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The Descriptive Set Theoretic World

The descriptive set theoretic world is an idealized choiceless universe for

uniform mathematics. Definable behavior from classical descriptive set theory

and Borel combinatorics extend to genuine combinatorial properties.

The axiom of determinacy, AD, seems to be among one of the laws which are

accepted to govern the initial segment of this descriptive set theoretic universe

of sets which are images of R.

The descriptive set theoretic universe with the determinacy axiom is immune to

the method of forcing by posets which are images of R (C.-Jackson,

Ikegami-Trang). Empirically, it seems very successful at settling the basic

questions of interests to set theory. Two classical objects of interests to set

theorists are mathematical size (cardinality) and linear orderings.

1



Dichotomies for the Descriptive Set Theoretic World

The classical dichotomies of Silver and Harrington-Kechris-Louveau proved by

Gandy-Harrington forcing can be extended to general dichotomies concerning

cardinalities and linear orderings under Woodin’s theory of AD+ using ordinal

definable ∞-Borel code forcing (a variety of Vopěnka forcing).

Theorem (Woodin; Perfect set dichotomy)
(AD+) Let X be an image of R. Exactly one of the following holds.

� X is wellorderable.

� |R| ≤ |X | (and hence X is not wellorderable).

Theorem (Hjorth; E0-dichotomy)
(AD+). Let X be an image of R. Exactly one of the following holds.

� |X | ≤ |P(κ)| for some ordinal κ (and hence X is linearly orderable).

� |R/E0| ≤ |X | (and hence X is not linearly orderable).
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Dichotomies for the Descriptive Set Theoretic World

The important examples on the non-linearly orderable side of Hjorth’s

dichotomy (above R/E0) are often quotients of familiar Borel equivalence

relations. The full structural results tend to be generalization of the classical

Borel argument using the regularity properties of determinacy.

The descriptive set theoretic investigation of the linearly orderable side of

Hjorth’s dichotomy (subsets of the power set of ordinals) have received less

attention. Here the theory much more robust under full determinacy rather

than local definability restrictions.

One recent result concerning cardinality on the linearly orderable side is the

classification of cardinal exponentiation. Θ is the supremum of the ordinals

which are images of R.

Theorem (C.; ABCD Conjecture)
(AD+) If ω ≤ α < β < Θ and ω ≤ γ ≤ δ < Θ are cardinals, then |αβ| ≤ |γδ| if
and only if α ≤ γ and β ≤ δ.
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Exotic Linear Orderings

Set theory within the choiceful framework (ZFC and its extensions) have

investigated some exotic linear orderings including Suslin lines, Aronszajn lines,

and Baumgartner lines. Forcing axioms such as PFA have had great success in

establishing structural results for linear orderings.

Effort to study linear orderings in the choiceless descriptive set theoretic

framework have been motivated by showing these exotic linear orderings do not

exists. This may not seem particular productive, but the proofs usually are a

consequence of remarkable structural consequences for linear orderings under

determinacy hypothesis.

Determinacy provides a powerful framework for investigating linear orderings

which are images of R.
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Suslin Lines

Cantor showed that every complete separable linear ordering without endpoint

is isomorphic to the usual ordering on R. The Suslin problem asks if this is still

true if separability is weakened to the countable chain condition. An

counterexample is a called a Suslin line.

Theorem (Chan-Jackson)
Assume AD+. There are no Suslin lines which are images of R.

This is a consequence of a more interesting structural result called the prelinear

ordering dichotomy proved using the ordinal definable ∞-Borel code forcing.
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Aronszajn Lines

An Aronszajn line is a linear ordering which does not contain a suborder

isomorphic to ω1, ω
∗
1 , or an uncountable subordering of the usual ordering on R.

The more productive reformulation of the nonexistence of Aronszajn line

involves basis for linear orderings.

Theorem (Weinert)
Assume AD+. {R, ω1, ω

∗
1 } form a three element basis for the the class of

uncountable linear ordering which are images of R. Hence there are no

Aronszajn line on an image of R.

Proof.
Suppose (X ,≺) is a linear ordering with X uncountable. By the Woodin perfect

set dichtomy, X must have an injective copy of ω1 or an injective copy of R.
Since ω1 satisfies the exponent two partition relation, ω1 or ω∗ order embeds

into (X ,≺) if ω1 injects into X . Since R satisfies a perfect tree partition

relation, the usual ordering on R embeds into (X ,≺) if R injects into X .
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Basis for Uncountable Linear Orderings

(Chan) Assume AD+.

