvearrowright 2^{\mathbb{N}} = \operatorname{Flim}\{\text{amalgamable structures}\}$

lf

Generic $F_2 \curvearrowright 2^{\mathbb{N}} = \operatorname{Flim}\{\text{amalgamable structures}\}$

 $X = \varprojlim \{ \text{amalgamable structures} \}$

Generic $F_2 \curvearrowright 2^{\mathbb{N}} = \operatorname{Flim}\{\text{amalgamable structures}\}$

lf

 $X = \varprojlim \{ \text{amalgamable structures} \}$

then the generic $F_2 \curvearrowright 2^{\mathbb{N}}$ factors onto X.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Theorem (IS)

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ factors onto ∂F_2 , the Gromov boundary of F_2 .

Theorem (IS)

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ factors onto ∂F_2 , the Gromov boundary of F_2 .

Any factor map between free actions is a **class injection**.

Theorem (IS)

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ factors onto ∂F_2 , the Gromov boundary of F_2 .

Any factor map between free actions is a **class injection**. Pull back hyperfiniteness from ∂F_2 .

Theorem (IS)

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ factors onto ∂F_2 , the Gromov boundary of F_2 .

Any factor map between free actions is a **class injection**. Pull back hyperfiniteness from ∂F_2 . Doesn't work for F_{∞} .

∂F_2 is a limit of amalgamable structures

Forte Shinko (UCLA) The generic action of a free group is hyperfini M

∂F_2 is a limit of amalgamable structures

There are no forks.

Forte Shinko (UCLA) The generic action of a free group is hyperfini May 17, 2023

Theorem (Dougherty-Jackson-Kechris)

Theorem (Dougherty-Jackson-Kechris) $F_2 \sim \partial F_2$ is hyperfinite.

Theorem (Dougherty-Jackson-Kechris) $F_2 \sim \partial F_2$ is hyperfinite.

Analyses infinite binary strings.

Theorem (Dougherty-Jackson-Kechris) $F_2 \sim \partial F_2$ is hyperfinite.

Analyses infinite binary strings. New proof:

Theorem (Dougherty-Jackson-Kechris) $F_2 \sim \partial F_2$ is hyperfinite.

Analyses infinite binary strings. New proof:

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob)

19 / 22

Theorem (Dougherty-Jackson-Kechris) $F_2 \curvearrowright \partial F_2$ is hyperfinite.

Analyses infinite binary strings. New proof:

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob)

Borel orientation of outdegree 1 implies Borel asymptotic dimension 1.

Theorem (Dougherty-Jackson-Kechris) $F_2 \curvearrowright \partial F_2$ is hyperfinite.

Analyses infinite binary strings. New proof:

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob)

- ▶ Borel orientation of outdegree 1 implies Borel asymptotic dimension 1.
- Borel asymptotic dimension 1 implies hyperfinite.

 ∂F_2 has a Borel orientation of outdegree 1.

 ∂F_2 has a Borel orientation of outdegree 1. This orientation comes from the first coordinate, giving the following surjective structure:

 ∂F_2 has a Borel orientation of outdegree 1. This orientation comes from the first coordinate, giving the following surjective structure:

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ also surjects onto this.

 ∂F_2 has a Borel orientation of outdegree 1.

This orientation comes from the first coordinate, giving the following surjective structure:

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ also surjects onto this. Theorem (IS) The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ has a Borel orientation of outdegree 1.

 ∂F_2 has a Borel orientation of outdegree 1. This orientation comes from the first coordinate, giving the following surjective structure:

5

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ also surjects onto this.

Theorem (IS)

The generic $F_2 \curvearrowright 2^{\mathbb{N}}$ has a Borel orientation of outdegree 1. Hence it has Borel asymptotic dimension 1. (also finite rank F_n)

An action $\Gamma \curvearrowright X$ has Borel asymptotic dimension 1 if

An action $\Gamma \curvearrowright X$ has **Borel asymptotic dimension** 1 if

For every finite $R \subseteq \Gamma$ there is a Borel coarse identity $f: X \to X$ such that $|f(Rx)| \leq 2$ for all $x \in X$.

An action $\Gamma \curvearrowright X$ has **Borel asymptotic dimension** 1 if

For every finite $R \subseteq \Gamma$ there is a Borel coarse identity $f: X \to X$ such that $|f(Rx)| \leq 2$ for all $x \in X$.

A coarse identity is a map $X \to X$ such that there is some finite $F \subseteq \Gamma$ such that for all $x \in X$, we have $f(x) \in Fx$.

An action $\Gamma \curvearrowright X$ has **Borel asymptotic dimension** 1 if

For every finite $R \subseteq \Gamma$ there is a Borel coarse identity $f: X \to X$ such that $|f(Rx)| \leq 2$ for all $x \in X$.

A coarse identity is a map $X \to X$ such that there is some finite $F \subseteq \Gamma$ such that for all $x \in X$, we have $f(x) \in Fx$. Only depends on finite subsets, so

An action $\Gamma \curvearrowright X$ has **Borel asymptotic dimension** 1 if

For every finite $R \subseteq \Gamma$ there is a Borel coarse identity $f: X \to X$ such that $|f(Rx)| \leq 2$ for all $x \in X$.

A coarse identity is a map $X \to X$ such that there is some finite $F \subseteq \Gamma$ such that for all $x \in X$, we have $f(x) \in Fx$. Only depends on finite subsets, so

Theorem (IS) The generic $F_{\infty} \curvearrowright 2^{\mathbb{N}}$ has Borel asymptotic dimension 1.

An action $\Gamma \curvearrowright X$ has Borel asymptotic dimension 1 if

For every finite $R \subseteq \Gamma$ there is a Borel coarse identity $f: X \to X$ such that $|f(Rx)| \leq 2$ for all $x \in X$.

A coarse identity is a map $X \to X$ such that there is some finite $F \subseteq \Gamma$ such that for all $x \in X$, we have $f(x) \in Fx$. Only depends on finite subsets, so

Theorem (IS)

The generic $F_{\infty} \curvearrowright 2^{\mathbb{N}}$ has Borel asymptotic dimension 1.

and we get hyperfiniteness.

Thank you!