Translational tilings of the plane by a polygonal set

Jan Grebík¹

UCLA and Masaryk University

June 12 2024

¹ Research funded from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, grant agreement No 101105722.

joint work in progress with de Dios Pont, Greenfeld and Madrid

$$F + w = \left\{ t + w ; f \neq F \right\}$$
Theorem (Newman)
Let $F \subseteq \mathbb{Z}$ be finite and $A \subseteq \mathbb{Z}$ be such that
$$F \oplus A = \bigsqcup_{a \in A} (F + a) = \mathbb{Z}.$$
Then A is periodic. $\exists k \in \mathbb{N} \setminus \{s\} \in \mathcal{A}$

Conjecture (Periodic tiling conjecture (PTC))

→ 1 Let $\underline{F} \subseteq \mathbb{Z}^d$ be finite and $A \subseteq \mathbb{Z}^d$ be such that $\mathbb{Z}^d = F \oplus A$. Then there is $B \subseteq \mathbb{Z}^d$ that is periodic such that $\mathbb{Z}^d = F \oplus B$.

- false for large d (Greenfeld and Tao),
- correct for d = 2 (Bhattacharya)

- $\Omega \equiv bounded measurable set of positive measure \equiv tile$
- $\mathcal{T}\subseteq \mathbb{R}^2~\equiv$ set of translates

Definition

We say that Ω *tiles* \mathbb{R}^2 by T, $\mathbb{R}^2 = \Omega \oplus T$, if

- (a) for every $x \in \mathbb{R}^2$ there is $t \in T$ such that $x \in \Omega + t$,
- (b) for every $t \neq s \in T$ we have that $(\Omega + t) \cap (\Omega + s)$ is null.

 $\Omega \equiv bounded \text{ measurable set of positive measure} \equiv tile$ $T \subseteq \mathbb{R}^2 \equiv set \text{ of translates}$

Definition

We say that Ω *tiles* \mathbb{R}^2 by *T*, $\mathbb{R}^2 = \Omega \oplus T$, if

- (a) for every $x \in \mathbb{R}^2$ there is $t \in T$ such that $x \in \Omega + t$,
- (b) for every $t \neq s \in T$ we have that $(\Omega + t) \cap (\Omega + s)$ is null.

Remark:

- only translations, no rotations,
- Ω is a single tile, it might be disconnected,
- ► there is $r_{\Omega} > 0$, that depends only on Ω , such that every such T is r_{Ω} -separated. $t_{1} \neq t_{1} \neq T$ $|| t_{2} \mid t_{2} \mid t_{2} \neq t_{\Omega}$

 $\exists g_{i}h \in \Gamma(T) \setminus \{l^{\alpha}, o\}\}$ $s_{i} \notin Q \notin \mathbb{R}h$ Given $X \subseteq \mathbb{R}^2$, denote as $\overbrace{\frown}^{\Gamma(X)} = \{g \in \mathbb{R}^2 : X + g = X\}$ the set of translational symmetries of X.

Definition We say that $T \subseteq \mathbb{R}^2$ is periodic if $\Gamma(T)$ contains a lattice.