� There is a two-element basis for the class of linear orderings whose cardinality is

greater than or equal to κ when κ < Θ is an uncountable regular cardinal.

� There is a four-element basis for the class of all linear orderings whose cardinality

is greater than or equal to |R⊔κ| when κ < Θ is an uncountable regular cardinal.

� There is a four-element basis for the class of all linear ordering whose cardinality

is greater than or equal to |R× κ| where κ < Θ is an uncountable regular

cardinal.

� There is a four-element basis for the class of all linear orderings whose cardinality

is greater than or equal to κ when κ < Θ is a singular cardinal.

� There is an eight-element basis for the class of all linear orderings whose

cardinality is greater than or equal to |R ⊔ κ| when κ < Θ is a singular cardinal.

� There is a twelve-element basis for the class of all linear orderings whose

cardinality is greater than or equal to |R× κ| when κ < Θ is a singular cardinal

of uncountable cofinality.

� There is a four-element basis for the class of all linear orderings whose cardinality

is greater than or equal to |ωκ| when κ satisfies κ →∗ (κ)ω+ω
2 .

� There is a two element basis for the class of all linear orderings whose cardinality

is greater than or equal to |ωκ| when ω < κ < Θ and cof(κ) = ω.

7



Baumgartner Lines

This talk was motivated by whether Baumgartner lines exist in the descriptive set

theoretic universe.

Definition
A linear ordering L = (L,≺) is scattered if the usual ordering Q on the rationals do

not order embed into L. L is σ-scattered if and only if there is a family ⟨An : n ∈ ω⟩
so that L ↾ An is scattered for each n ∈ ω and L =

⋃
n∈ω An.

Definition
A Baumgartner line is a non-σ-scattered linear ordering which does not have an order

isomorphic copy of R or an Aronszajn line.

Baumgartner constructed a Baumgartner line under ZFC by using a stationary S ⊆ ω1

and a sequence ⟨fα : α ∈ S⟩ so that fα : ω → α is cofinal. Under AD, the partition

properties on ω1 implies that the club filter on ω1 is a normal measure and thus such

objects cannot exist.

By the partition property on R and Woodin perfect set dichotomy, not having even an

injective copy of R means the linear ordering must be on wellorderable set. So a

potential Baumgartner line is nothing more than a non-σ-scattered linear ordering on

a wellorderable set (or equivalently an ordinal).
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Sigma Scattered Linear Orderings

The usual ordering on R is a non-σ-scattered linear ordering. Whenever a linear

ordering is on a unwellorderable set, it has an injective copy of R and thus a

subordering isomorphic to R. Hence it is non-σ-scattered.

Is it really possible to create a non-σ-scattered linear ordering that does not

have the usual R as a subordering using descriptive set theoretically accepted

uniform methods?

An answer of no in the presence of AD+ gives a very nice characterization of

σ-scattered linear orderings: Let L = (L,≺) be a linear ordering which is a

image of R. The following are equivalent.

1. L is σ-scattered.

2. There is no order embedding of usual R into L.

3. There is no injection of R into L.

4. L is a wellorderable set.

9



Fräıssé’s Conjecture and Laver’s Theorem

Fact (Laver)
The class of σ-scattered linear ordering is a well quasiordering under order

embeddings: Every sequence ⟨Li : i ∈ ω⟩ consisting of σ-scattered linear ordering,

then there exists i < j < ω so that Li order embeds into Lj .

Laver’s theorem solves the Fräıssé conjecture which states the class of countable linear

ordering (the linear ordering which are images of ω) form a well quasiordering under

order embeddings.

In recent conversion with Moore and Todorcevic, they mentioned a classical question

of whether the class of Borel linear orderings form a well quasiordering under order

embeddings. Moore suggested the following descriptive set theoretic Fräıssé

conjecture: Under determinacy assumptions, does the class of all linear orderings

which are images of R form a well quasiorder under order embeddings?

Woodin’s perfect set dichotomy splits the linearly orderable sets further into the

wellorderable sets and those sets which have a copy of of R. If the characterization of

σ-scattered linear orderings hold, then Laver’s theorem can be extended to prove the

wellorderable Fräıssé conjecture for the class of linear orderings on wellorderable sets

which are images of R (or linear orderings which are images of an ordinal below Θ).
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Partition Properties

Every linear ordering which is an image of ω is σ-scattered since every countable linear

ordering is σ-scattered. We will focus on linear orderings on the first uncountable

cardinals ω1.

