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Part I: Introduction



LCLs on groups

Definition
Let I be a countable group. An LCL on T is a triple
M= (A W,A), where

» A is a finite set (labels)

» W C T is finite (window)

» A C AW (allowed configurations)

» If T ~ X is a free action of I on a set X, a lN-labeling of X
(also called a solution to 1) is a function ¢ : X — A such
that for all x € X, the function W — A given by v — c(v - x)
is in A.



LCLs on groups

» For example, if ' = (S), for k € N the problem of (proper)
k-coloring the Cayley graph Cay(l', S) is an LCL
(k,SU {1}, A), where

A={c|VyeS,c(l)#c()}

That is k-colorings are exactly solutions to this LCL on I
(with respect to left multiplication).

Some other familiar perspectives:
» Wang tiles (especially for ' = Z?)
> An SFT Y C Al is exactly the set of solutions to some LCL

on I with labels A. Solutions to the LCL on X correspond to
-equivariant maps X — Y.



Descriptive combinatorics

Given an LCL M on T, we are interested in constructive versions of
the question: “does I' admit a 1 labeling?” Versions of this give
rise to complexity classes.

» Let [ ~ X be a free Borel action on a standard Borel space.
Does X admit a Borel -labeling?
If the answer is always yes, we say I1 € BOREL(I")

» Let I ~ (X, 1) be a free Borel action on a standard
probability space. Does X admit a u-measurable lN-labeling?
If the answer is always yes, we say 1 € MEASURE(I)

> Let [~ X be a free continuous action on a zero dimensional
Polish space. Does X admit a continuous [1-labeling If the
answer is always yes, we say 1 € CONTINUOUS(I)

Other classes will be defined similarly as we go.



The Bernoulli Shift

» For any I, let S(I') denote the free part of the Bernoulli shift
(29",

» Any free Borel action ' ~ X on a standard Borel space
admits a Borel equivariant injection to S(I'). Likewise in the
topological setting if X is zero dimensional.

» Thus.
BOREL(I") = {M | S(I') admits a Borel -labeling},

and likewise for CONTINUQUS(I).



Example: 2-coloring

S(Z) does not admit a Borel 2-coloring (with respect to the
generating set {+1}). Thus 2-coloring ¢ BOREL(Z).

11... 0100... O... 11... 0100... O...

o OCO—0  O—0  O—0—O—@—O

> We will show that there is no Baire measurable 2-coloring.
Suppose there is and let A C S(Z) be the set of white points.

» WLOG, A is nonmeager. Let U be a basic open set on which
A is comeager. U specifies a finite initial segment of labels of
nodes in a finite window around the identity.

> If k is large enough, the windows of U and k - U are disjoint.
If k is odd, this leads to a contradiction.

Proposition (Kechris-Solecki-Todorcevic '99)

3-coloring € CONTINUQUS(Z).



Complexity classes for Z

We have the following picture due to Grebik-Rozhoii ('23)

2-coloring € Exists a solution on Z

-

-

3-coloring € CONTINUQOUS(Z) = BOREL(Z) =
& MEASURE(Z) = BAIREMEAS(Z) = . ..
» [1 € BAIREMEAS(I') if any free Borel action of I on a Polish
space admits a Baire measurable [N-coloring.



Complexity classes for F,, (n > 2)

2-coloring EXISTS(F,)

» We have this picture,

combining results of

KST ('99), CMT-D 3-coloring BAIREMEAS(F,)

('16), Bernshteyn,

BCGGRV ('22), CM

('16), Marks('16). 2n-coloring MEASURE(F),)
» All inclusions are

strict.
» Note the nontrivial 2n—co|o.r|ng BOREL(F,)

relationship off lines

MEASURE(F,,) C

)
BAIREMEAS(F,) 2n + 1-coloring  CONTINUOUS(F,)



The Baire Hierarchy

Our goal is to understand the interval between CONTINUQUS(IF,)
and BOREL(F,).

>

>

>

Recall that a function X — A with X Polish is Baire class « if
it is £9, -measurable.

Equivalently (since our A is finite) f=*(\) € A, , for each
AeN

For M an LCL on T, say I € BAIRE,(I) if S(I') admits a
Baire class « [-labeling. (Equivalently, any zero dimensional
Polish '-space admits one)

CONTINUOUS(I) = BATRE(T).
BOREL(") = |J,,., BAIRE,(T)

a<wi



Level by level Borel combinatorics

Theorem (Lecomte-Zeleny '14, '16)

For each o« < wy, there is...

