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Overview



I. Overview
The plan

Many interesting Borel equivalence relations may be realized as
“finite distance” equivalence relations arising from appropriate
Borel extended metrics.

We define and investigate a notion of asymptotic dimension of
such metrics, and connect this notion to hyperfiniteness of their
corresponding equivalence relations.

Our proofs will be by cartoon.

This is joint work with Steve Jackson, Andrew Marks, Brandon
Seward, and Robin Tucker-Drob.



Part II

Borel extended metrics



II. Borel extended metrics
Definitions

Definition
Throughout, X will denote some standard Borel space, i.e., a set
equipped with a σ-algebra of Borel sets arising from some Polish
topology.

Definition
A Borel extended metric on X is a Borel function ρ : X 2 → [0,∞]
satisfying the usual axioms of an extended metric.

Definition
Such a metric is proper if every ball of finite radius is finite.



II. Borel extended metrics
Definitions

Definition
Given such a Borel extended metric (X , ρ), with each r <∞ we
may associate a Borel graph Gr on X by declaring

x Gr y ⇐⇒ x 6= y and ρ(x , y) < r .

When ρ is proper, each Gr is locally finite.

Definition
With (X , ρ) we may also associate a Borel equivalence relation Eρ

by declaring
x Eρ y ⇐⇒ ρ(x , y) <∞.

When ρ is proper, Eρ is a CBER.



II. Borel extended metrics
Examples

Example A

Suppose that G is a locally finite Borel graph on X . Then the
corresponding graph metric ρ is a proper Borel extended metric.
In this case, Eρ is the connectedness relation of G .

Example B

Suppose that Γ is a countable group and that d is a proper
right-invariant metric on Γ. With any free Borel action Γ y X we
may associate a proper Borel extended metric ρ by

ρ(x , y) =

{
d(e, g) if y = g · x
∞ otherwise.

In this case, Eρ is the orbit equivalence relation of Γ y X .



II. Borel extended metrics
Questions

Question
How do properties of (X , ρ) relate to properties of Eρ?

We are particularly interested in detecting hyperfiniteness of Eρ.

Definition
A CBER E is hyperfinite if it is an increasing union of FBERs.
That is, if there exist (class-)finite Borel equivalence relations
F 0 ⊆ F 1 ⊆ · · · with E =

⋃
n F

n.

Question (Weiss)

Is every orbit equivalence relation of a Borel action of a countable
amenable group hyperfinite?



Part III

Borel asymptotic dimension



III. Borel asymptotic dimension
Definition

From now on, (X , ρ) will be some proper Borel extended metric.

Definition
A family C ⊆ P(X ) is uniformly (ρ-)bounded if there is R <∞
such that for all C ∈ C, diamρ(C ) < R.

Definition
Given s ∈ N, we say asdimB(X , ρ) ≤ s if for all r <∞ there is a
Borel partition X = W0 tW1 t · · · tWs so that for all i , the
connected components of Gr � Wi are uniformly bounded.

Remark
There are several equivalent definitions, but I like this one because
it reminds me of graph coloring. An example will help clarify why
it is a notion of “dimension.”



III. Borel asymptotic dimension
Example: Z2

The usual (or any other) proper metric on Z2 should be
“2-dimensional.” One way of formalizing this, inspired by covering
dimension, is by tiling by large bricks.



III. Borel asymptotic dimension
Example: Z2

We use this pattern to witness asdimB(Z2) ≤ 2 by coloring points
in turn. X = · · ·
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III. Borel asymptotic dimension
Example: Z2

We use this pattern to witness asdimB(Z2) ≤ 2 by coloring points
in turn. X = W0 tW1 tW2.



III. Borel asymptotic dimension
Example: Z2

This argument generalizes to convert between various different
definitions of asdimB(X , ρ) ≤ s.



III. Borel asymptotic dimension
Asymptotic separation index

Definition
Given s ∈ N, we say asdimB(X , ρ) ≤ s if for all r <∞ there is a
Borel partition X = W0 tW1 t · · · tWs so that for all i , the
connected components of Gr � Wi are uniformly bounded.

Remark
If we weaken the above definition to instead require only that the
connected components of Gr � Wi are ρ-bounded (i.e., finite) we
obtain the definition of asiB(X , ρ) ≤ s.

Remark
This notion of asymptotic separation index is reminiscent of
“toast” constructions from descriptive combinatorics, and finite asi
is enough to run some arguments from that domain. These ideas
are further developed via the ASI algorithms of Qian-Weilacher and
the ASI local lemma of Bernshteyn-Weilacher.



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Theorem
Suppose that s ∈ N and that (X , ρ) is a proper Borel extended
metric with asdimB(X , ρ) ≤ s. Then Eρ is hyperfinite.

Sketch of the proof

By assumption, we know for each r <∞ we have a Borel partition
X = W r

0 t · · · tW r
s so that the connected components of Gr � W r

i

are uniformly bounded.

The main idea is to “switch indices” and fix i ≤ s while examining
how the sequence W r

i behaves as r grows rapidly. We use these to
define for each i increasing (partial) FBERS F 0

i ⊆ F 1
i ⊆ · · · which

will help establish hyperfiniteness of Eρ.