We will need the correct type partition relation on ω1 since we will need to analyze the

partition measures.

Definition
Let ϵ ∈ ON. A function f : ϵ → ON has the correct type if and only if the following

holds.

� f is discontinuous everywhere: For all α < ϵ, sup(f ↾ α) < f (α).

� f has uniform cofinality ω: There is a function F : ϵ× ω → ON so that for all

α < ϵ and n ∈ ω, F (α, n) < F (α, n + 1) and f (α) = sup{F (α, n) : n ∈ ω}.

If A ⊆ ON, then [A]ϵ∗ is the set of a increasing f : ϵ → A which have the correct type.

Definition
If ϵ ≤ κ and γ < κ, then let κ →∗ (κ)ϵγ be the assertion that for all P : [κ]ϵ∗ → γ,

there is a β < γ and a club C ⊆ κ so that for all f ∈ [C ]ϵ∗, P(f ) = β.
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Partition Properties

Definition
If ϵ ≤ κ, then let µϵ

κ be a filter on [κ]ϵ defined by A ∈ µϵ
κ if and only if there is

a club C so that [C ]ϵ∗ ⊆ A.

Fact
If ϵ ≤ κ, γ < κ, and κ →∗ (κ)ϵγ , then µϵ

κ is a γ+-complete ultrafilter on [κ]ϵ∗.

If κ →∗ (κ)22 holds, then the ω-club filter µ1
κ is a κ-complete normal ultrafilter

on κ.

Martin showed that under AD, ω1 satisfies ω1 →∗ (ω1)
ω1
<ω1

or is sometimes

called a very strong partition cardinals. We will primarily be interested in the

measures µn
ω1
, the n-fold product of the club filter on ω1.
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Canonical Linear Orderings on ω1

First, one will define some canonical linear orderings on [ω1]
n for each

1 ≤ n < ω. ℓ ∈ [ω1]
n will be regared as an increasing function ℓ : n → ω1.

If X = (X ,≺), then ≺0 denote ≺ and ≺1 denote the reverse of ≺.

Definition
For 1 ≤ n < ω, let Bijn be the set of all bijections ρ : n → n. Let n2 be a set of

function from n into 2. Fix τ ∈ n2 and ρ ∈ Bijn. Define the linear ordering

Ln,τ,ρ = ([ω1]
n,≺n,τ,ρ) defined by ℓ0 ≺n,τ,ρ ℓ1 if and only if ℓ0 ̸= ℓ1 and if m is

the least m′ such that ℓ0(ρ(m
′)) ̸= ℓ1(ρ(m

′)), then ℓ0(ρ(m)) <τ(m) ℓ1(ρ(m)).

The function τ determines the direction of each coordinate: the mth coordinate

is ordered by <τ(m). The bijection ρ is a ranking of the coordinates in

decreasing strength. Coordinate ρ(0) is strongest and is compared first

according to <τ(ρ(0)). Then coordinate ρ(1) is compared next using <τ(ρ(1)).

And so on ...
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Canonical Linear Orderings on ω1

Example
Let n = 1. 12 = {(0), (1)}. Bij1 = {(0)}.

� L1,(0),(0) = (ω1, <
0) = (ω1, <).

� L1,(1),(0) = (ω1, <
1), the reverse ω1.

Note that both linear orderings are scattered.
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Canonical Linear Orderings on ω1

Example
Let n = 2. 22 = {(0, 0), (1, 1), (0, 1), (1, 0)}. Bij2 = {(0, 1), (1, 0)}.

� L2,(0,0),(0,1) is order isomorphic to
∏

ω1
ω1.

� L2,(0,0),(1,0) is order isomorphic to ω1.

� L2,(0,1),(0,1) is order isomorphic to
∏

ω1
ω1

∗.

� L2,(0,1),(1,0) is order isomorphic to
∏

α∈ω1
∗ α.

� L2,(1,0),(0,1) is order isomorphic to
∏

ω1
∗ ω1.

� L2,(1,0),(1,0) is order isomorphic to
∏

α∈ω1
α∗.

� L2,(1,1),(0,1) is order isomorphic to
∏

ω1
∗ ω1

∗.

� L2,(1,1),(1,0) is order isomorphic to ω1
∗.

