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Part 1: Setup and survey of related results
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Setup: Borel (structured hyper-)graphs

Definition

Let X be a standard Borel space. A Borel graph is a Borel subset of
X × X that is irreflexive and symmetric.

We’ll often restrict to bounded degree, locally finite, or locally countable
Borel graphs.

We will also consider Borel “structured graphs”, which are Borel graphs
equipped with a Borel function defined on the vertices and edges. And we
will sometimes consider Borel hypergraphs.
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Setup: Borel combinatorics

We study classical combinatorial problems on (structured hyper-)graphs
but now require the solutions to be Borel functions/sets. Examples are
coloring, matching, and orientation problems.

Theorem (Kechris-Solecki-Todorčević, 90’s)

A Borel graph with maximum degree d has a proper Borel (d + 1)-coloring.

Theorem

The Schreier graph of a free Borel action of Zd has a proper Borel
3-coloring.

Theorem (Marks, 2013)

The Bernoulli shift Fk y NFk has no proper Borel (2k)-coloring.

So the classical and Borel chromatic numbers can differ, maybe by a lot.
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Decision problems in Borel combinatorics

Question

For a fixed “combinatorial problem” P, is there a “simple”
characterization of when a given Borel (structured hyper-)graph admits a
Borel solution to P?

More precisely, what is the (projective) complexity of

{c ∈ NN : c is the code of a Borel graph with a Borel solution to P}.

Remark

The set of codes for Borel graphs is Π1
1.

Remark

{c ∈ NN : c is a code for a Borel function f : X → Y } is Π1
1.
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Some Π1
1 problems

Theorem (KST, G0-dichotomy)

For a Borel graph G , exactly one of the following holds:

1 G has a countable Borel coloring;

2 there is a Borel homomorphism from G0 to G .

There is an effective strengthening of the G0-dichotomy, which in
particular implies that a lightface ∆1

1 graph has a countable lightface ∆1
1

coloring. Hence

{c ∈ NN : c codes a Borel graph with a countable Borel coloring}
= {c ∈ NN : c codes a Borel graph with a countable ∆1

1(c) coloring},
which is Π1

1.
Similarly, by the effective L0-dichotomy for Borel 2-colorings,

{c ∈ NN : c codes a Borel graph with a Borel 2-coloring}
is Π1

1.
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Borel 3-colorability is complicated

Theorem (Todorčević-Vidnyánszky, 2021)

{c ∈ NN : c codes a locally finite Borel graph with a Borel 3-coloring} is
Σ1

2-complete.

Recall that a set B ⊆ Y is Σ1
2-complete iff B is Σ1

2 and for every Σ1
2 set

A ⊆ X there is a Borel function f : X → Y s.t. [x ∈ A iff f (x) ∈ B].

The above theorem shows that there is no simpler characterization of Borel
3-colorability than “There exist Borel sets Red,Blue,Green partitioning the
vertex set s.t. all adjacent vertices x , y are in different color classes.”
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More on Todorčević-Vidnyánszky

Definition

I’ll say a decision problem P on Borel (structured hyper-)graphs is a
Π1

1-problem if {(c , d) :
c codes a Borel graph G and d codes a Borel solution to P on G} is Π1

1.

Theorem (Todorčević-Vidnyánszky, 2021)

Let P be a Π1
1-problem. Suppose G is a Borel graph on [N]N with no

Borel solution to P, but there is a Borel Φ : [N]N × [N]N → N s.t. for all
x ∈ [N]N, Φ(x , ·) solves P on G � {y ∈ [N]N : x ≥∞ y}. Then

{c ∈ NN : c codes a Borel graph with a Borel solution to P}
is Σ1

2-complete.

Apply the above theorem when P is Borel 3-colorability and G is the
graph induced by s : [N]N → [N]N, s(x) = x \ {min x}.
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Applications of the Todorčević-Vidnyánszky machinery

Theorem (BCGGRV, 2023)

The set of Borel d-regular acyclic graphs admitting a Borel d-coloring is
Σ1

2-complete;

Theorem (Frisch-Shinko-Vidnyánszky, 2024)

If there is an increasing union of hyperfinite CBERs that is not hyperfinite,
then the set of hyperfinite CBERs is Σ1

2-complete.

Theorem (Greb́ık-Higgins)

The set of locally finite Borel graphs with finite Borel asymptotic
dimension is Σ1

2-complete.
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Part 2: Connections to computational
complexity and gadget reductions
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Constraint satisfaction problems

Definition

For a fixed relational structure H, the associated constraint satisfaction
problem CSP(H) is the problem: given a structure G (over the same
relational language), does there exist a homomorphism from G to H?

Examples: k-colorability, k-SAT, solvability of linear systems.
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The CSP dichotomy theorem

Theorem (CSP dichotomy theorem)

Let H be a finite relational structure.

