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LCLs on groups

Definition

Let Γ be a countable group. An LCL on Γ is a triple
Π = (Λ,W ,A), where

▶ Λ is a finite set (labels)

▶ W ⊂ Γ is finite (window)

▶ A ⊆ ΛW (allowed configurations)

▶ If Γ ↷ X is a free action of Γ on a set X , a Π-labeling of X
(also called a solution to Π) is a function c : X → Λ such
that for all x ∈ X , the function W → Λ given by γ 7→ c(γ · x)
is in A.

W · x

x



LCLs on groups

▶ For example, if Γ = ⟨S⟩, for k ∈ N the problem of (proper)
k-coloring the Cayley graph Cay(Γ,S) is an LCL
(k ,S ∪ {1},A), where

A = {c | ∀γ ∈ S , c(1) ̸= c(γ)}

That is k-colorings are exactly solutions to this LCL on Γ
(with respect to left multiplication).

Some other familiar perspectives:

▶ Wang tiles (especially for Γ = Z2)

▶ An SFT Y ⊆ ΛΓ is exactly the set of solutions to some LCL
on Γ with labels Λ. Solutions to the LCL on X correspond to
Γ-equivariant maps X → Y .



Descriptive combinatorics

Given an LCL Π on Γ, we are interested in constructive versions of
the question: “does Γ admit a Π labeling?” Versions of this give
rise to complexity classes.

▶ Let Γ ↷ X be a free Borel action on a standard Borel space.
Does X admit a Borel Π-labeling?
If the answer is always yes, we say Π ∈ BOREL(Γ)

▶ Let Γ ↷ (X , µ) be a free Borel action on a standard
probability space. Does X admit a µ-measurable Π-labeling?
If the answer is always yes, we say Π ∈ MEASURE(Γ)

▶ Let Γ ↷ X be a free continuous action on a zero dimensional
Polish space. Does X admit a continuous Π-labeling If the
answer is always yes, we say Π ∈ CONTINUOUS(Γ)

Other classes will be defined similarly as we go.



The Bernoulli Shift

▶ For any Γ, let S(Γ) denote the free part of the Bernoulli shift
Γ ↷ (2ω)Γ.

▶ Any free Borel action Γ ↷ X on a standard Borel space
admits a Borel equivariant injection to S(Γ). Likewise in the
topological setting if X is zero dimensional.

▶ Thus.

BOREL(Γ) = {Π | S(Γ) admits a Borel Π-labeling},

and likewise for CONTINUOUS(Γ).



Example: 2-coloring

Proposition

S(Z) does not admit a Borel 2-coloring (with respect to the
generating set {±1}). Thus 2-coloring ̸∈ BOREL(Z).

11 . . . 0100 . . . 0 . . . 11 . . . 0100 . . . 0 . . .

▶ We will show that there is no Baire measurable 2-coloring.
Suppose there is and let A ⊆ S(Z) be the set of white points.

▶ WLOG, A is nonmeager. Let U be a basic open set on which
A is comeager. U specifies a finite initial segment of labels of
nodes in a finite window around the identity.

▶ If k is large enough, the windows of U and k · U are disjoint.
If k is odd, this leads to a contradiction.

Proposition (Kechris-Solecki-Todorcevic ’99)

3-coloring ∈ CONTINUOUS(Z).



Complexity classes for Z

We have the following picture due to Greb́ık-Rozhoň (’23)

Exists a solution on Z

CONTINUOUS(Z) = BOREL(Z) =
MEASURE(Z) = BAIREMEAS(Z) = . . .

⊊

3-coloring ∈

2-coloring ∈

▶ Π ∈ BAIREMEAS(Γ) if any free Borel action of Γ on a Polish
space admits a Baire measurable Π-coloring.



Complexity classes for Fn (n ≥ 2)

▶ We have this picture,
combining results of
KST (’99), CMT-D
(’16), Bernshteyn,
BCGGRV (’22), CM
(’16), Marks(’16).

▶ All inclusions are
strict.

▶ Note the nontrivial
relationship
MEASURE(Fn) ⊊
BAIREMEAS(Fn) CONTINUOUS(Fn)

BOREL(Fn)

MEASURE(Fn)

BAIREMEAS(Fn)

EXISTS(Fn)

2n + 1-coloring

2n-coloring
off lines

2n-coloring

3-coloring

2-coloring



The Baire Hierarchy

Our goal is to understand the interval between CONTINUOUS(Fn)
and BOREL(Fn).

▶ Recall that a function X → Λ with X Polish is Baire class α if
it is Σ0

1+α-measurable.

▶ Equivalently (since our Λ is finite) f −1(λ) ∈ ∆0
1+α for each

λ ∈ Λ.

