Equivalence relations classifiable by Polish abelian groups (joint with Joshua Frisch)

Forte Shinko

UC Berkeley

April 24, 2024

1/21

Group actions

A group action $H \curvearrowright X$ induces an **orbit equivalence relation** on X: equivalence classes = orbits.

Important actions:

- Irrational rotation: $\mathbb{Z} \curvearrowright S^1$.
- Bernoulli shift: $\mathbb{Z} \curvearrowright 2^{\mathbb{Z}}$.
- Bernoulli shift: $F_2 \curvearrowright 2^{F_2}$.
- Graph isomorphism: $S_{\infty} \curvearrowright \{ \text{graphs with vertex set } \mathbb{N} \}.$
- Cosets of a subgroup: $\ell^1 \curvearrowright \mathbb{R}^{\mathbb{N}}$.

General principle:

group H is nice \implies orbit equivalence relations of H are nice

Nice groups: abelian, amenable, TSI, non-archimedean... Nice eq rels: smooth, hypersmooth, essentially countable, classifiable by countable structures...

Today's conventions (the zeitgeist)

All spaces today will be standard Borel spaces.

All equivalence relations today will be on such spaces, and they will be **Borel equivalence relations (BER)**.

Given spaces X and Y equipped with equivalence relations, a function $X \to Y$ is a **reduction** if for all $x, x' \in X$, we have that x and x' are equivalent (in X) iff f(x) and f(x') are equivalent (in Y).

All reductions today will be **Borel reductions**.

All groups will be **Polish groups**.

All actions today will be **Borel actions**.

Most equivalence relations today: orbit equivalence relation of $H \curvearrowright X$, where

- ► *H* is a Polish group
- ► X is a standard Borel space
- The action $H \curvearrowright X$ is Borel.

A **countable** Borel equivalence relation (CBER) is the orbit eq rel of an action of a countable group.

Classifying equivalence relations by a group

- E: Borel eq rel.
- *H*: Polish group.
- E is **classifiable by** H if E reduces to an orbit eq rel of H.
- Many results about BERs can be stated in this language.
 - The orbit eq rel of $F_2 \curvearrowright 2^{F_2}$ is not classifiable by \mathbb{Z} .
 - Every orbit eq rel of an action of a locally compact group is classifiable by a countable group.
 - **③** No orbit eq rel of a turbulent action is classifiable by S_{∞} .
- Classifiable by a countable group = essentially countable. Classifiable by \mathbb{Z} = essentially hyperfinite.

Hyperfiniteness

Classifiable by $\mathbb{Z}=\mbox{essentially hyperfinite}.$ Gao-Jackson proved

classifiable by a countable abelian group \implies essentially hyperfinite

Hard conjecture: "abelian" can be replaced with "amenable". How about **uncountable** abelian groups?

classifiable by an abelian group \implies essentially hyperfinite??

Cotton proved

classifiable by **locally compact** abelian \implies essentially hyperfinite

Can't hold in full generality: The natural action $\ell^1 \curvearrowright \mathbb{R}^{\mathbb{N}}$ is not even essentially **countable**.

5/21

Classifiability by (Polish) abelian groups

The natural action $\ell^1 \curvearrowright \mathbb{R}^{\mathbb{N}}$ is not even essentially **countable**. ℓ^1 = absolutely summable sequences in $\mathbb{R}^{\mathbb{N}}$. Maybe essential countability is the only obstruction? Hjorth's conjecture:

class^{ble} by abelian $+ \implies$ essentially hyperfinite essentially countable

Equivalently:

```
^{\rm class^{ble}} by abelian _+ \implies ^{\rm class^{ble}} by countable abelian ^{\rm class^{ble}} by countable
```

Hjorth's conjecture:

class^{ble} by abelian $+ \implies$ essentially hyperfinite essentially countable

Cotton: true if "abelian" is replaced by "locally compact abelian". Shaun Allison: true if "abelian" is replaced by " $\mathbb{R}^{\mathbb{N}}$ ".

Hjorth's conjecture refuted!

