Pi-1-1 maximal almost disjoint families and Laver measurability

Caltech seminar, January 22, 2025 Asger Törnquist joint with D. Schrittesser

Definability, mad families, and regularity properties

"Mad" families of subsets of ω , i.e. maximal almost disjoint families, are combinatorial objects in set theory that have been investigated very intensively for their definability properties.

Definition

- $[\omega]^{\omega}$ is the set of all **infinite** subsets of ω .
- Sets $A, B \in [\omega]^{\omega}$ are almost disjoint if $A \cap B$ is finite.
- An almost disjoint family is a collection A ⊆ [ω]^ω which consits of pairwise almost disjoint sets.
- A mad family is an *infinite* \underline{m} aximal (under \subseteq) \underline{a} lmost \underline{d} isjoint family.

Some theorems

- **(**) Mathias (1969): There are no analytic mad families.
- **②** T. (2014): There are no mad families in Solovay's model.
- Schrittesser-Τ. (2019): If all subsets of [ω]^ω are completely Ramsey, and we have "some" uniformization, then there are no mad families.

What this talk is about

The 2019 theorem localizes to pointclasses in descriptive set theory:

Loosely stated theorem (Scrittesser-T., 2019)

Let Γ be a "reasonable" pointclass with "some" uniformization (think $\Gamma = \Pi_1^1$). Let $\Delta = \exists^{\mathbb{R}}\Gamma \cap \forall^{\mathbb{R}}\Gamma$ (think $\Delta = \Delta_2^1$). If all Δ -sets are completely Ramsey, then there are no mad families in Γ .

In this talk, I will focus on the pointclasses Π_1^1 , Σ_2^1 , Π_1^1 , Σ_2^1 . Note:

- Π_1^1 , Σ_2^1 , Π_1^1 , Σ_2^1 all have uniformization.
- So the above theorem gives: If all Σ¹₂ sets (resp. Σ¹₂ sets) are completely Ramsey, then there are no Π¹₁ (resp. Π¹₁) mad families.

General theme of today's talk:

Can we **replace** the regularity property "completely Ramsey" with another regularity property and still get "no mad families"?

Remark: Because Π_1^1 , Σ_2^1 , Π_1^1 , Σ_2^1 have uniformization, they're a good place to investigate the above theme. This is what we'll do in this talk.

What is known

Very helpful fact: If there is a Σ_2^1 (resp. Σ_2^1) mad family then there is a Π_1^1 (resp. Π_1^1) mad family (T., 2011).

Some known theorems:

- "All Δ¹₂ sets have the Baire Property" does <u>not</u> imply "no Π¹₁ mad families". (Essentially Kunen).
- "All Δ¹₂ sets are Lebesgue measurable" does <u>not</u> imply "no Π¹₁ mad families". (Essentially Kunen).
- The perfect set property for Δ¹₂ sets (i.e. Sacks measurability) does not imply "no Π¹₁ mad families". (Schrittesser-T.)
- The superperfect set property for Δ¹₂ sets (i.e. Miller measurability) does <u>not</u> imply "no Π¹₁ mad families". (Schrittesser-T.)

So why does "All $\mathbf{\Delta}_2^1$ sets are completely Ramsey" allow us to prove there are no mad families?

When we want to prove a theorem such as "All Δ_2^1 sets have the **Baire Property** does <u>not</u> imply no Π_1^1 mad families", the the task is to produce a model of ZFC in which all Δ_2^1 sets have the Baire property and there is a Π_1^1 mad family.

Fortunately, there is a tight correspondance between adding reals using well-behaved forcing notions and measurability:

Measurability/Forcing generic real correspondance

Let x be a real, and let L be Gödel's constructible universe. Then:

- If x is a Cohen over L, then in L[x] all Δ_2^1 sets have the Baire property.
- If x is a Random over L, then in L[x] all Δ¹₂ sets are Lebesgue measurable.
- If x is Sacks (resp. Miller) over L, then in L[x] all Δ¹₂ sets have the perfect (resp. superperfect) set property.
- If x is Mathias over L, then in L[x] all Δ_2^1 sets are completely Ramsey.

The forcing perspective, II

From the forcing perspective, the theorems about **compata-bility / incompatability** between measurability notions and mad families translate into the following theorems.

Theorems

Let x be a real. Then

- If x is Cohen over L, then there is a Π¹₁ mad family in L[x]. (Essentially Kunen).
- If x is Random over L, then there is a Π₁¹ mad family in L[x]. (Essentially Kunen).
- If x is Sacks or Miller over L, then there is a Π¹₁ mad family in L[x]. (Schrittesser-T.)

But, by contrast, the forcing version of the theorem on the first slide says:

Theorem (Schrittesser-T., 2019)

If x is Mathias over L, then there are **no** Π_1^1 mad families in L[x].