1 If there is a homomorphism H4 → H s.t. for all a, e, r ,
f (r , a, r , e) = f (a, r , e, a), then CSP(H) is in P;

2 If there is no such homomorphism, then CSP(H) is NP-complete.

Theorem (Thornton, 2022)

If H is a finite relational structure and there is no homomorphism H4 → H
as above, then CSPB(H) is Σ1

2-complete. Assuming P 6= NP, this shows
all NP-complete CSP problems have Σ1

2-complete Borel versions!

If CSP(H) is in P, then it’s a bit more complicated and a few different
possibilities arise for CSPB(H).
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There are other problems besides CSPs...

In some sense, we can code instances of decision problems P in Borel
combinatorics as instances of some CSPB(H).

But just showing that CSPB(H) is Σ1
2-complete is not the same as

showing that P is Σ1
2-complete: the complexity may come from instances

of CSPB(H) that are not instances of P.
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Gadget reductions

Theorem (Thornton, 2022)

The set of Borel graphs with a Borel 3-edge coloring is Σ1
2-complete.

One shows 3-edge colorability for finite graphs is NP-complete using a
(polynomial-time) gadget reduction from 3SAT to 3-edge colorability.
Thornton adapted this construction to the Borel setting.

Alex Kastner (UCLA) Gadget reductions 14 / 26



Gadget reduction from 3-SAT to 3-edge colorability

Figure: Reduction applied to (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3)

Source: Riley Thornton, ”An algebraic approach to Borel CSPs”
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Gadget reduction from 3-colorability to 3-colorability for
graphs of degree ≤ 5

Figure: Replacing a vertex of degree 6 with a gadget of vertices of degree ≤ 5
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Gadget reduction from 3-SAT to Hamiltonian path

Figure: Reduction applied to 3-SAT formula with ` variables and k clauses

Source: Sipser, Introduction to the theory of computation
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Other examples of Σ1
2-complete problems using gadget

reductions

Borel 3-partite hypergraphs admitting a 3-dimensional perfect matching.
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A LOCAL definition of gadget reductions

Figure: A deterministic LOCAL algorithm

Source: Václav Rozhoň, ”Invitation to Local Algorithms”
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A LOCAL definition of gadget reductions

Definition

Let P1 and P2 be Π1
1 problems on classes of graphs K1 and K2. A map

G 7→ H from K1 to K2 is a gadget reduction from P1 to P2 iff there exists
r > 0 s.t. for any G ∈ K1,

1 for each v ∈ V (G ), there are corresponding vertices in H whose
number only depends on [BG (v , r)]rooted,labeled;

2 for each v ∈ V (G ), there are corresponding edges in H between
vertices created by BG (v , r), and these edges only depend on
[BG (v , 2r)]rooted,labeled;

3 given a P1-solution to G , we obtain a P2-solution to H s.t. the
P2-color of each vertex in H created by v only depends on
[BG (v , r)]rooted,labeled,P1 ;

4 given a P2-solution to H, we obtain a P1-solution to G s.t. the
P1-color of each v ∈ V (G ) only depends on [BG (v , 2r)]rooted,labeled
and the P2-colors of the vertices in H created by BG (v , r).
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Gadget reductions from CS imply Σ1
2-completeness results

Theorem

If P1 is Σ1
2-complete, and there is a gadget reduction from P1 to P2, then

P2 is also Σ1
2-complete.

Most NP-complete problems are actually complete for AC0-reductions, a
very strong kind of reduction that seems to “essentially” coincide with the
definition of gadget reduction from the previous slide. (I still need to work
out the exact relationship.)

Corollary (Informal)

Most NP-complete Π1
1-problems on (structured hyper-)graphs are

Σ1
2-complete.

Question

Are the Borel versions of all NP-complete decision problems Σ1
2-complete?
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Gadget reductions from CS imply Π1
1-completeness results

We saw earlier that Borel 2-colorability is Π1
1.

Theorem (Thornton, 2022)

Borel 2SAT is Π1
1.

It turns out that 2SAT is complete for the computational complexity class
NL, even under AC0-reductions.

Question

Are the Borel versions of all decision problems in NL of complexity Π1
1?
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Other computational complexity classes

If a finitary decision problem is complete for some computational
complexity class, then determining the projective complexity of its Borel
version has implications for the projective complexities of most other
decision problems in that class.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE
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P-completeness

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

Theorem (Greb́ık-Vidnyánszky, 2025)

Borel solvability of linear systems over any fixed finite field is Σ1
2-complete.

Question (Should be known)

Is solvability of linear systems P-complete?

It turns out Horn-SAT, the problem of deciding if a CNF-formula with at
most one negated literal per clause, is P-complete.

Question

What is the projective complexity of Borel Horn-SAT?

Question

Are the Borel versions of all P-complete decision problems Σ1
2-complete?
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Thanks!
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