Complexity of decision problems in Borel combinatorics and gadget reductions

Alex Kastner (work in progress)

UCLA

Caltech logic seminar, February 12th, 2025

Part 1: Setup and survey of related results

Definition

Let X be a standard Borel space. A Borel graph is a Borel subset of $X \times X$ that is irreflexive and symmetric.

We'll often restrict to bounded degree, locally finite, or locally countable Borel graphs.

We will also consider Borel "structured graphs", which are Borel graphs equipped with a Borel function defined on the vertices and edges. And we will sometimes consider Borel hypergraphs.

Setup: Borel combinatorics

We study classical combinatorial problems on (structured hyper-)graphs but now require the solutions to be Borel functions/sets. Examples are coloring, matching, and orientation problems.

Theorem (Kechris-Solecki-Todorčević, 90's)

A Borel graph with maximum degree d has a proper Borel (d+1)-coloring.

Theorem

The Schreier graph of a free Borel action of \mathbb{Z}^d has a proper Borel 3-coloring.

Theorem (Marks, 2013)

The Bernoulli shift $\mathbb{F}_k \curvearrowright \mathbb{N}^{\mathbb{F}_k}$ has no proper Borel (2k)-coloring.

So the classical and Borel chromatic numbers can differ, maybe by a lot.

Question

For a fixed "combinatorial problem" \mathcal{P} , is there a "simple" characterization of when a given Borel (structured hyper-)graph admits a Borel solution to \mathcal{P} ?

More precisely, what is the (projective) complexity of

 $\{c \in \mathbb{N}^{\mathbb{N}} : c \text{ is the code of a Borel graph with a Borel solution to } \mathcal{P}\}.$

Remark

The set of codes for Borel graphs is Π_1^1 .

Remark

 $\{c \in \mathbb{N}^{\mathbb{N}} : c \text{ is a code for a Borel function } f : X \to Y\}$ is Π_1^1 .

Theorem (KST, G_0 -dichotomy)

For a Borel graph G, exactly one of the following holds:

G has a countable Borel coloring;

O there is a Borel homomorphism from G_0 to G.

There is an effective strengthening of the G_0 -dichotomy, which in particular implies that a lightface Δ_1^1 graph has a countable lightface Δ_1^1 coloring. Hence

 $\{c \in \mathbb{N}^{\mathbb{N}} : c \text{ codes a Borel graph with a countable Borel coloring} \}$

 $= \{ c \in \mathbb{N}^{\mathbb{N}} : c \text{ codes a Borel graph with a countable } \Delta_1^1(c) \text{ coloring} \},$ which is Π_1^1 .

Similarly, by the effective L_0 -dichotomy for Borel 2-colorings,

 $\{c\in\mathbb{N}^{\mathbb{N}}:c \text{ codes a Borel graph with a Borel 2-coloring}\}$ is $\Pi^1_1.$

Theorem (Todorčević-Vidnyánszky, 2021)

 $\{c \in \mathbb{N}^{\mathbb{N}} : c \text{ codes a locally finite Borel graph with a Borel 3-coloring}\}$ is Σ_2^1 -complete.

Recall that a set $B \subseteq Y$ is Σ_2^1 -complete iff B is Σ_2^1 and for every Σ_2^1 set $A \subseteq X$ there is a Borel function $f : X \to Y$ s.t. $[x \in A \text{ iff } f(x) \in B]$.

The above theorem shows that there is no simpler characterization of Borel 3-colorability than "There exist Borel sets Red, Blue, Green partitioning the vertex set s.t. all adjacent vertices x, y are in different color classes."

Definition

I'll say a decision problem \mathcal{P} on Borel (structured hyper-)graphs is a Π_1^1 -problem if $\{(c, d) :$

c codes a Borel graph G and d codes a Borel solution to \mathcal{P} on G} is Π_1^1 .