Each of these eight linear orderings are scattered since they are wellordered or

reverse wellordered lexicographic product of scattered linear orderings.
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Canonical Linear Orderings on ω1

By induction, one can show all Ln,τ,ρ are wellordered or reverse wellordered

lexicographic product of scattered linear orderings.

Fact
For all 1 ≤ n < ω, τ ∈ n2, and ρ ∈ Bijn. Ln,τ,ρ is scattered.
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Almost Everywhere Behavior According to Partition Measure

Theorem
Assume ω1 →∗ (ω1)

n+2
2 . Let 1 ≤ n < ω and L = ([ω1]

n,≺) is a linear ordering

on [ω1]
n. There is a club C ⊆ ω1, τ ∈ n2, and ρ ∈ Bijn so that

L ↾ [C ]n = Ln,τ,ρ ↾ [C ]n.

This is the main combinatorial result. We will return to sketch a proof of this

result.
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Kunen’s Measure Analysis on ω1

For our purpose, a measure is a countably complete ultrafilter. Under AD, a

measure is simply an ultrafilter since all ultrafilters are countably complete

because there are no nonprincipal ultrafilter on ω.

Definition
Let X and Y be two sets. Let Φ : X → Y . Let F be a filter on X . The Rudin-Keisler

pushforward of F by Φ is the filter Φ∗F on Y defined by B ∈ Φ∗F if and only if

Φ−1[B] ∈ F .

If F is a filter on X and A ∈ F , then let F ↾ A be the filter on A defined by

A′ ∈ F ↾ A if and only if A′ ⊆ A and A′ ∈ F .

Let F be a filter on X and G be a filter on Y . F and G are Rudin-Keisler equivalent if

and only if there are A ∈ F , B ∈ G, and a bijection Φ : A → B so that

G ↾ B = Φ∗(F ↾ A) and F ↾ A = (Φ−1)∗(G ↾ B).

Fact (Kunen)
Assume AD and DCR. Let µ be a measure on ω1. There is an n ∈ ω so that µ

is Ruden-Keisler equivalent to µn
ω1
. (Note that µ0

ω1
is a principal measure.)
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Biembeddability Basis

Definition
Let X be a set. Let µ be a measure on X . Let B be a set of linear orderings. B is a

biembedability basis for µ if and only if for any linear ordering L = (X ,≺), there is an

A ∈ µ and a J ∈ B so that L ↾ A and J are biembeddable.

Theorem
Assume AD and DCR. Let µ be a nonprincipal measure on ω1. Then there is a

1 ≤ n < ω so that {Ln,τ,ρ : τ ∈ n2 ∧ ρ ∈ Bijn} is a biembeddability basis for µ

consisting of n!2n scattered linear orderings.

Proof.
By Kunen’s theorem, there is a 1 ≤ n < ω, A ∈ µ, B ∈ µn

ω1
, and a bijection

Φ : A → B so that µn
ω1

↾ B = Φ∗(µ ↾ A) and µ ↾ A = (Φ−1)∗(µn
ω1

↾ B). Let

L = (ω1,≺) be a linear ordering. Let (B,⊏) be defined by ℓ0 ⊏ ℓ1 if and only if

Φ−1(ℓ0) ≺ Φ−1(ℓ1). By the previous fact, there is a club C ⊆ ω1, τ ∈ n2, and

ρ ∈ Bijn so that [C ]n ⊆ B and ([C ]n,⊏) = Ln,ρ,τ ↾ [C ]n. This shows L ↾ A and Ln,τ,ρ

are biembeddable.

Theorem
Assume AD and DCR. Let L = (ω1,≺) be a linear ordering on ω1 and let µ be a

measure on ω1. Then there is an A ∈ µ so that L ↾ A is scattered.
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Every linear ordering on ω1 is σ-Scattered

Theorem
Assume AD. Every linear ordering on ω1 is σ-scattered.

Suppose the result fails. Let L = (ω1,≺) be a non-σ-scattered linear ordering

on ω1. All the previous results used DCR so first let us get into a situation in

which DCR holds.

Let ot : WO → ω1 be the Π1
1 norm of length ω1 given by the order type

function. By the Moschovakis coding lemma, there is a surjection

π : R → P(ω1) which is “Σ1
2 in some sense”.

By using π and Moschovakis coding lemma, L and in fact every subset of ω1 in

the real world already belongs to the inner model L(R). For any
A ∈ P(ω1) = (P(ω1))

L(R), L ↾ A is scattered and L ↾ A is σ-scattered is

absolute between the real world and L(R).

