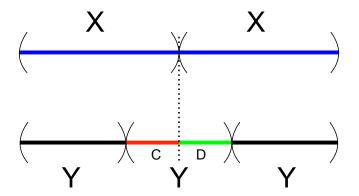
The arithmetic of linear orders

Garrett Ervin joint with Eric Paul

June 5, 2024

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

A puzzle



Is C isomorphic to D?

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

<u>Goal</u>: Study the arithmetic of the class of linear orders *LO* under the sum + and lexicographic product \times .

- Arithmetic of (LO, +) worked out classically by Tarski, Aronszajn, and especially Lindenbaum.
- Much less known about arithmetic in (LO, ×); lone classical result due to Morel characterizing cancellation on the right.
- ▶ We give some new results concerning cancellation on the left.

Defining the sum and product

Definition: Given linear orders *A* and *B*:

- The sum A + B is the order obtained by placing a copy of B to the right of A ("A followed by B"),
- The lexicographic product A × B = AB is the order obtained by replacing every point in A with a copy of B ("A-many copies of B").

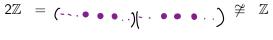
Example: If

Then



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some examples



 $\mathbb{Q}^2 = (\cdot \cdot)(\cdot \cdot \cdot)(\cdot \cdot \cdot) \quad \neq \mathbb{Q}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Arithmetic of (LO, +)

Question: to what extent do familiar laws of $(\mathbb{N}, +)$ hold in (LO, +)?

- E.g. the additive cancellation law, unique division by n, commutativity.
- ▶ Results due to Tarski, Aronszajn, and especially Lindenbaum.

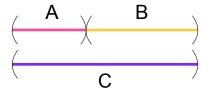
A. Lindenbaum (1904-1941)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Arithmetic of (LO, +)

To motivate the results, let's consider simple "equations" (i.e. isomorphisms) over LO involving +.

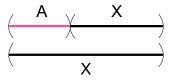
We begin with the three-term isomorphism $A + B \cong C$:



If we add constraints by setting certain terms equal, we get a recurrence that we can then attempt to "solve."

Left absorption

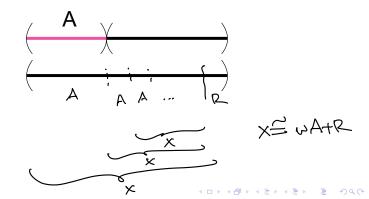
Consider $A + X \cong X$:



Always true if A = 0. But can have $A \neq 0$:

- E.g. if A = 1 and $X = 1 + 1 + ... = \omega$.
- More generally, if A is arbitrary and $X = A + A + \ldots = \omega A$.
- More generally still, if A, R are arbitrary and $X = \omega A + R$.

Thm (folklore): If $A + X \cong X$, then $X \cong \omega A + R$ for some R. <u>Proof</u>:



If $A + X \cong X$ and $A \not\cong 0$, then X cannot be cancelled in the isomorphism $A + X \cong X$.

- So, right cancellation fails in (LO, +).
- But, for this form of non-right-cancellation (left absorption), we can completely characterize the failure.

Symmetrically, we can show $X + A \cong X$ iff $X \cong L + \omega^* A$.

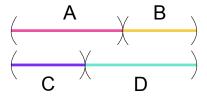
Left cancellation fails too...

Can we characterize the solutions of $X + X \cong X$? Stay tuned!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

More arithmetic in (LO, +)

Now let's consider the four-term isomorphism $A + B \cong C + D$:

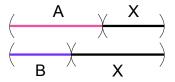


We get a number of familiar recurrences from this isomorphism by setting terms equal.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cancelling on the right

Consider $A + X \cong B + X$:



Can we cancel X and conclude $A \cong B$? Not in general.

- E.g. if $A \neq 0$, B = 0, and X absorbs A on the left.
- It turns out: left absorption is the only barrier to right cancellation.

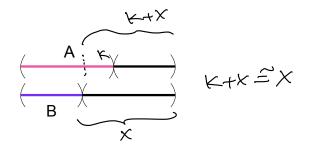
(日) (四) (日) (日) (日)

X right cancels \Leftrightarrow X does not left absorb

Thm (folklore): If $A + X \cong B + X$, then either $A \cong B$ or there is a non-empty order K such $K + X \cong X$.

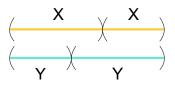
 $(X + A \cong X + B \text{ is symmetric.})$

Proof:



<u>Another view</u>: if $A + X \cong B + X$, then A and B are almost isomorphic (up to a "negligible" final segment absorbed by X).

Now suppose $X + X \cong Y + Y$:



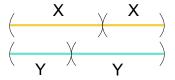
Does it follow $X \cong Y$?

Dividing by 2

Thm (Lindenbaum): If X is isomorphic to a final segment of Y and Y is isomorphic to an initial segment of X, then $X \cong Y$.

Proof: Cantor-Schroeder-Bernstein proof works!