Theorem (Todorčević-Vidnyánszky, 2021)

Let \mathcal{P} be a Π_1^1 -problem. Suppose G is a Borel graph on $[\mathbb{N}]^{\mathbb{N}}$ with no Borel solution to \mathcal{P} , but there is a Borel $\Phi : [\mathbb{N}]^{\mathbb{N}} \times [\mathbb{N}]^{\mathbb{N}} \to \mathbb{N}$ s.t. for all $x \in [\mathbb{N}]^{\mathbb{N}}$, $\Phi(x, \cdot)$ solves \mathcal{P} on $G \upharpoonright \{y \in [\mathbb{N}]^{\mathbb{N}} : x \geq^{\infty} y\}$. Then

 $\{c \in \mathbb{N}^{\mathbb{N}} : c \text{ codes a Borel graph with a Borel solution to } \mathcal{P}\}$ is $\mathbf{\Sigma}_{2}^{1}$ -complete.

Apply the above theorem when \mathcal{P} is Borel 3-colorability and G is the graph induced by $s : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$, $s(x) = x \setminus \{\min x\}$.

Theorem (BCGGRV, 2023)

The set of Borel d-regular acyclic graphs admitting a Borel d-coloring is Σ_2^1 -complete;

Theorem (Frisch-Shinko-Vidnyánszky, 2024)

If there is an increasing union of hyperfinite CBERs that is not hyperfinite, then the set of hyperfinite CBERs is Σ_2^1 -complete.

Theorem (Grebík-Higgins)

The set of locally finite Borel graphs with finite Borel asymptotic dimension is Σ_2^1 -complete.

Part 2: Connections to computational complexity and gadget reductions

Definition

For a fixed relational structure H, the associated constraint satisfaction problem CSP(H) is the problem: given a structure G (over the same relational language), does there exist a homomorphism from G to H?

Examples: *k*-colorability, *k*-SAT, solvability of linear systems.

Theorem (CSP dichotomy theorem)

Let H be a finite relational structure.

● If there is a homomorphism $H^4 \rightarrow H$ s.t. for all a, e, r, f(r, a, r, e) = f(a, r, e, a), then CSP(H) is in P;

(a) If there is no such homomorphism, then CSP(H) is NP-complete.

Theorem (Thornton, 2022)

If H is a finite relational structure and there is no homomorphism $H^4 \to H$ as above, then $CSP_B(H)$ is Σ_2^1 -complete. Assuming $P \neq NP$, this shows all NP-complete CSP problems have Σ_2^1 -complete Borel versions!

If CSP(H) is in P, then it's a bit more complicated and a few different possibilities arise for $CSP_B(H)$.

In some sense, we can code instances of decision problems \mathcal{P} in Borel combinatorics as instances of some $CSP_B(H)$.

But just showing that $CSP_B(H)$ is Σ_2^1 -complete is not the same as showing that \mathcal{P} is Σ_2^1 -complete: the complexity may come from instances of $CSP_B(H)$ that are not instances of \mathcal{P} .

Theorem (Thornton, 2022)

The set of Borel graphs with a Borel 3-edge coloring is Σ_2^1 -complete.

One shows 3-edge colorability for finite graphs is NP-complete using a (polynomial-time) gadget reduction from 3SAT to 3-edge colorability. Thornton adapted this construction to the Borel setting.

Gadget reduction from 3-SAT to 3-edge colorability

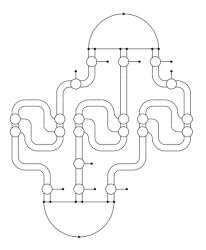


Figure: Reduction applied to $(\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$

Source: Riley Thornton, "An algebraic approach to Borel CSPs"

Gadget reduction from 3-colorability to 3-colorability for graphs of degree ≤ 5

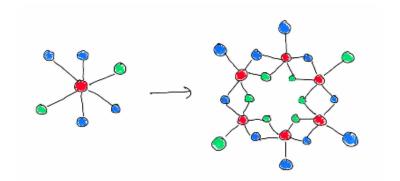


Figure: Replacing a vertex of degree 6 with a gadget of vertices of degree ≤ 5

Gadget reduction from 3-SAT to Hamiltonian path

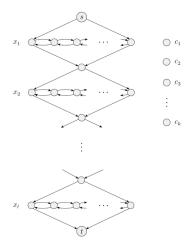


Figure: Reduction applied to 3-SAT formula with ℓ variables and k clauses

Source: Sipser, Introduction to the theory of computation

Alex Kastner (UCLA)

Gadget reductions

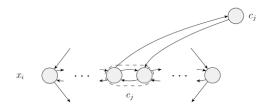


FIGURE 7.51 The additional edges when clause c_j contains x_i

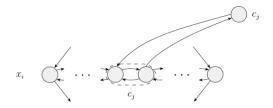
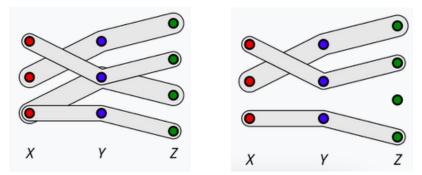


FIGURE 7.52 The additional edges when clause c_j contains $\overline{x_i}$

Other examples of Σ_2^1 -complete problems using gadget reductions

Borel 3-partite hypergraphs admitting a 3-dimensional perfect matching.