The properties of Mathias reals that make the proof of the previous theorem¹ work are:

- **Really fast growth:** "Ramsey generic" reals grow very fast: In forcing terminology, this means that Mathias reals grow very fast. In the topological language, this means that genericity in the Ellentuck topology on [ω]^ω ensures very fast growth.
- Pure decision: In the forcing terminology, this means that we can decide a statement by only changing the infinite part of the condition. In the topological setting, it is Ellentuck's theorem.
- "Finite colouring homogeneity": This is the classical infinite Ramsey theorem, which is used in an important step in the proof to refine Mathias forcing conditions/Ellentuck neighbourhoods.

¹i.e., the theorem "x Mathias over $L \implies no \prod_{1}^{1} mad$ families in L[x]"

Where do Baire, Lebesgue, Sacks and Miller fail to work?

This list of properties (fast growth, pure decision, finite colouring homogeneity) fail for the forcing notions that produce a generic real x such that there is a Π_1^1 mad family in L[x]

- Random and Cohen reals (corresponding to Lebesgue and Baire measurability) do not grow fast enough for the proof to work, and the posets don't have pure decision.
- Sacks and Miller reals have pure decision, and Galvin's Ramsey theorems for Polish space give us a kind of colouring homogeneity that looks promising, but Sacks/Miller don't exhibit fast growth needed.

A promising poset/measurability notion?

There is a forcing notion that looks somewhat like Mathias forcing, namely **Laver forcing**. It ticks **some** of the boxes: (1) Laver reals grow very fast, (2) Laver forcing has pure decision, **<u>but</u>** (3) Laver forcing has poor colouring homogeneity.

Laver trees and Laver forcing

Definition (Laver trees, and the Laver poset \mathbb{L})

- A Laver tree with stem s ∈ ω^{<ω} is a subtree p ⊆ ω^{<ω} such that for every t ∈ p either is an initial segment of the stem s, or it has infinitely many immediate successors.
- ② If the stem $s = \emptyset$ then we just call p a "Laver tree".
- O The set of Laver trees with stems is denoted \mathbb{L} .
- For $p, q \in \mathbb{L}$, write

$$p \leq q \iff p \subseteq q,$$

and write $p \leq^* q$ if $p \leq q$ and p and q have the same stem.

So The stems of a generic filter for the poset (L, ≤) build a real in ω^ω, which is a Laver real (over the ground model du jour).

Remarks: (1) It should be clear that Laver reals grow really fast! (2) Laver's poset, like Mathias' poset, has "pure decision" (Prikry property): If $q \Vdash \varphi \lor \psi$ then there is $p \leq^* q$ such that $p \Vdash \varphi$ or $p \Vdash \psi$.

Alas, Laver is no match for mad families

Despite these similarities between Laver and Mathias reals (and their posets), Laver reals can't be used to prove there are no Π_1^1 mad families:

Theorem (Schrittesser-T.)

There is a Π_1^1 mad family in L[r] when r is Laver over L.

(Of course it is enough to prove there is a Σ_2^1 mad family in L[r].)

In the rest of the talk, I will discuss the main steps of the proof of this theorem, which are:

- A corollary to a theorem due to A. Miller;
- Continuous reading of names for Laver reals";
- Give a Σ¹₂ definition of a mad family in L, which remains mad in L[r] when r is a Laver real; this step entails
 - A combinatorial lemma about $\mathbb L\text{-names}$ for subsets of $\omega.$
 - A diagonalization argument in L.

Step 1: A theorem of A. Miller's

Definition (Hechler trees)

A Hechler tree with stem s ∈ ω^{<ω} is a subtree H ⊆ ω^{<ω} such that for every t ∈ H either is an initial segment of the stem s, or
 {i ∈ ω : t[−]i ∈ H} is cofinite in ω

② If the stem $s = \emptyset$ then we just call H a "Hechler tree".

Theorem (A. Miller, 2002)

(A) If $A \subseteq \omega^{\omega}$ is analytic, then exactly one of the following hold:

- There is a Laver tree p such that [p] ⊆ A (where [p] is the set of infinite branches through p);
- **2** There is a Hechler tree H such that $[H] \cap A = \emptyset$.

(B) If A is $\Sigma_1^1(a)$ and (2) is the case above, then there is a $\Delta_1^1(a)$ Hechler tree H witnessing this.

Step 1: A corollary to Miller's theorem

Corollary

If A ⊆ ω^ω is an analytic set and p' |⊢_L x_G ∈ A, then there is p ≤ p' (indeed, p ≤* p') such that [p] ⊆ A.
If ψ(x, y) is a Π₁¹ formula, then the set {(p, a) ∈ L × ω^ω : p |⊢_L ψ(x_G, ă)} is Π₁¹.