Given $X \subseteq \mathbb{R}^2$, denote as

$$\Gamma(X) = \{g \in \mathbb{R}^2 : X + g = X\}$$

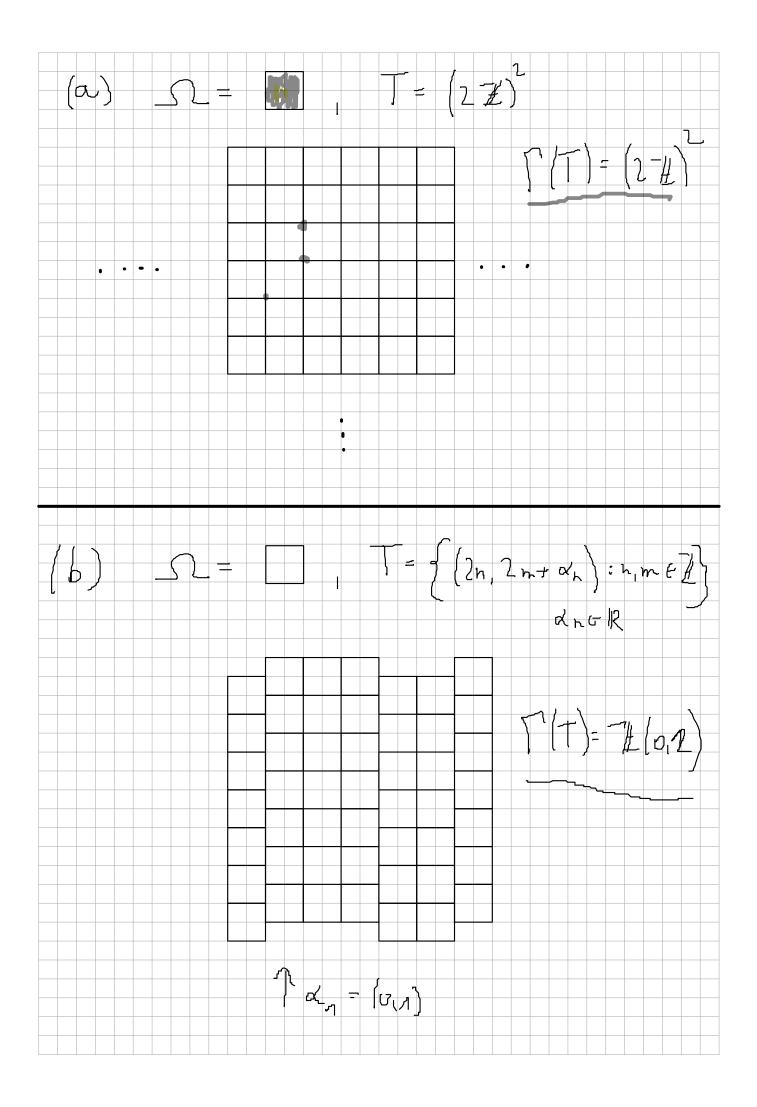
the set of translational symmetries of X.