We illustrate this process for i = 0, which we view as red.



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 0: r0 = 1. Obtain W r0 that looks like this in each Eρ-class:



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 0: r0 = 1. Each red blob will form an F 0-class. These are
finite, and in fact uniformly ρ-bounded by some R0.



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 1: r1 = R0. Obtain W r1 that looks like this in each Eρ-class:



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 1: r1 = R0. Superimpose with the W r0 picture, obtaining:



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 1: r1 = R0. By construction, each F 0-class meets at most
one Gr1 � W r1-component.



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 1: r1 = R0. These contiguous regions will form our
F 1-classes.



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 1: r1 = R0. Observe that F 0 ⊆ F 1, and that each F 1-class
has diameter at most 2R0 + R1 (hence is finite).



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

Stage 2: r2 = 2R0 + R1. Each F 1-class meets at most one
Gr2 � W r2-component. The contiguous regions will form our
F 2-classes, of diameter uniformly bounded by 2(2R0 + R1) + R2.

Stage 3: r3 = 2(2R0 + R1) + R2 . . .

etc.



III. Borel asymptotic dimension
Hyperfiniteness of Eρ

Sketch of the proof, cont.

• Proceeding in this fashion, we build for each i ≤ s (partial)
FBERs F 0

i ⊆ F 1
i ⊆ · · · , and thus hyperfinite (partial)

equivalence relations Ei =
⋃

n F
n
i .

• Using the fact that s is finite, a pigeonhole argument
(essentially) ensures for each i ≤ s that each Eρ-class contains
at most one Ei -class.

• This grants the desired hyperfiniteness of Eρ.



Part IV

Group actions



IV. Group actions
Free Borel group actions

Application

Motivated by Weiss’ question, the previous theorem grants a
sufficient condition for a free Borel action Γ y X to have
hyperfinite orbit equivalence relation.

Remark
Recall, via Example B earlier, we have a mechanism for pushing a
proper right-invariant metric on countable Γ forward to a proper
Borel extended metric on X .

Remark
It is often convenient to use the following reformulation to avoid
the hassle of fixing a right-invariant proper metric on Γ.



IV. Group actions
Free Borel group actions

Reformulation
Any proper Borel extended metric ρ on X arising from a free Borel
action Γ y X has asdimB(X , ρ) ≤ s if and only if
• for each finite A ⊆ Γ
• there is finite B ⊆ Γ and Borel partition X = W0 t · · · tWs

• so that for all i ≤ s and x ∈ X , (GA � Wi ) · x ⊆ B · x .

Definition
Here, GA is the graph with edges (x , a · x) for a ∈ A.

Definition
Also, G · x denotes the G-connected component of x .

Definition
And B · x = {b · x : b ∈ B}.



IV. Group actions
Hyperfinite groups

Example

Any free Borel action of a locally finite group has asdimB = 0,
since for all finite A we have GA · x ⊆ 〈A〉 · x .

Example (Jackson-Kechris-Louveau)

Any free Borel action of a finitely generated group of polynomial
growth has finite asdimB.

Example

Any free Borel action of the lamplighter group (Z/2Z) o Z has
asdimB = 1.

Example

Any free Borel action of a polycyclic group has finite asdimB.



IV. Group actions
Hyperfinite groups

So we obtain

Theorem
All of the actions on the previous page have hyperfinite orbit
equivalence relations.

Remark
Dealing with non-free actions is a huge hassle, but it seems likely
that they also have hyperfinite orbit equivalence relations.

Remark
For example, some general results of Schneider-Seward in
conjunction with the asymptotic dimension machinery grant this
for non-free Borel actions of polycyclic groups.



Part V

More on the lamplighter



V. More on the lamplighter
asdimB = 1

We close with some cartoons indicating the overall structure of the
argument that free Borel actions of the lamplighter have Borel
asymptotic dimension 1.

Definition
Put ∆ =

⊕
k∈Z(Z/2Z), and let Γ = ∆ o Z, where Z acts by the

shift σ on the indices.



V. More on the lamplighter
asdimB = 1

So the group looks something like this:



V. More on the lamplighter
asdimB = 1

To witness (classical) asdim 1 with A = A∆ ∪ {σ}:
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To witness (classical) asdim 1 with A = A∆ ∪ {σ}:



V. More on the lamplighter
asdimB = 1

Remark
This type of approach can’t work in the Borel context because
there is generally no way of “aligning” the ∆-orbits like this in a
Borel fashion.

Remark
The work-around is to follow a “local algorithm,” instead trying to
color in stages by widgets:



V. More on the lamplighter
asdimB = 1

The algorithm runs something like this:
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V. More on the lamplighter
asdimB = 1

The algorithm runs something like this:



V. More on the lamplighter
asdimB = 1

Remark
There is a scale-invariant widget conflict graph whose Borel
chromatic number (at most 5, in this case) bounds the number of
stages of this algorithm.

Remark
Widgets added at the same stage are disjoint, and widgets added
at earlier stages take precedence over those added at later stages
(unlike what I drew).

Remark
By choosing the original ∆m ⊆ ∆ big enough, the resulting
coloring will witness asdimB ≤ 1 for the given A = A∆ ∪ {σ}.



Part VI

Thanks!