A LOCAL definition of gadget reductions

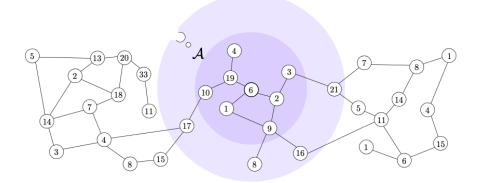


Figure: A deterministic LOCAL algorithm

Source: Václav Rozhoň, "Invitation to Local Algorithms"

A LOCAL definition of gadget reductions

Definition

Let \mathcal{P}_1 and \mathcal{P}_2 be Π_1^1 problems on classes of graphs \mathcal{K}_1 and \mathcal{K}_2 . A map $G \mapsto H$ from \mathcal{K}_1 to \mathcal{K}_2 is a gadget reduction from \mathcal{P}_1 to \mathcal{P}_2 iff there exists r > 0 s.t. for any $G \in \mathcal{K}_1$,

- for each v ∈ V(G), there are corresponding vertices in H whose number only depends on [B_G(v, r)]_{rooted,labeled};
- for each v ∈ V(G), there are corresponding edges in H between vertices created by B_G(v, r), and these edges only depend on [B_G(v, 2r)]_{rooted,labeled};
- given a P₁-solution to G, we obtain a P₂-solution to H s.t. the P₂-color of each vertex in H created by v only depends on [B_G(v, r)]_{rooted,labeled,P₁};

Solution to *H*, we obtain a \mathcal{P}_1 -solution to *G* s.t. the \mathcal{P}_1 -color of each *v* ∈ *V*(*G*) only depends on $[B_G(v, 2r)]_{\text{rooted,labeled}}$ and the \mathcal{P}_2 -colors of the vertices in *H* created by $B_G(v, r)$.

Gadget reductions from CS imply Σ_2^1 -completeness results

Theorem

If \mathcal{P}_1 is Σ_2^1 -complete, and there is a gadget reduction from \mathcal{P}_1 to \mathcal{P}_2 , then \mathcal{P}_2 is also Σ_2^1 -complete.

Most NP-complete problems are actually complete for AC⁰-reductions, a very strong kind of reduction that seems to "essentially" coincide with the definition of gadget reduction from the previous slide. (I still need to work out the exact relationship.)

Corollary (Informal)

Most NP-complete Π_1^1 -problems on (structured hyper-)graphs are Σ_2^1 -complete.

Question

Are the Borel versions of all NP-complete decision problems Σ_2^1 -complete?

We saw earlier that Borel 2-colorability is Π_1^1 .

Theorem (Thornton, 2022)

Borel 2SAT is Π_1^1 .

It turns out that 2SAT is complete for the computational complexity class NL, even under $\mathsf{AC}^0\text{-}\mathsf{reductions}.$

Question

Are the Borel versions of all decision problems in NL of complexity Π_1^1 ?

If a finitary decision problem is complete for some computational complexity class, then determining the projective complexity of its Borel version has implications for the projective complexities of most other decision problems in that class.

 $\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E}$

P-completeness

$\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{P}\mathsf{S}\mathsf{P}\mathsf{A}\mathsf{C}\mathsf{E}$

Theorem (Grebík-Vidnyánszky, 2025)

Borel solvability of linear systems over any fixed finite field is Σ_2^1 -complete.

Question (Should be known)

Is solvability of linear systems P-complete?

It turns out Horn-SAT, the problem of deciding if a CNF-formula with at most one negated literal per clause, is P-complete.

Question

What is the projective complexity of Borel Horn-SAT?

Question

Are the Borel versions of all P-complete decision problems Σ_2^1 -complete?

Thanks!