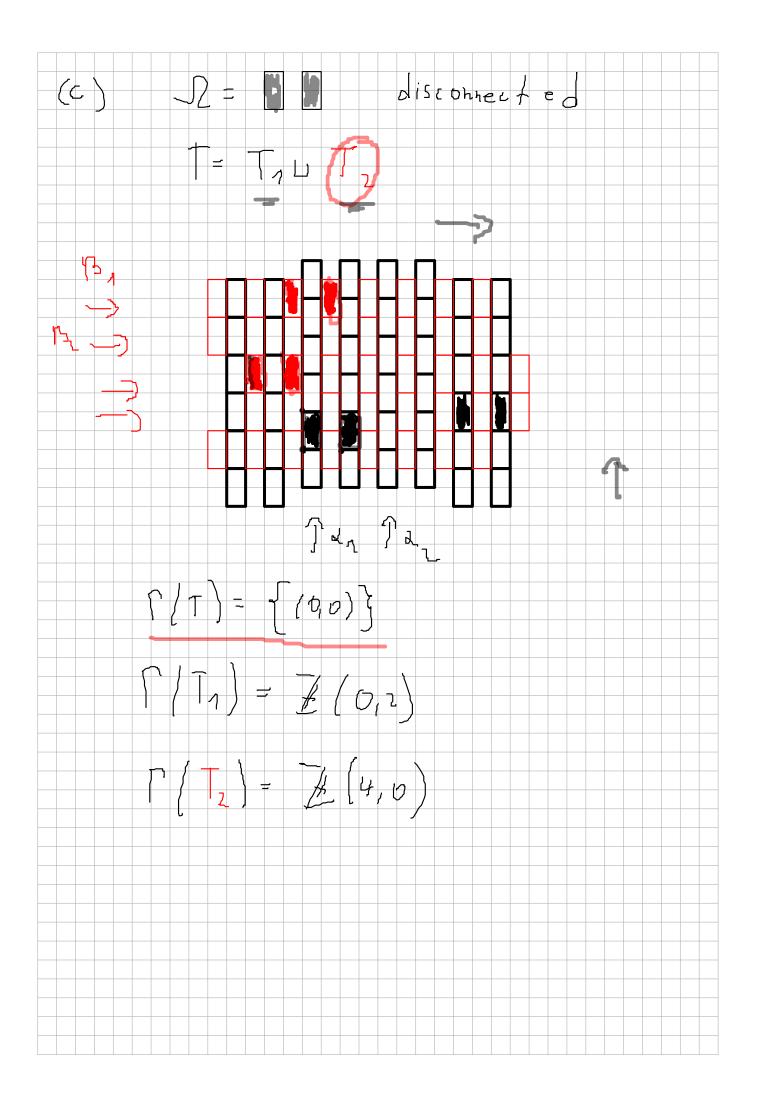
Definition

We say that $T \subseteq \mathbb{R}^2$ is periodic if $\Gamma(T)$ contains a lattice.

Conjecture (PTC in \mathbb{R}^2)

Suppose that Ω tiles \mathbb{R}^2 by T. Then there is $S \subseteq \mathbb{R}^2$ that is periodic such that $\mathbb{R}^2 = \Omega \oplus S$.





Weak periodicity

Definition

We say that $\mathcal{T}\subseteq \mathbb{R}^2$ is weakly periodic if we can write

$$T = T_1 \sqcup \cdots \sqcup T_m$$

such that $\Gamma(T_i)$ is non-trivial for every $1 \le i \le m$.

Remark:

- $T = T_1 \sqcup T_2$ in example (c) is weakly periodic and $\Gamma(T)$ is trivial,
- weak periodicity is enough for PTC in \mathbb{Z}^2 .

Weak periodicity

Definition

We say that $\mathcal{T} \subseteq \mathbb{R}^2$ is weakly periodic if we can write

$$T = T_1 \sqcup \cdots \sqcup T_m$$

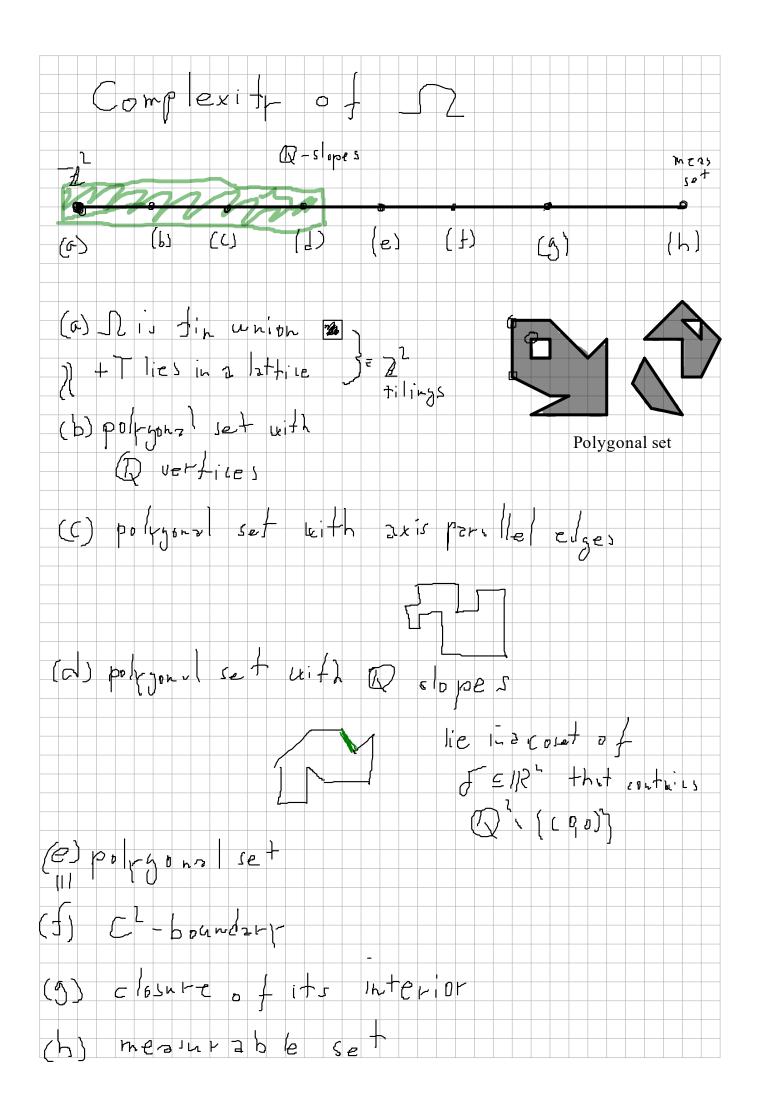
such that $\Gamma(T_i)$ is non-trivial for every $1 \le i \le m$.