The linear ordering L is still a non-σ-scattered linear ordering in L(R). Kechris
showed that if AD holds, then L(R) |= AD+ DC.

20



Every linear ordering on ω1 is σ-Scattered

Theorem
Assume AD. Every linear ordering on ω1 is σ-scattered.

So work inside L(R): Let I be the σ-ideal of A ⊆ ω1 so that L ↾ A is σ-scattered.

I ̸= P(ω1) since L was assumed to be non-σ-scattered. Let F be the dual filter to I
which is a countably complete ultrafilter.

Kunen showed that any countably complete filter on ω1 can be extended to an

ultrafilter (which is necessarily countably complete): Recall the surjection

π : R → P(ω1) obtained by the coding lemma. Modify π to a surjection π̃ : R → F .

Let µTuring be the Martin measure on the Turing degrees DTuring. Let

Φ : DTuring → ω1 be defined by Φ(X ) = min(
⋂
{π̃(r) : [r ]≡Turing ≤Turing X}). Let

µ = Φ∗µTuring is an ultrafilter extending F .

Since DC holds in L(R), one can use the earlier result which asserts that there is an

A ∈ µ so that L ↾ A is scattered. Thus A ∈ I. So ω1 \ A ∈ F ⊆ µ. So A and

ω1 \ A ∈ µ which is a contradiction. This completes the proof.
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Almost Everywhere Behavior According to Partition Measure

As promised, we still need to show:

Theorem
Assume ω1 →∗ (ω1)

n+2
2 . Let 1 ≤ n < ω and L = ([ω1]n,≺) is a linear ordering on

[ω1]n. There is a club C ⊆ ω1, τ ∈ n2, and ρ ∈ Bijn so that L ↾ [C ]n = Ln,τ,ρ ↾ [C ]n.

Fix 1 ≤ n < ω. For k < n, let T k = {(m, 0) : m < n ∧m ̸= k} ∪ {(k, 0), (k, 1)}. Note

|Tk | = n + 1. Let Tk = (Tk ,⊏k ) where ⊏k is the lexicographic ordering. For

ℓ ∈ [ω1]Tk and i ∈ 2, let ℓk;i ∈ [ω1]n be defined by

ℓk;i (m) =

{
ℓ(m, 0) m ̸= k

ℓ(k, i) m = k
.

Note that ℓk;0(k) < ℓk;1(k) and for all m ̸= k, ℓk;0(m) = ℓk,1(m).

For n = 5 and k = 2, the picture is as follows:

ℓ • • • • • •

ℓ2;0 • • • • •

ℓ2;1 • • • • •
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Almost Everywhere Behavior According to Partition Measure

Define Pk : [ω1]
Tk → 2 by Pk(ℓ) = 0 if and only if ℓk;0 ≺ ℓk;1. By

ω1 →∗ (ω1)
n+1
2 , there is a club homogeneous for Pk . Let τ(k) denote the

unique homogeneous value for Pk . This roughly determines the direction of

k th-coordinate.

This defines τ ∈ n2.
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Almost Everywhere Behavior According to Partition Measure

Let k0, k1 ∈ n with k0 ̸= k1. Let

Uk0,k1 = {(m, 0) : m ∈ n ∧m ̸= k0 ∧m ̸= k1} ∪ {(k0, 0), (k0, 1), (k1, 0), (k1, 1)}. Let

Uk0,k1 = (Uk0,k1 ,⊏k0,k1 ). Let ι ∈ [ω1]U
k0,k1 . For i ∈ 2, define ιk0,k1;i ∈ [ω1]n as be

defined by

ιk0,k1;0(m) =


ι(m, 0) m /∈ {k0, k1}
ι(m, 0) m = k0

ι(m, 0) m = k1 ∧ τ(k0) ̸= τ(k1)

ι(m, 1) m = k1 ∧ τ(k0) = τ(k1)

ιk0,k1;1(m) =


ι(m, 0) m /∈ {k0, k1}
ι(m, 1) m = k0

ι(m, 1) m = k1 ∧ τ(k0) ̸= τ(k1)

ι(m, 0) m = k1 ∧ τ(k0) = τ(k1)

.

Define Qk0,k1 : [ω1]
Uk0,k1 → 2 by Qk0,k1 (ι) = 0 if and only if ιk0,k1;0 ≺ ιk0,k1;1. By

ω1 →∗ (ω1)
n+2
2 , let ik0,k1 be its unique homogeneous value.