Recently, Shaun Allison disproved Hjorth's conjecture:

Theorem (Shaun Allison)

Every treeable CBER is classifiable by a Polish abelian group.

In particular, free part of $F_2 \curvearrowright 2^{F_2}$ is a counterexample to Hjorth. Actually, no restriction needed on the CBER:

Theorem (Frisch-信)

Every CBER is classifiable by a Polish abelian group.

In other words, we simply have

$$\mathsf{class}^{\mathsf{ble}}$$
 by $\mathsf{countable} \implies \mathsf{class}^{\mathsf{ble}}$ by abelian

Proof idea:

Hardest CBER: Schreier graph of $F_2 \curvearrowright 2^{F_2}$. Let G be a 4-regular Borel graph. Want a reduction:

connected component relation on G $$\downarrow$$ orbit eq rel of a Polish abelian group

Basic idea (no DST yet)

Notation: $\mathbb{F}_2[X] = \text{free } \mathbb{F}_2\text{-vector space generated by } X.$ *G*: graph with vertices V_G and edges *G* Define a cover \widetilde{G} of *G*:

- Vertices: $\mathbb{F}_2[G] \times V_G$.
- Edges: Neighbors of (a, v)? For every w adjacent to v, $(a + \overline{vw}, w)$ is adjacent to (a, v).

Basic idea cont'd (no DST yet)

Define cover G of G: vertex set $\mathbb{F}_2[G] \times V_G$, with (a, v) adjacent to $(a + \overline{vw}, w)$.

Consider the natural action $\mathbb{F}_2[G] \curvearrowright \widetilde{G}$ (change first coordinate). Descend to action $\mathbb{F}_2[G] \curvearrowright \operatorname{Comp}(\widetilde{G})$, the set of components of \widetilde{G} . For vertices v, w in G:

$\boldsymbol{v} \text{ and } \boldsymbol{w} \text{ are in same component}$

\uparrow

component of $(0, \mathit{v})$ and component of $(0, \mathit{w})$ are in same orbit

i.e. " $v \mapsto \text{component of } (0, v)$ " is the desired reduction.

DST has issues with this

Let G be a 4-regular Borel graph.

Define cover G of G: vertex set $\mathbb{F}_2[G] \times V_G$, with (a, v) adjacent to $(a + \overline{vw}, w)$.

We have a reduction from connectedness rel of G to $\mathbb{F}_2[G] \curvearrowright \operatorname{Comp}(G)!$ The issues...

Problem 1: F₂[G] isn't a Polish group.
 The "free object generated by a Polish space" is usually not Polish, e.g. free group, free abelian group, free vector space...
 Even if we overcome this...

Problem 2: Comp(G) isn't always standard Borel.
 It's only standard if the connectedness rel on G is smooth.

The actual plan

X: standard Borel space. We want a Polish version of " $\mathbb{F}_2[X]$ ". Idea:

- Put a metric on X.
- **②** This induces a metric on $\mathbb{F}_2[X]$ (the **earthmover distance**).
- **③** Its completion $\overline{\mathbb{F}_2[X]}$ is a Polish group, use this.

Now suppose we have a Borel graph G, and do the above for X = G. Define the cover \widetilde{G} using vertex set $\overline{\mathbb{F}_2[G]} \times V_G$, with (a, v) adjacent to $(a + \overline{vw}, w)$.

For $\operatorname{Comp}(\widetilde{G})$ to be standard Borel, we need the connectedness rel on \widetilde{G} to be **smooth**.

The smoothness depends on the metric we choose on X!

13/21

The earthmover distance on $\mathbb{F}_2[X]$

X: metric space with $d \leq 1$. Define **earthmover norm** on $\mathbb{F}_2[X]$ Intuitively:

Start with a finite set of garbage you need to clean up. There's a garbage can at distance 1 from everyone. Two pieces of garbage at the same point will cancel out (like in real life). What's the smallest amount of garbage movement required?

Fix $F \in \mathbb{F}_2[X]$. Let $(a_0, b_0), \ldots, (a_k, b_k)$ be a (partial) matching of F.