Remark:

- $T = T_1 \sqcup T_2$ in example (c) is weakly periodic and $\Gamma(T)$ is trivial,
- ▶ weak periodicity is enough for PTC in \mathbb{Z}^2 .

Theorem (Greenfeld–Tao)

Let $F \subseteq \mathbb{Z}^2$ be finite and $A \subseteq \mathbb{Z}^2$ be such that $\mathbb{Z}^2 = F \oplus A$. Then A is weakly periodic.



Theorem

Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$ be topologically minimal. Then T is weakly periodic.

Theorem

Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$ be topologically minimal. Then T is weakly periodic.

Remarks: r(E) contains lattice

▶ the result holds for tilings of a periodic set $E = \Omega \oplus T$,

Theorem

Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$ be topologically minimal. Then T is weakly periodic.

Remarks:

▶ the result holds for tilings of a periodic set $E = \Omega \oplus T$,

the set of all tilings by Ω

$$\mathbf{T}_{\Omega} = \{ T \subseteq \mathbb{R}^2 : \mathbb{R}^2 = \Omega \oplus T \}$$

endowed with the weak topology and the action of \mathbb{R}^2 by translations, compart

Theorem

Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$ be topologically minimal. Then T is weakly periodic.

 $= T_1 \cup \dots \cup T_m \cap (T_i) \operatorname{kon}_{r_i \vee i}$

Remarks:

• the result holds for tilings of a periodic set $E = \Omega \oplus T$,

the set of all tilings by Ω

$$\mathbf{T}_{\Omega} = \{ T \subseteq \mathbb{R}^2 : \mathbb{R}^2 = \Omega \oplus T \}$$

endowed with the weak topology and the action of \mathbb{R}^2 by translations,

► T is **minimal** if there is a sequence $(h_m)_m \subseteq \mathbb{R}^2$ such that $(S + h_m) \to T$ whenever $(T + g_n) \to S$ for some sequence $(g_n)_n \subseteq \mathbb{R}^2$.

$$\prod_{i=1}^{m} \Gamma(s_i) \quad \text{in s lattice}$$

Theorem (west Prc)

Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$. Then there is $S = S_1 \sqcup \cdots \sqcup S_m$ such that $\mathbb{R}^2 = \Omega \oplus S$ and S_i is periodic for every $1 \le i \le m$.

Moreover, if T is locally finite, then there is such S that is periodic.

Theorem

Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$. Then there is $S = S_1 \sqcup \cdots \sqcup S_m$ such that $\mathbb{R}^2 = \Omega \oplus S$ and S_i is periodic for every $1 \le i \le m$.

Moreover, if T is locally finite, then there is such S that is periodic.

Remarks:

► the result holds for tilings of a periodic set $E = \Omega \oplus T$ and is optimal in this setting,