Intuitively, ιk0,k1;0 and ιk0,k1;1 are mismatching the behavior at the k0 and k1
coordinate specified by τ(k0) and τ(k1) to determine which coordinate is stronger.

ik0,k1 = 0 implies that k0 is stronger than k1.
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Almost Everywhere Behavior According to Partition Measure

Define ≪ on n by k0 ≪ k1 if and only if k0 ̸= k1 and ik0,k1 = 0.

With additional combinatorial arguments, one can show that ≪ is a linear

ordering on n. Let ρ : n → n be the ranking function corresponding to ≪.

With further partition arguments, one will find a club C and argue that

L ↾ [C ]n = Ln,τ,ρ ↾ [C ]n. This sketches the proof of the following:

Theorem
Assume ω1 →∗ (ω1)

n+2
2 . Let 1 ≤ n < ω and L = ([ω1]n,≺) is a linear ordering on

[ω1]n. There is a club C ⊆ ω1, τ ∈ n2, and ρ ∈ Bijn so that L ↾ [C ]n = Ln,τ,ρ ↾ [C ]n.

This was the last remaining ingredient to the proof that every linear ordering

on ω1 is σ-scattered.
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Beyond ω1

One would like to show every linear ordering on ω2 is σ-scattered. Although ω2

satisfies ω2 →∗ (ω2)
n
2 for all n ∈ ω, this is not particularly relevant. Moreover,

ω3 is the first singular cardinal of determinacy and hence does not possess any

partition properties.

What is relevant is the measure analysis. Martin showed that for 1 ≤ n < ω,

ωn+1 is
∏

[ω1]n
ω1/µ

n
ω1
. Kunen showed all the measures on ωn+1 are

Rudin-Keisler equivalent to certain nice measures induced by the strong

partition property on ω1 involving types and uniform cofinalities.

By imitating the argument above but on ω1-many blocks simultaneously (with

the precise arrangement depending on which canonical measure on ω2 is being

analyzed), one should be able to establish an analogous biembeddability basis

of scattered linear ordering. Then one should be able to show that for every

linear ordering L = (ω2,≺) and measure µ on ω2, L is µ-everywhere scattered.

The filter extension argument should complete the argument.
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Beyond ω1

For ordinals below the supremum of the projective ordinals (and even a bit

beyond), Jackson classified all the measures on these ordinals. The techniques

described above should be able to show that every linear ordering on an ordinal

from a small initial segment of Θ are σ-scattered. However Jackson analysis

does not extend all the way to Θ.

Inner model theory provides the most powerful technique for proving result in

their greatest generality in L(R) or more generally under AD+. Every linear

ordering L in L(R) on an ordinal belongs to HOD{z} for some z ∈ R. Every
linear orderings in HOD{z} has its origin as a linear ordering in a countable

iterable mouse. The intuition is that this countable mouse is the reason why L
is σ-scattered.

We will sketch another proof that every linear ordering on ω1 is σ-scattered

using the HOD-analysis of Steel. This argument is more suitable to

generalization to show all linear ordering on an ordinal below Θ is σ-scattered.
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Inner Model Theoretic Proof

Fact (Rowbottom)
If µ is a κ-complete nonprincipal normal ultrafilter on κ, then let µn be the

measure on [κ]n defined by B ∈ µn if and only if there exists A ∈ µ so that

[A]n ⊆ B. µn is a κ-complete ultrafilter.

In fact, for every P : [κ]n → 2, there exists an A ∈ µ and i ∈ 2 so that P(ℓ) = i

for all i ∈ [A]n.

For τ ∈ n2 and ρ ∈ Bijn, one can defined the analogous scattered linear

ordering Ln,τ,ρ on [κ]n. The main combinatorial argument above uses the

partition property and large homogeneous set according to the partition filter.

The same proof establishes the following analog for normal measures.

Theorem
Suppose µ is a normal κ-complete nonprincipal ultrafilter on κ. Let 1 ≤ n < ω.

Suppose L = ([κ]n,≺) is a linear ordering. Then there is an A ∈ µ, τ ∈ n2, and

ρ ∈ Bijn so that L ↾ [A]n = Ln,τ,ρ ↾ [A]n.
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Inner Model Theoretic Proof

The argument will be given for L(R) and it can be adapted to AD+.