Proof: (1) If there were no such p, then Miller's theorem gives a Hechler tree $H \leq^* p$ such that $[H] \cap A = \emptyset$, which contradicts that $H \Vdash_{\mathbb{L}} x_G \in A$.

(2) See extra slide at the end.

Notation: For $y \in \omega^{\omega}$, we write y_i for the *i*'th entry of y.

Continuous reading of name is a familiar idea in forcing theory. In the case of Laver forcing, it looks like this:

Proposition (Laver, "continuous reading of names for \mathbb{L} ")

Let τ be an \mathbb{L} -name (in some ground model), and suppose $p \Vdash \tau \in \omega^{\omega}$.

Then there is q $\leq^* p$ and a continuous function $f: [q] \to \omega^{\omega}$ in the ground model, such that

 $q \Vdash f(x_G) = \tau.$

Moreover, we can arrange that whenever $q' \Vdash f(x_G)_i = j$ for some $i, j \in \omega$ and $q' \leq q$, then actually $f(x)_i = j$ for all $x \in [q]$ with $x \supseteq s(q')$.

Remark: The reason this proposition is important to us is that it gives us easy-to-work with objects (namely continous functions in L) to represent reals that will show up in the Laver extension L[x].

Step 3: (A) The main lemma; (B) Diagonilization in L

Step 3.A: The main technical step of the proof is the following:

Lemma (The Main lemma)

Let $p \in \mathbb{L}$ and suppose $f : [p] \to [\omega]^{\omega}$ is continuous. Then there $q \leq p$ and a continuous $\tilde{f} : [q] \to [\omega]^{\omega}$ such that $ran(\tilde{f})$ is almost disjoint and $\tilde{f}(x) \subseteq f(x)$ for all $x \in [q]$.

Step 3.B: Proving the theorem (repeated here for convenience):

Theorem (Schrittesser-T.)

There is a Π_1^1 mad family in L[r] when r is Laver over L.

Given the Main Lemma, the proof of the theorem is a fairly standard diagonalization argument, *which I will sketch on the next slides.*

Notation: $C(\omega^{\omega}, [\omega]^{\omega})$ denotes the set of continuous functions from ω^{ω} to $[\omega]^{\omega}$. By continuous reading of names, $C(\omega^{\omega}, [\omega]^{\omega})$ is morally the set of all \mathbb{L} -names for infinite subsets of ω .

Step 3.B: Diagonilization in L

Work in *L*. We will construct a family $(A_{\xi})_{\xi < \omega_1}$ of Σ_1^1 almost disjoint families such that $\bigcup_{\xi < \omega_1} A_{\xi}$ will be Σ_2^1 and mad, even in L[r]. (*r* Laver).

- First fix an enumeration of L × C(ω^ω, [ω]^ω), call it (p_ξ, f_ξ)_{ξ∈ω1}, which corresponds to a good Σ¹₂ well-ordering of L × C(ω^ω, [ω]^ω).
- Let A_0 be any infinite Σ_1^1 almost disjoint family.
- Assume A_γ have been defined for $\gamma < \xi$, and ask if

$$p_{\xi} \Vdash (\forall \gamma < \xi) (\forall y \in \mathcal{A}_{\gamma}) | f_{\xi}(x_G) \cap y | < \infty.$$
 (1)

If yes, apply the main lemma to (p, f) to get (q, f̃), which we can assume is the ≤_L-least such (q, f̃), and let

$$A_{\xi} = \operatorname{ran}(\widetilde{f}) \cup \bigcup_{\gamma < \xi} A_{\gamma}.$$

• If no, just let $A_{\xi} = \bigcup_{\gamma < \xi} A_{\gamma}$.

• Due to the uniformity of the construction, and the fact that checking (1) is Π_1^1 in the parameters by Step 1, there is a natural Σ_2^1 predicate $\varphi(x)$ asserting ($\exists \xi < \omega_1$) $x \in A_{\xi}$.

We claim that φ defines a mad family in L[r].

Step 3.B: Diagonilization in L (cont'd)

To see that φ defines a mad family in L[r], suppose for a contradiction this is not the case, and argue as follows:

• In this situation, there must be a name τ for an infinite subset of ω and $p \in \mathbb{L}$ such that

$$p \Vdash (\forall x) \ \varphi(x) \rightarrow |\tau \cap x| < \infty.$$

• By continuous reading of names, we can then find a continuous $f:\omega^\omega\to [\omega]^\omega$ in L such that

$$p \Vdash (\forall x) \ \varphi(x) \to |f(x_G) \cap x| < \infty.$$
(2)