Theorem

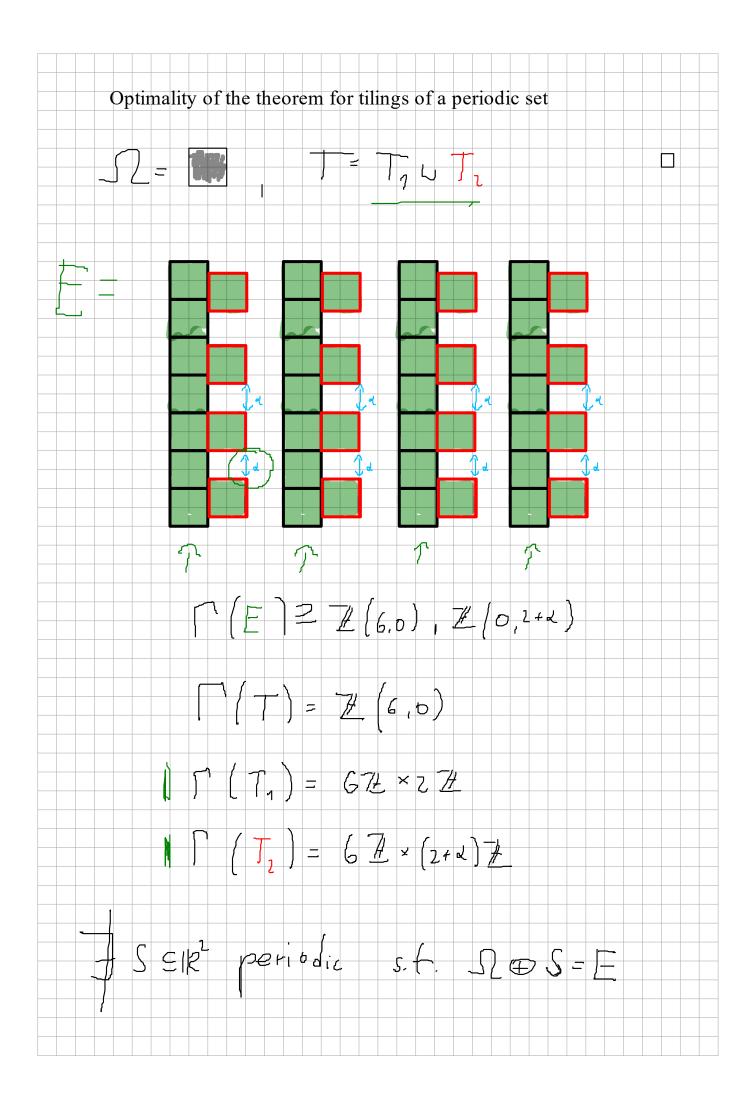
Let Ω be a polygonal set with rational slopes and $\mathbb{R}^2 = \Omega \oplus T$. Then there is $S = S_1 \sqcup \cdots \sqcup S_m$ such that $\mathbb{R}^2 = \Omega \oplus S$ and S_i is periodic for every $1 \le i \le m$.

Moreover, if T is locally finite, then there is such S that is periodic.

Remarks:

- ► the result holds for tilings of a periodic set $E = \Omega \oplus T$ and is optimal in this setting,
- T is **locally finite** if for every R > 0 we have that

$$|\{\mathcal{B}_R\cap (T-t):t\in T\}|<\infty.$$



High-level overview of proofs
$$\mathcal{D} \oplus T = IR^2$$

 $I(4) T = high = 0$ Weal periodicity proposed set
 $I(1) = 4 PTC holds$ $W = slopes$

(a) Structure of tilings in \mathbb{Z}^2 (Greenfeld and Tao) (b) Rational approximations of $\mathbb{R}^2 = \Omega \oplus T$ $f = 0 \oplus T$ (c) Earthquake decomposition of $\mathbb{R}^2 = \Omega \oplus T$

Discrete tilings

(a) structure of tilings in \mathbb{Z}^2 (Greenfeld and Tao)

- every tiling $\mathbb{Z}^2 = F \oplus A$ is weakly periodic, <u>dilation lemma</u>,
- in fact, we use all the deep structure results from that paper,
- \blacktriangleright tilings of $\mathbb{Z}^2~\equiv$ lattice tilings of \mathbb{R}^2 by a tile that is a finite union of unit squares,
- new structure result about periodicity of earthquake decompositions.

Approximations

(b) rational approximations of
$$\mathbb{R}^2 = \overbrace{\Omega \oplus \mathcal{T}}^{\mathcal{P}}$$

$$\mathbb{R}^2 = \Omega \oplus \mathcal{T} \xrightarrow{\sim} \mathbb{R}^2 = \Omega^{\varphi} \oplus \mathcal{T}^{\varphi}$$

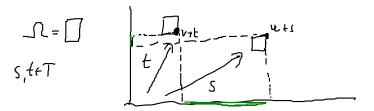
Approximations

(b) rational approximations of $\mathbb{R}^2 = \Omega \oplus T$

$$\mathbb{R}^2 = \Omega \oplus \mathcal{T} \ \rightsquigarrow \ \mathbb{R}^2 = \Omega^{arphi} \oplus \mathcal{T}^{arphi}$$

