Invariant uniformization and reducibility

Caltech logic seminar

Joint work with Alexander Kechris
Axiom of Choice and Uniformization

X, Y sets

\{P_x\}_{x \in X} a family of non-empty sets P_x \subseteq Y

AC There is a choice function F : X \to Y

\text{s.t. } f(x) \in P_x \ \forall x \in X

Q] Definable AC? Is there a Borel choice fcn?

Q] If P is Borel, is there a Borel choice fcn

\text{Uniformization of } P

\text{Given } P, \text{ we let } P_x = \{y : (x, y) \in P\}

x-section of P
1. **Existence of Borel uniformizations**

 In this talk: X, Y always Polish uniformizations $P \subseteq X \times Y$ always Borel.

 Standard results If the sections of P are...

 "large section" category P_x is non-meagre for all x measure P_x is μ-positive for all x.

 "small section" countable P_x is countable for all x.

 Lusin, Novikov, Kuratowski P_x is K_σ for all x, \cap ctbl union of compact sets...

 Arsenin, Kunugi... then P admits a Borel uniformization.
Invariant uniformization

E Borel equivalence relation on X

P E-invariant $\quad x \in x' \Rightarrow P_x = P_{x'}$

f s.t. $x \in x' \Rightarrow f(x) = f(x')$

+ “large” or “small” sections

Q: Is there a Borel E-invariant uniformization?

Eq. 0: E a countable Borel equivalence relation

\(\Rightarrow \) all equiv. class are countable

\(Y = X, \ P = E \subseteq X \times X \)

An E-inv. uniformization \Rightarrow A Borel selector

\(\Rightarrow \) There is an E-inv. uni. $\quad \Leftrightarrow \quad E$ is smooth

\(E_0 = P \in F_o \)
$E \otimes (X = Y = 2^\omega, \ E = E_0 = "eventual\ equality")$

$x \ E_0 y \iff \exists n \geq m (x_m = y_m)$

Let μ be the uniform measure on 2^ω

Let A be a set which is E_0-inv, comeagre and μ-null.

$(x, y) \in P \iff x \in A + y$

- P has comeagre sections + is E_0-inv
- For all y, $P_y = \{x : (x, y) \in P\}$ is μ-null

P does not admit an E_0-inv, uniform, μ-comeagre sections + E_0-inv.

If f were such a uniform, then $f(\mathcal{B})$ is const.

If $f(x) = y$ for $x \in B$, then $B \in P_y$.

Can choose $A \in G_5 \implies P \in G_5$.

got P unmeagre μ-comeagre sections + no inv. unif. $P \in E_0$.
A "global" characterization

Def: E is smooth if there exists a Polish space \mathcal{B} and a map $f: X \to \mathcal{B}$ such that $x \in E_y \iff f(x) = f(y)$

Thm: The following are equivalent:

1. E is smooth

2. For all P, if P has non-meagre sections (E is E-inv)
 then there exists an E-invariant uniformization

3. For all P, if P has μ-positive sections
 then there exists an E-invariant uniformization

4. For all P, if P has countable sections
 then there exists an E-invariant uniformization

5. For all P, if P has K_0 sections
 then there exists an E-invariant uniformization
3.1 Complexity of counter examples

Q1 If \(P \) has “large” or “small” sections and has no \(E \)-invariant uniformization, how “complicated” can \(P \) be?

\[\text{Borel complexity} \]

\[\begin{align*}
\text{Ex} & \quad \text{There exists } P \text{ such that one of:} \\
\text{category} & \quad P \in Gs & \text{has comeagre sections} \\
\text{measure} & \quad P \in Fr & \text{has conull sections} \\
\text{countable} & \quad P \in F & \text{has ctbl sections}
\end{align*} \]

\[\text{Is this optimal?} \]

Thm If the sections of \(P \) satisfy one of the following:

\[\begin{align*}
\text{category} & \quad P \in Fr & \text{is non-meagre} \\
\text{measure} & \quad P \in \Delta^2 & \mu \text{-pos.} \\
\text{K}\alpha & \quad P \in Gs & \text{K}\alpha
\end{align*} \]

then there is an \(E \)-invariant uniformization.

Thm There exists \(E, P \) such that \(P \) has no \(E \)-invariant uniformization, but \(P \in Gs \) and has sections that are both comeagre \& conull.
Proof sketch: Let $X = \mathcal{P}(\omega)^\omega \subseteq 2^\omega$, $E = E_\emptyset \cap X$.