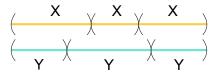
Cor (Lindenbaum): If $X + X \cong Y + Y$ then $X \cong Y$. <u>Proof</u>:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

More generally we have:

Thm (Lindenbaum): if $nX \cong nY$ then $X \cong Y$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof harder for n > 2.

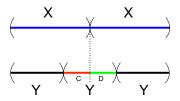
What if $nX \cong mY$ with $n \neq m$?

By cancelling common factors, suffices to assume gcd(n, m) = 1.

Thm (Lindenbaum): If $nX \cong mY$ with gcd(n, m) = 1, then there is a linear order C such that $X \cong mC$ and $Y \cong nC$.

E.g. if $2X \cong 3Y$, then $\exists C \text{ s.t. } X \cong 3C$ and $Y \cong 2C$.

Recall our puzzle: is C isomorphic to D?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

... the answer is yes!

The proof of Lindenbaum's theorem is tricky. It cases out over a fundamental dichotomy:

Thm (Lindenbaum, Tarski): For a linear order X, exactly one holds:

i. $mX \not\cong nX$ for all $m, n \in \mathbb{N}$ with $m \neq n$,

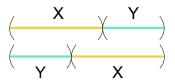
ii. $mX \cong nX$ for all $m, n \ge 1$.

i.e., the finite multiples of a linear order X are either all distinct or all the same.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Commuting pairs

Now let's consider solutions to the isomorphism $X + Y \cong Y + X$:



There are two "obvious" ways the isomorphism can hold:

i. (finite sum) $\exists C \text{ s.t. } X \cong nC$ and $Y \cong mC$ for some $m, n \in \mathbb{N}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ii. (bi-absorption) $X + Y \cong Y + X \cong Y$.

Commuting pairs

Thm (Tarski): These are the only ways if X, Y are countable or if X, Y are scattered.

Conj (Tarski): These are the only ways for any linear orders X, Y.

Prop'n (Lindenbaum): There is another way.

Thm (Aronszajn): There is only one other way.

Arithmetic of (LO, +): summary

- $A + X \cong X \qquad \text{iff} \quad X \cong \omega A + R \quad (A \text{ "almost} \cong "0)$ $(X + A \cong X \text{ symmetric})$
- $A + X \cong B + X \quad \text{iff} \qquad (A \text{ "almost} \cong " B)$ $(X + A \cong X + B \text{ symmetric})$
- $nX \cong nY$ iff $X \cong Y$ (n left cancels) $nX \cong mX$ (dichotomy) $nX \cong mY$ (can cancel and divide) $X + Y \cong Y + X$ (can characterize such pairs)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Arithmetic of (LO, \times)

... what about the corresponding isomorphisms for (LO, \times) ?

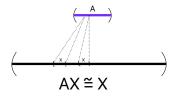
Arithmetic of (LO, \times) : questions

$AX \cong X$	iff	$X\cong A^{\omega} imes R$?	$(A \text{ ``almost} \cong "1?)$
$XA \cong X$			symmetric ?
$AX \cong BX$	iff		$(A $ "almost \cong " $B ?)$
$XA \cong XB$			symmetric ?
$X^n \cong Y^n$	iff	$X\cong Y$?	(can take <i>n</i> -th roots ?)
$X^n \cong X^m$			(dichotomy ?)
$X^n \cong Y^m$			(Euclidean in exponent ?)
$XY \cong YX$			(can we characterize ?)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Left absorption

Consider the isomorphism $AX \cong X$.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Are there examples where $A \ncong 1$?

Yes! For an arbitrary A, $X = A^{\omega}$ works.

Many familiar orders have the form A^{ω} :

- i. $2^{\omega} \cong$ the Cantor set,
- ii. $\mathbb{Z}^{\omega} \cong$ the irrationals,
- iii. $\omega^{\omega} \cong$ the non-negative reals,
- iv. $\mathbb{Q}^{\omega} \cong$ the usual example of a G_{δ} -set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

More generally, if R is arbitrary and if $X \cong A^{\omega} \times R$ then $AX \cong X$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

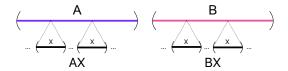
Is this general? Not quite!

Thm (E.) $AX \cong X$ iff X is of the form $A^{\omega}(I_{[u]})$.

... where $A^{\omega}(I_{[u]})$ denotes a "replacement of A^{ω} up to tail equivalence" (whatever that means).

Right cancellation

Now consider $AX \cong BX$.



We can't always cancel X, but just like in the additive case, absorption is only barrier!

Thm (Morel): If $AX \cong BX$ then either $A \cong B$ or there is an order $K \not\cong 1$ s.t. $KX \cong X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $AX \cong BX$, is there a sense in which A is always "almost isomorphic" to B?

Thm (E. + Paul): Suppose X is a linear order.

i. For any linear order A, the rule $a \sim_X a' \Leftrightarrow [a, a'] \times X \cong X$ defines a convex equivalence relation on A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ii. If $AX \cong BX$, then $A/\sim_X \cong B/\sim_X$.

Now consider the isomorphism $XA \cong X$.