▶ let $K_{(\Omega, T)}$ be the \mathbb{Q} -linear space generated by

 $\{p_i((w + s) - (v + t)) : v, w \in V(\Omega), s, t \in T, i \in \{1, 2\}\},\$



Approximations

(b) rational approximations of $\mathbb{R}^2 = \Omega \oplus T$

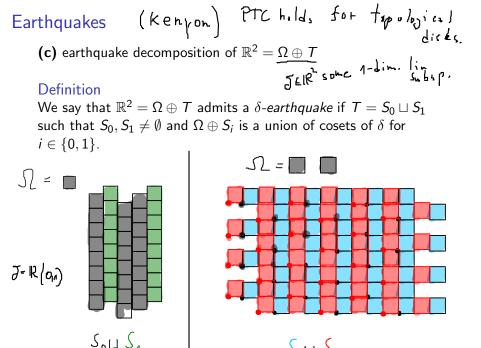
$$\mathbb{R}^2 = \Omega \oplus T \ \rightsquigarrow \ \mathbb{R}^2 = \Omega^{arphi} \oplus T^{arphi}$$

▶ let $K_{(\Omega, T)}$ be the \mathbb{Q} -linear space generated by

$$\{p_i((w+s)-(v+t)): v, w \in V(\Omega), s, t \in T, i \in \{1,2\}\},\$$

•
$$\varphi: \mathcal{K}_{(\Omega,T)} \to \mathbb{Q}$$
 be a \mathbb{Q} -linear map,

- ► to show that $\mathbb{R}^2 = \Omega^{\varphi} \oplus T^{\varphi}$, we need to assume that Ω has rational slopes,
- \triangleright (a) and (b) enough to handle locally finite T.



<u>Sus</u>

Baby earthquake dichotomy (Kenyon)

 $\mathbb{R}^2 = \Omega \oplus T$, where Ω is connected and T is not locally finite. That is, there is $(t_n)_n$ and R > 0 such that $(\mathcal{B}_R \cap (T - t_n))_n$

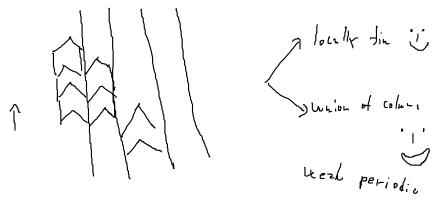
are pairwise distinct.

Claim
Let
$$(\underline{T-t_n}) \rightarrow S$$
 Then $\mathbb{R}^2 = \Omega \oplus S$ contains a δ -earthquake.
 $T_n = T - t_n \quad \longrightarrow \int \oplus \overline{I_n} = I \mathbb{R}^2$

Baby earthquake dichotomy (Kenyon)

Theorem

Let Ω be connected, T be minimal and $\mathbb{R}^2 = \Omega \oplus T$. Then either T is locally finite or it is a union of columns.



Earthquake dichotomy

Theorem

Let Ω be a polygonal set with rational slopes, T be minimal and $\mathbb{R}^2 = \Omega \oplus T$. Then either T is locally finite or there is $T = T_0 \sqcup T_1$ that is a δ -earthquake and $\Omega \oplus T_i$ is periodic for $i \in \{0, 1\}$.

Theorem

Let Ω be a polygonal set with rational slopes, T be minimal and $\mathbb{R}^2 = \Omega \oplus T$. Then either T is locally finite or there is $T = T_0 \sqcup T_1$ that is a δ -earthquake and $\Omega \oplus T_i$ is periodic for $i \in \{0, 1\}$.

Remark:

▶ new even for \mathbb{Z}^2 ,

Theorem

Let Ω be a polygonal set with rational slopes, T be minimal and $\mathbb{R}^2 = \Omega \oplus T$. Then either T is locally finite or there is $T = T_0 \sqcup T_1$ that is a δ -earthquake and $\Omega \oplus T_i$ is periodic for $i \in \{0, 1\}$.

Remark:

- new even for \mathbb{Z}^2 ,
- after iterating one get that $T = T_0 \sqcup \cdots \sqcup T_m$ where for every $0 \le i \le m$ we have that $\Omega \oplus T_i$ is periodic and T_i is either locally finite or $\Omega \oplus T_i$ is a union of columns.

Thank you!