Find $P \subseteq X \times Y$ such that:
- $P \in G$
- P has comeagre, conull sections
- $P^y = \{x : (x,y) \in P^3\}$ is Ramsey-null for all $y \in Y$

Examples of such P:

1. $Y = 2^\omega$, $P(A, B) \iff |A \setminus \emptyset| = |A \cap B| = \aleph_0$

2. $Y = \{\text{graphs on } \omega^3\}$, $P(A, G) \iff A$ "witnesses" that G is the random graph

3. $Y = \{\text{strictly increasing functions } f : \omega \to \omega^3\}$, $P(A, f) \iff f(A)$ contains infinitely many even & odd $\#s$
“Local” dichotomies and anti-dichotomies

We characterized those E such that all P with “large” or “small” sections have an E-invariant uniformization.

What about characterizing the pairs (E, P) which admit invariant uniformizations?

Theorem (Miller) Suppose P is E-invariant and has countable sections.

Exactly one of the following holds:

1. There is an E-invariant uniformization

2. There is a continuous embedding of the pair $(E \times I_w, E \times I_w)$ into the pair (E, P)

$E \times I_w$ equiv. rel. on $2^\omega \times \omega_1$ and $(2^\omega \times 2^\omega)^2$

$(x, \eta) \sim E \times I_w \iff (y, \eta) \in x \times E \circ y$
Embedding $(E_0 \times l_w, E_0 \times l_w)$ into (E, P)
4.1 Comment on proof

Miller's proof: - proves more general dichotomy
- proves dichotomy "from scratch" (using idea of "puncture sets")

We give two new proofs:
1. Uses "off-the-shelf" dichotomies $\sim (G_0, H_0)$ [Miller], \aleph_0-dimensional G_0 [Lecomte]
2. Follows from a new "\aleph_0-dimensional (G_0, H_0)" dichotomy

Thm. There is an \aleph_0-dimensional graph G_0^w on w^w, and a graph H_0^w on w^w, such that for all \aleph_0-dimensional analytic graphs G on X and all analytic equivalence relations E on X, exactly one of the following holds:

1. There is a smooth Borel equivalence relation $F \equiv E$ and a countable Borel F-local colouring of G
2. There is a continuous homomorphism $\chi : X_\alpha \rightarrow X$ of (G_0^w, H_0^w) to (G, E)

\begin{align*}
\text{strictly increasing} & \quad X_\alpha = \{x \in w^w : x \leq e \cdot \alpha(\omega) \} \quad \text{of the}
\end{align*}
4.2 Anti-dichotomy results

Q) What about for \(P \) with "large" sections?

Dichotomies give bounds on the "complexity" of problems:

Thm The (codes of) pairs \((E, P)\), where \(P \) has countable sections and admits an \(E \)-invariant uniformization, is \(\Pi_1 \).

Thm The (codes of) pairs \((E, P)\), where \(P \) has "large" sections and admits an \(E \)-invariant uniformization, is \(\Sigma_2 \)-complete.

Note This holds even when \(E, P \) are "simple".

Open problem Is there a dichotomy for the case of \(K_0 \) sections?

\[E = R \cdot E_0 \]
Invariant ctbl uniformizations

Inv. unif: choose a point from every section in an inv. way

Can we choose a ctbl set of pts from each section in an inv. way?

\[f : X \to Y^m \]

\[x \in E \implies \{ f(x)_n \} = \{ f(x')_n \} \]

By Lusin-Novikov if \(P \) has ctbl sections this is always possible.

Lemma: If \(E \) fails inv. ctbl unif. to \(K_\sigma \) (resp. non-meagre, \(\mu \)-pos.) sections and \(E \subseteq E' \) then so does \(E' \) ctbl inv. unif.

when \(E \) is red. to ctbl, \(E \subseteq E' \)
then \(E \) admits ctbl inv. unif.
(Q) If E is not red to ctbl, does E fail inv. $\mathsf{ctbl. uni.}$ when the sections are "large" or K_0?

\text{for } E_1, E_2 \text{ fail inv. } \mathsf{ctbl uni.} \text{ when the sections are } K_0

\begin{align*}
E_1 \text{ on } (\mathbb{2})^\omega &\wedge E_1 y \iff \exists n \forall m (x_n = y_m) \\
E_2 \text{ on } \mathbb{2}^\omega &\wedge E_2 y \iff \exists n \frac{1}{2^n} < \infty
\end{align*}

E_0 is E_1-inv. & has co-ctbl sections
but has no E_1-inv. $\mathsf{ctbl uni.}$

\text{Proof } E_{ctbl} \text{ on } (\mathbb{2})^\omega \wedge E_{ctbl} y \iff \exists x, 3 = 3y, 3

fails inv. ctbl uni. when the sections are "large"

(Q) Does E_{ctbl} fail inv. $\mathsf{ctbl uni.}$ for K_0-sections?
Thank you