▶ For Π an LCL on Γ, say Π ∈ BAIREα(Γ) if S(Γ) admits a
Baire class α Π-labeling. (Equivalently, any zero dimensional
Polish Γ-space admits one)

▶ CONTINUOUS(Γ) = BAIRE0(Γ).

▶ BOREL(Γ) =
⋃

α<ω1
BAIREα(Γ)



Level by level Borel combinatorics

Theorem (Lecomte-Zelený ’14, ’16)

For each α < ω1, there is...

▶ A D2(Π1
0) graph of maximum degree 1 with no Baire class α

countable coloring (Any such graph has a Borel 2-coloring).

▶ A closed graph of maximum degree 1 with no Baire class α
finite coloring.

Question (Lecomte-Zelený ’14)

Is there a version of the G0-dichotomy for each level of the Borel
hierarchy? That is, a Borel graph Gα such that for each analytic
graph H, exactly one:

▶ H has a Baire class α countable coloring.

▶ There is a continuous homomorphism Gα → H.



Level by level Borel combinatorics

Theorem (Marks-Unger ’16)

A disc and square of the same area in R2 are equidecomposable by
translations using Borel pieces

▶ Their pieces are Boolean combinations of Σ0
4 sets, in

particular they are ∆0
5.

Theorem (Máthé-Noel-Pikhurko ’23)

An equidecomposition is possible with pieces that are Boolean
combinations of Σ0

2 sets.

Question

What about ∆0
2 pieces?



Main Result

Theorem

For each 1 < m ∈ N, and 1 ≤ n ∈ ω, there is an LCL Π = (Λ, . . .)
on Fm and Λ∗ ⊂ Λ such that

▶ Π ∈ BAIREn(Fm).

▶ For any Borel Π-labeling c : S(Fm) → Λ, c−1(Λ∗) is Π0
n-hard.

Thus Π ̸∈ BAIREn−1(Fm).

▶ Note there are only countably many LCLs on a given group!

Question

What is the least α for which BAIREα(Fm) = BOREL(Fm).



Main Result

CONTINUOUS(Fn) = BAIRE0(Fn)

BAIRE1(Fn)

BAIRE2(Fn)

...

BAIREω(Fn)

BOREL(Fn)

MEASURE(Fn)

BAIREMEAS(Fn)

EXISTS(Fn)

???



A coloring corollary

Corollary

For any 1 ≤ n ∈ ω, there is a connected, locally finite,
quasi-transitive graph G such that the Bernoulli shift of G has a
Baire class n 3-coloring, but not n − 1.

▶ It is easy to see that if such a graph has a Borel 2-coloring, it
has a continuous one.

Theorem (Lecomte-Zelený ’14, ’16)

For each α < ω1, there is...

▶ A D2(Π1
0) graph of maximum degree 1 with no Baire class α

countable coloring (Any such graph has a Borel 2-coloring).

▶ A closed graph of maximum degree 1 with no Baire class α
finite coloring.
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A non local problem

▶ Since all the Fm’s are subgroups of eachother, it suffices to
consider F2 = ⟨a, b⟩.

▶ Consider the following (non local) labeling problem with label
set {Y ,N, ∗} × {R,B,G}: First 3-color the b-orbits with
{R,B,G}.

▶ For the first coordinate, mark all points colored R or B with
the ∗. For G points, label them Y if there is some ∗-point in
their a-orbit, and N otherwise.

∗ ∗ Y Y ∗ Y ∗

N N N N N N N

Y

∗
a

b



A non local problem

▶ If c : S(F2) → {R,B,G} is a continuous 3-coloring of the
b-orbits, then our resulting {Y ,N, ∗} labeling is Baire class 1:
Y and N are Σ0

1 and Π0
1 respectively.

Proposition

For any Borel solution S(F2) → {Y ,N, ∗} × {R,B,G}, to our
problem, the set of points labeled N is Π0

1-hard.

∗ ∗ Y Y ∗ Y ∗

N N N N N N N

Y

∗
a

b



F2 vs Z2

▶ This seems natural, but it is not obvious that the 3-colorings
of different b-orbits cannot be correlated in some way.

Theorem (Gao-Jackson-Krohne-Seward)

3-coloring ∈ BOREL(Z2).

∗ ∗ Y ∗ ∗ Y ∗

Y ∗ ∗ Y ∗ ∗ Y

▶ Here “N” = ∅.



N is Π0
1-hard

▶ We will show int(N) = ∅ while N ̸= ∅.
▶ The former is easy. Suppose U ⊆ N is a basic open, say with

window W ⊆ F2.