 $\|F\| \leq d(a_0, b_0) + \cdots + d(a_k, b_k) +$ number of unmatched points

Choosing a metric on G

 \widetilde{G} : cover of G with vertex set $\overline{\mathbb{F}_2[G]} \times V_G$. Fix vertex v in G. Every walk $e_0 e_1 \cdots e_k$ starting at v gives a walk in \widetilde{G} starting at (0, v):

(0, v) $(e_0, \text{endpoint of } e_0)$ $(e_0 + e_1, \text{endpoint of } e_0 e_1)$ $(e_0 + e_1 + e_2, \text{endpoint of } e_0 e_1 e_2)$ \vdots $(e_0 + e_1 + e_2 + \dots + e_k, \text{endpoint of } e_0 e_1 \dots e_k)$

The component of (0, v) consists of everything of this form. Choose a metric on G so that the component of (0, v) is **discrete** (implying smooth).

Treeable case

 \widetilde{G} : cover of G with vertex set $\overline{\mathbb{F}_2[G]} \times V_G$.

Component of (0, v): pairs of the form (vw-walk, w).

Assume G is acyclic.

Component of (0, v): pairs of the form (vw-**path**, w).

Choose metric on G so that every path has norm $\gg 0$.

Note: the **discrete metric (with distance** 1) gives norm 5 to every set of size 10.

Fix a Borel map $G \to \mathbb{N}$ which is injective on 10-balls.

Pull back the metric from \mathbb{N} to G.

Then a 10-path consists of 10 different colors, so it has norm 5.

Treeable case (cont'd)

 \widetilde{G} : cover of G with vertex set $\overline{\mathbb{F}_2[G]} \times V_G$.

G is acyclic, component of (0, v) has pairs of form (vw-path, w).

At every scale n: For every n, make a Borel map $c_n: G \to \mathbb{N}$ which is injective on n-balls.

Pulling back discrete metric via c_n makes *n*-paths have norm $\frac{n}{2}$.

Take the supremum over n?

Only possible if metrics go to 0.

Instead, at *n*-th scale, pull back $\frac{\text{discrete}}{n}$.

Beyond treeable

 \widetilde{G} : cover of G with vertex set $\overline{\mathbb{F}_2[G]} \times V_G$.

Component of (0, v): pairs of the form (vw-walk, w).

```
What to do at scale n?
```

Problems like, very long walks between adjacent vertices.

Before: maps c_n were "homomorphisms to a complete graph".

Solution: take maps c_n to be "homomorphisms to a graph with larger diameter".

In particular, walk of length 10 has colors which are "10 apart".

It must cross every threshold from 0 to 10 an odd number of times, so that's 10 distinct colors, giving norm 5 again.

We've shown

```
\mathsf{class}^\mathsf{ble} by countable \implies \mathsf{class}^\mathsf{ble} by abelian
```

We can push this to countable products:

 $\mathsf{class}^\mathsf{ble}$ by countable product of countable $\implies \mathsf{class}^\mathsf{ble}$ by abelian

i.e.

```
class<sup>ble</sup> by TSI non-archimedean \implies class<sup>ble</sup> by abelian
TSI = there is a two-sided invariant metric.
Abelian groups are TSI.
Very natural guess:
```

$$\mathsf{class}^{\mathsf{ble}}$$
 by $\mathsf{TSI} \iff \mathsf{class}^{\mathsf{ble}}$ by abelian

Recall

classifiable by a Polish abelian group \iff classifiable by ℓ^1

where $\ell^1 = \{x \in \mathbb{R}^{\mathbb{N}} : x \text{ is absolutely summable} \}$. In other words,

Every CBER reduces to some orbit equivalence relation of ℓ^1 .

Which orbit equivalence relation? Denote E_2 = orbit equivalence relation of $\ell^1 \curvearrowright \mathbb{R}^{\mathbb{N}}$.

Question

```
Does every CBER reduce to E_2?
```

Hjorth conjecture: **no**, only hyperfinite ones reduce to $E_2...$

20 / 21

Thank you!