This is *not* symmetric with $AX \cong X$:

• $AX \cong X$ says "X can be split into A-many copies of itself."

▶ $XA \cong X$ says "X can be split into itself-many copies of A."

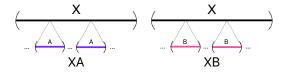
We've seen examples: e.g. $\mathbb{Z}2 \cong \mathbb{Z}$.

Can we characterize all examples? Yes (E., unpublished), but more difficult to describe than on other side.

One issue: A^{ω^*} can't be lex-ordered.

Left cancellation

Consider the isomorphism $XA \cong XB$:



Is the left-sided version of Morel's theorem true?

Question: Suppose $XA \cong XB$. Is it true that either $A \cong B$ or there is $L \not\cong 1$ s.t. $XL \cong X$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Answer (E. + Paul): No. There are even countable counterexamples.

Is it hopeless to get a nice cancellation result for $XA \cong XB$?

Not quite! We observed that in our counterexamples, the right-hand factors *A* and *B* were always *left*-absorbing.

If we assume A, B are not left-absorbing, we get the theorem we want:

Thm (E. + Paul): Suppose $XA \cong XB$ and neither A nor B is left-absorbing. Then either $A \cong B$ or there is $L \not\cong 1$ s.t. $XL \cong X$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We also showed: this is the best possible left-sided version of Morel's theorem.

<u>Even better</u>: under the assumption that A, B are not leftabsorbing, we can completely analyze four term isomorphism $XA \cong YB$.

Thm (E. + Paul): Suppose $XA \cong YB$ and neither A nor B is left-absorbing. Then:

- i. If neither A nor B convexly embeds in the other, we have $X \cong Y$.
- ii. If *B* convexly embeds in *A* but *A* does not convexly embed in *B*, then exactly one holds:
 - a. There is an infinite linear order L s.t. $A \cong LB$ and $Y \cong XL$.
 - b. There are $m, n \in \mathbb{N}$, $m \neq n$, and a linear order C such that $A \cong mC$, $B \cong nC$, and $Xm \cong Yn$.

iii. If A and B are convexly bi-embeddable, then $X \cong Y$.

Absorbing right factors

So what if the right-hand factors A, B in the isomorphism $XA \cong YB$ are left-absorbing?

We conjecture: if we mod out the lefthand factors by the absorption relations \sim_A, \sim_B , we get the theorems we want.

Conj (E. + Paul): Suppose $XA \cong YB$. Then:

- i. If neither A nor B convexly embeds in the other, we have $X \cong Y$.
- ii. If B convexly embeds in A but A does not convexly embed in B, then there is a linear order L s.t. $XL / \sim_B \cong Y / \sim_B$.
- iii. If A and B are convexly bi-embeddable, then the condensations \sim_A and \sim_B coincide, and we have then $X/\sim \cong Y/\sim$.

Here is the corresponding conjecture for the isomorphism $XA \cong XB$.

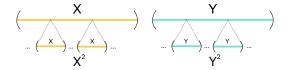
Conj (E. + Paul): Suppose $XA \cong XB$. Then either $A \cong B$, or there is an order *L* such that $XL/ \sim \cong X/ \sim$.

Says: X is left-cancelling iff X is non-right-absorbing (up to the condensation induced by left-absorption of the right-hand factors).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Taking square roots

Consider the isomorphism $X^2 \cong Y^2$:



Does it follow $X \cong Y$?

Thm (Morel, Sierpinski): No. There exist countable orders $X \not\cong Y$ s.t. $X^2 \cong Y^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

However, in all known cases of $X^2 \cong Y^2$, X and Y are convexly bi-embeddable (i.e. "extremely close" to being isomorphic).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question: Is this always the case?

Thm (E. + Paul) Yes for countable X, Y.

The orders X, Y that Morel and Sierpinski constructed have the property that $X \not\cong Y$ but $X^n \cong Y^n \cong Y$ for all $n \ge 2$.

Question (Sierpinski): Does $X^n \cong Y^n$ for some n > 2 imply $X^2 \cong Y^2$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conj (E. + Paul) Yes for countable X and Y.

Conj (E.) No in general.

For a linear order X, is it true that the finite powers X^n , $n \ge 1$ are either all isomorphic or all distinct?

Thm (Morel and Sierpinski): No.

Their example gives X s.t. $X^2 \cong X^3 \cong \ldots$ but $X \ncong X^2$.

However, we do have the following weaker dichotomy:

Thm (E.) $X \cong X^n$ for some n > 1 iff $X \cong X^n$ for all n > 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Commuting pairs

Consider the isomorphism $XY \cong YX$:

Two "obvious" ways it can hold:

i. (finite product) $\exists C \text{ s.t. } X \cong C^n \text{ and } Y \cong C^m$ for some $m, n \in \mathbb{N}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ii. (bi-absorption) $XY \cong YX \cong Y$.

Question: Are there multiplicative analogues X, Y of Lindenbaum's "irrational rotation" additive commuting pairs?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question: If so, are these the only three possible types of multiplicatively commuting pairs X, Y?

Thank you!