N N N N N N N

N N N N N N N

W

W



N is Π0
1-hard

To show N ̸= ∅, we use:

Theorem (Marks ’16)

Let Γ,∆ be countable groups, and A ⊆ S(Γ ∗∆) Borel. At least
one:

▶ There is a continuous Γ-equivariant map f : S(Γ) → A.

▶ There is a continuous ∆-equivariant map f : S(∆) → Ac .

▶ We apply this with A the set of G points. In the first case,
image(f ) ⊆ N.

▶ In the second case, pulling back our coloring along f yields a
Borel 2-coloring of S(Z) (with {R,B}).



The Marks Game

II

I

1 0

0

0

11 01

01

00
▶ Consider a game where the players define

a point x ∈ (2ω)Γ∗∆. I labels “∆-words”
and II Γ. I wins iff x ∈ A.

▶ Suppose I has a winning strategy. Playing
copies of that strategy against eachother
gives us an element of A depending in a
Γ-equivariant and continuous way on the
labels on the red points.



A local problem

▶ 3-coloring is an LCL. The following additional rules are also
local:
▶ A point has is labeled with ∗ if and only if it is not G .
▶ If x is labeled with N, so are a · x and a−1 · x .

▶ But we can’t use a local rule to directly force orbits with no ∗
to be labeled N.

▶ Instead, we use the label set {0, 1,N, ∗} × {R,B,G}, and
require 0 and 1 to give a partial 2-coloring. This completes
our definition of an LCL Π.

N N N N N N N

∗ 0 1 0 ∗ 1 ∗

0 1 0 1 0 1 0



A local problem

∗ Y Y Y ∗ Y ∗

∗ 0 1 0 ∗ 0 ∗

▶ To show Π ∈ BAIRE1(F2), we start with a our Baire-1
{Y ,N, ∗} × {R,B,G}-labeling of S(F2), and note that we
can 2-color the Y -points in a relatively continuous way.

▶ We now want to show that in any Borel Π-labeling of S(F2),
the set of points labeled N is Π0

1-hard.

▶ int(N) = ∅ as before, so let us show N ̸= ∅.
▶ Marks’ lemma gave us a continuous a-equivariant map

f : S(Z) → G . If N = ∅, the image of this map is Borel
2-colored by {0, 1}.
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The inductive step

Theorem

Let n ∈ ω. Γ be a countable group and Π = (Λ, . . .) ∈ BAIREn(Γ),
and Λ∗ ⊂ Λ such that for any Borel Π-labeling c : S(Γ) → Λ,
c−1(Λ∗) is Π0

n-hard.
Then there is an Π′ = (Λ′, . . .) ∈ BAIREn+1(Z ∗ Γ), and Λ′

∗ ⊂ Λ′

such that for any Borel Π′-labeling c : S(Z ∗ Γ) → Λ′, c−1(Λ′
∗) is

Π0
n+1-hard.

Proposition

Let c : S(Z ∗ Γ) → Λ be Borel and a Π-labeling of each Γ-orbit.
Then

N := {x | Z · x ⊆ c−1(Λ \ Λ∗)}

is Π0
n+1-hard.



The Marks-Wadge game

z0

z1

z2

z3

...Z

Γ

II

I ▶ We modify the Marks game so that
Player II is also playing a z ∈ 2ω off
to the side. Recall the players are
constructing some x ∈ S(Z ∗ Γ).

▶ Fix a Σ0
n-complete set U ⊆ 2ω. II

wins if c(x) ∈ Λ∗ ⇔ z ∈ U.

▶ Suppose II has a winning strategy. We get a continuous
Γ-equivariant map (f , g) : S(Γ) → S(Z ∗ Γ)× (2ω)Γ, the
second coordinate recording the z ’s played by the copies of
player II.

▶ c ◦ f is a Borel Π-labeling of S(Γ). g reduces (c ◦ f )−1(Λ∗) to
U, a contradiction.



The Marks-Wadge game

z(−1) z(0) z(1) z(2) z(3)

▶ So I has a winning strategy. We get a Z-equivariant
continuous map f : S(Z)× (2ω)Z → S(Z ∗ Γ), the second
coordinate giving us z ’s to feed to player I.

▶ c(f (x , (z(i))i∈Z)) ̸∈ Λ∗ ⇔ z(0) ∈ U.

▶ So f reduces UZ ⊆ (2ω)Z to N := {x | Z · x ⊆ f −1(Λ \ Λ∗)}.