- There must be some ξ such that $(p_{\xi}, f_{\xi}) = (p, f)$.
- By Eq. (2) we get

$$p_{\xi} \Vdash (\forall \gamma < \xi) (\forall x) \ x \in A_{\gamma} \rightarrow |f_{\xi}(x_G) \cap x| < \infty.$$

This means that the the answer at stage ξ of the construction is yes.
This contradicts that we made sure there is q ≤ p_ξ = p such that

$$q \Vdash (\exists x \in A_{\xi}) |f(x_G) \cap x| = \infty.$$

Lemma (The Main lemma)

Let $p \in \mathbb{L}$ and suppose $f : [p] \to [\omega]^{\omega}$ is continuous. Then there $q \leq p$ and a continuous $\tilde{f} : [q] \to [\omega]^{\omega}$ such that $\operatorname{ran}(\tilde{f})$ is almost disjoint and $\tilde{f}(x) \subseteq f(x)$ for all $x \in [q]$.

This is quite a technical lemma to prove, so I will only say a little, and only about what the overall idea is.

- First, fix p and f as in the Lemma.
- Next, it is useful now to identify $[\omega]^{\omega}$ with the strictly increasing elements of ω^{ω} . So we do that.
- For $p \in \mathbb{L}$ and $t \in p$, write p/t for the notes in p compatible with p (this is then a Laver tree with a stem that extends t).
- For $i \in \omega$ and $t \in p$, we ask if the value of $f(x_G)_i$ can be decides "locally" at t, that is, if there is $q \leq^* p/t$ and $j \in \omega$ such that

$$q \Vdash f(x_G)_i = j.$$

The point is now:

- At t ∈ p we can decide f(x_G)_i locally for all i, then we have a lot of control over the values of f(x) for x ∈ [p/t], so the desired f̃ is quite easy to construct.
- At t ∈ p where there is i ∈ ω such that f(x_G)_i cannot be decided locally, we have enourmous freedom to make f(x_G)_i as large as we want by going further out into the Laver tree (in many different directions).
- This fact can then be used to build \tilde{f} in this case.
- The gory details will be in the paper².

 $^{^{2}}$ a very poorly written version with endless typos exists right now, but sometime in a week or two there will be a cleaned up version. Please email me in a week or two.

Some questions to end with

- Question: There are myriad other forcing notions that are "tree-like" where the question if L[r] for such a real has a Π₁¹ mad family. For instance, there is Brendle's Willowtree forcing, there is Silver forcing ("doughnut forcing"), etc., etc. I don't know what the situation is for these forcing notions.
- Question: People have been trying for at least 10 years to prove Mathias' theorem "There are no analytic mad families" using the G_0 dichotomy, but as far as I know no one has succeeded. Is there a reason for this? Is the fact that the Ramsey property works as a genericity property to prove this fact, but Baire, Lebesgue, Sacks, Miller, Laver don't, a hint that it is actually not possible³
- Question: Does AD imply there are no mad families?

³I know that any two true statemens imply each other. I also know when Christmas is.

Thanks for listening!

Proof of (2) of the Corollary on slide 12

Proof: (2) Fix $a \in \omega^{\omega}$, and consider the set

$$A_{a,p} = \{x \in [p] : \neg \psi(x,a)\},\$$

which is a $\Sigma_1^1(a)$ set (since ψ is a Π_1^1 predicate).

Claim: $p \Vdash \psi(x_G, \check{a})$ if and only if there exists a stemmed Hechler tree $H \in \Delta^1_1(a, p)$ with $H \leq^* p$ and $[H] \cap A_{a,p} = \emptyset$.

<u>Proof of Claim</u>: If there is no such H, then by the effective version of Miller's theorem, there is $q \leq^* p$ such that $[q] \subseteq A_{a,p}$. Then $q \Vdash \neg \psi(x_G, \check{a})$ (by a Shoenfield absoluteness argument), so $p \nvDash \psi(x_G, \check{a})$. Conversely, suppose $H \in \Delta_1^1(a)$ is such that $[H] \cap A_{a,p} = \emptyset$. Then $H \Vdash \psi(x_G, a)$ by a Shoenfield absoluteness argument. To see that $p \Vdash \psi(\dot{x}_G, \check{a})$, let $p' \leq p$. Then $p' \cap H$ is a stemmed Laver tree and $p' \cap H \leq^* p'$ and $p' \cap H \leq H$. So $p' \cap H \Vdash \psi(x_G, a)$. (Claim)

Now we're done, since

 $p \Vdash \psi(x_G, \check{a}) \iff (\exists H \in \Delta_1^1(p, a) \text{ with } H \leq^* p)(\forall x \in H) \psi(x, a)$ is the required Π_1^1 definition by Spector-Gandy.

Caltech seminar, January 22, 2025 Asger Tör Pi-1-1 maximal almost disjoint families and I