Theorem
Assume AD and V = L(R). Every linear ordering on ω1 is σ-scattered.

Let L = (ω1,≺) be a linear ordering on ω1. Without loss of generality, suppose L is

OD and hence L ∈ HOD.

There is an internal directed system F ∈ L(R) which consists of certain countable

iterable mice and iteration maps between members of F . If M∞ denotes the directed

limit, then Steel showed M∞ = HOD ∩ Vδ21
. Fix some N0 ∈ F such that there is a

L0 = (δ0,≺0) ∈ N0 so that j0,∞(L0) = L, where j0,∞ is the directed system map and

δ0 is the least measurable cardinal of N0.

Note that j0,∞(δ0) = (ω1)L(R). Let µ0 be the unique Mitchell order zero normal

measure on δ0. For each α < ω1, let Nα be the αth-linear iterate of N0 by µ0 and its

image. Note that Nα ∈ F and the direct system map jα,β are the linear iteration

maps. Let δα = j0,α(δ0) and Lα = j0,α(L0) which takes the form (δα,≺α).
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Inner Model Theoretic Proof

Let f : [δ0]n → δ0 be an element of N0. Let J0 = ([δ0]n,⊏0) be defined by ℓ0 ⊏0 ℓ1 if

and only if f (ℓ0) ≺0 f (ℓ1). Let Jα = ([δα]n,⊏α) be j0,α(J0).

Theorem
Suppose µ is a normal κ-complete nonprincipal ultrafilter on κ. Let 1 ≤ n < ω.

Suppose L = ([κ]n,≺) is a linear ordering. Then there is an A ∈ µ, τ ∈ n2, and

ρ ∈ Bijn so that L ↾ [A]n = Ln,τ,ρ ↾ [A]n.

Applying the above Theorem inside of N0 for J0, one has that there is some τ ∈ n2,

ρ ∈ Bijn, and A0 ∈ µ0 so that J0 ↾ [A0]n = Ln,τ,ρ ↾ [A0]n.

For all α < (ω1)V , δα = j0,α(δ0) ∈ j0,α(A0). Suppose ℓ0 = (δα0 , ..., δαn−1 ) and

ℓ1 = (δβ0
, ..., δβn−1

). Let γ be such that αn−1, βn−1 < γ. Then ℓ0, ℓ1 ∈ [j0,γ(A0)]n.

By elementarity and the fact that crit(j0,γ) = δγ , one has that ℓ0 ⊏γ ℓ1 if and only if

ℓ0 ≺n,τ,ρ ℓ1. By applying jγ,∞, one has ℓ0 ⊏∞ ℓ1 if and only if ℓ0 ≺n,τ,ρ ℓ1.

By the definition of Jα, one has that j0,γ(f )(δα0 , ..., δαn−1 ) ≺ j0,γ(f )(δβ1
, ..., δβn−1

) if

and only if j0,γ(f )(δα0 , ..., δαn−1 ) ≺n,τ,ρ j0,γ(f )(δβ1
, ..., δβn−1

).

Let Ef = {j0,γ(f )(δα0 , ...δαn−1 ) : α0 < ... < αn−1 < γ < ω1}. This shows that L ↾ Ef

is scattered.
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Inner Model Theoretic Proof

For any γ and x ∈ Lγ , x takes the form j0,γ(f )(δα0 , ..., δαn−1) for some n ∈ ω,

α0 < ... < αn−1 < γ, and f : [δ0]
n → δ0 with f ∈ N0. Thus every element of ω1

takes the form j0,γ(f )(δα0 , ..., δαn−1) for some n ∈ ω,

α0 < ... < αn−1 < γ < ω1, and f : [δ0]
n → δ0 with f ∈ N0.

Hence
⋃
{Ef : n ∈ ω ∧ f : [δ0]

n → δ0 ∧ f ∈ N0} = ω1 and witnesses that L is

σ-scattered since N0 is countable. This completes the proof.

Theorem
Assume AD and V = L(R). Every linear ordering on ω1 is σ-scattered.

For an arbitrary cardinal below ω1, one can not longer use linear iterations.

Schlutzenberg full normalization results implies the HOD ↾ Θ is the iterate of

Mω by a single normal tree. An analysis of the models and embedding along

the main branch should serve as an analog of the argument above.

If this works out, then one will show there are no Baumgartner lines on an

image of R and prove the wellorderable Fräıssé conjecture.
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Thanks for listening!
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