Another local problem

▶ We turn this into an LCL Π′ on Z ∗ Γ with label set
{0, 1,N, ∗} × Λ as before:
▶ First solve Π on each Γ-orbit.
▶ Mark a point with ∗ iff it has a label from Λ∗.
▶ If a point is marked with N, so are both its Z-neighbors.
▶ The remaining points must be 2-colored by {0, 1}

▶ As before, starting with a Baire class n solution to Π gives a
Baire class n + 1 solution to Π′.

Proposition

Let c : S(Z ∗ Γ) → {0, 1,N, ∗} × Λ be a Borel Π′-labeling. Then
c−1({N} × Λ) is Π0

n+1-hard.



2-coloring and complexity

▶ We still have a continuous equivariant map
f : S(Z) → S(Z ∗ Γ) so that f (z) is marked with a ∗ if and
only if z(0) ̸∈ U.

▶ The issue is that some orbits in UZ could be entirely 2-colored.

∗ 0 1 0 ∗ 1 ∗

0 1 0 1 0 1 0

N N N N N N N

UZ

f −1(N)

Lemma

Let U ⊆ 2ω be Σ0
n-complete. Let c : UZ ∩ S(Z) ⇀ 2 be a Borel

partial 2-coloring with Z-invariant domain. Then
(S(Z) ∩ UZ) \ dom(c) is Π0

n+1-hard (as a subset of S(Z)).



The case n = 1:

Lemma

Let U ⊆ 2ω be Σ0
1-complete. Let c : UZ ∩ S(Z) ⇀ 2 be a Borel

partial 2-coloring with Z-invariant domain. Then
(S(Z) ∩ UZ) \ dom(c) is Π0

2-hard (as a subset of S(Z)).

▶ We may assume U is open dense. Then S(Z) ∩ UZ is
comeager.

▶ dom(c) is meager as we have seen.

▶ On the other hand, S(Z) \ UZ is dense.

Lemma

If S ⊆ 2ω is meager and dense, it is Σ0
2-hard.



Generalizing the lemma

Lemma

If S ⊆ 2ω is meager and dense, it is Σ0
2-hard.

Theorem (Day-Marks)

Let 1 ≤ n ∈ ω, (X , τ) a Polish space, and S ⊆ X. Suppose there is
a suitable sequence of topologies, τ = τ0 ⊆ τ1 ⊆ · · · ⊆ τn such
that

▶ S is τn-meager.

▶ For all basic open W ∈ τn, S ∩W is τn−1 ↾ W-comeager.

Then S is Σ0
n+2-hard.



Generalizing Hurewicz’s theorem

Localized versions of these criteria provide exact characterizations.

Theorem (Hurewicz)

Let (X , τ) be a Polish space and S ⊆ X. S is Σ0
2-hard if and only

if there is some closed set F ⊆ X so that, in τ ↾ F , S ∩ F is
meager and dense.

Theorem (Day-Marks)

Let 1 ≤ n ∈ ω, (X , τ) a Polish space, and S ⊆ X. S is Σ0
n+2-hard

if and only if there is some closed set F ⊆ X and a suitable
sequence of topologies, τ ↾ F = τ0 ⊆ τ1 ⊆ · · · ⊆ τn such that

▶ S ∩ F is τn-meager.

▶ For all basic open W ∈ τn, S ∩W is τn−1 ↾ W-comeager.



Applying the Day-Marks criterion

Lemma

Let U ⊆ 2ω be Σ0
n-complete. Let c : UZ ∩ S(Z) ⇀ 2 be a Borel

partial 2-coloring with Z-invariant domain. Then
(S(Z) ∩ UZ) \ dom(c) is Π0

n+1-hard (as a subset of S(Z)).

▶ For an appropriate Σ0
n-complete U, it is not hard to find a

suitable sequence τ0 ⊆ · · · ⊆ τn−1 with τ0 the usual topology,
U open dense in τn−1, and U Fσ-meager in τn−2.

▶ Let τZ0 ⊆ · · · ⊆ τZn−1 be the product topologies. This turns
out to still be suitable.

▶ dom(c) will be τZn−1-meager as before.

▶ On the other hand, since basic open sets in τZn−1 only restrict
finitely many coordinates, UZ will still be relatively
τZn−2-meager is any of them.



Further questions

Question

What is the least α for which BAIREα(F2) = BOREL(F2).

Question

(Assuming PD) Is there an LCL on F2 with a ∆1
2-measurable

solution on S(F2) but no Borel solution? More generally, ∆1
n+1

but not ∆1
n?

Question

What does the BAIREα(Zn) hierarchy look like for n > 1?

▶ Gao-Jackson-Krohne-Seward showed 4-coloring
∈ CONTINUOUS(Zn) and 3-coloring in
BOREL(Zn) \ CONTINUOUS(Zn).

▶ Is 3-coloring ∈ BAIRE1(Zn)?
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