> A D,(N}) graph of maximum degree 1 with no Baire class o
countable coloring (Any such graph has a Borel 2-coloring).

» A closed graph of maximum degree 1 with no Baire class «
finite coloring.

Question (Lecomte-Zeleny '14)

Is there a version of the Gq-dichotomy for each level of the Borel

hierarchy? That is, a Borel graph G, such that for each analytic
graph H, exactly one:

» H has a Baire class a countable coloring.

» There is a continuous homomorphism G, — H.



Level by level Borel combinatorics

Theorem (Marks-Unger '16)

A disc and square of the same area in R? are equidecomposable by
translations using Borel pieces

» Their pieces are Boolean combinations of X9 sets, in
particular they are Ag.

Theorem (Mathé-Noel-Pikhurko '23)

An equidecomposition is possible with pieces that are Boolean
combinations of X3 sets.

Question
What about AS pieces?




Main Result

Foreachl<meN, and1 < n € w, thereisan LCLTI = (A,...)
onIF,, and A\, C A such that

» I € BAIRE,(F,,).

» For any Borel M-labeling ¢ : S(Fr,) — A, ¢~ () is N%-hard.
Thus T & BAIRE, 1(Fp,).

> Note there are only countably many LCLs on a given group!

What is the least o for which BAIRE(F,) = BOREL(Fp,).




Main Result

EXISTS(F,)

T
BAIREMEAS(F,)

T
MEASURE(F,)

T
BOREL(F,,)

T 77

BAIRE,,(F,)

BATRE,(F,)
T
BAIRE;(F,)

T
CONTINUOUS(F,) = BAIREy(F),)



A coloring corollary

Corollary

For any 1 < n € w, there is a connected, locally finite,
quasi-transitive graph G such that the Bernoulli shift of G has a
Baire class n 3-coloring, but not n — 1.

P It is easy to see that if such a graph has a Borel 2-coloring, it
has a continuous one.

Theorem (Lecomte-Zeleny '14, '16)

For each o« < w1, there is...

> A Dy(M}) graph of maximum degree 1 with no Baire class
countable coloring (Any such graph has a Borel 2-coloring).

» A closed graph of maximum degree 1 with no Baire class a
finite coloring.
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Part II: Warmup: CONTINUQUS(IF,) C BAIRE; ()



A non local problem

>

>

Since all the F,,'s are subgroups of eachother, it suffices to
consider Fy = (a, b).

Consider the following (non local) labeling problem with label
set {Y,N,x} x {R, B, G}: First 3-color the b-orbits with
{R,B, G}.

For the first coordinate, mark all points colored R or B with
the x. For G points, label them Y if there is some *-point in
their a-orbit, and N otherwise.




A non local problem

» If c: S(F2) — {R, B, G} is a continuous 3-coloring of the
b-orbits, then our resulting {Y, N, *} labeling is Baire class 1:
Y and N are 9 and MY respectively.

For any Borel solution S(F2) — {Y,N,x} x {R,B, G}, to our
problem, the set of points labeled N is I'I(l)—hard.




]FQ VS Z2

» This seems natural, but it is not obvious that the 3-colorings
of different b-orbits cannot be correlated in some way.

Theorem (Gao-Jackson-Krohne-Seward)

3-coloring € BOREL(Z?).

» Here “N"

0.



N is M%-hard

> We will show int(N) = () while N # 0.

» The former is easy. Suppose U C N is a basic open, say with
window W C F».




N is M%-hard

To show N # (), we use:

Theorem (Marks '16)

Let T', A be countable groups, and A C S(I' x A) Borel. At least
one:

» There is a continuous I-equivariant map f : S(I') — A.

» There is a continuous A-equivariant map f : S(A) — A°.

> We apply this with A the set of G points. In the first case,
image(f) C N.

» In the second case, pulling back our coloring along f yields a
Borel 2-coloring of S(Z) (with {R, B}).



The Marks Game

» Consider a game where the players define
a point x € (2¢)™*4. | labels “A-words”
and Il T. | wins iff x € A.

» Suppose | has a winning strategy. Playing
T copies of that strategy against eachother
gives us an element of A depending in a
01 -equivariant and continuous way on the
labels on the red points.

ARAAA




A local problem

» 3-coloring is an LCL. The following additional rules are also
local:

» A point has is labeled with « if and only if it is not

> If x is labeled with N, so are a- x and a~! - x.

» But we can't use a local rule to directly force orbits with no x
to be labeled N.
> Instead, we use the label set {0,1, N,*} x {R,B, G}, and

require 0 and 1 to give a partial 2-coloring. This completes
our definition of an LCL 1.




A local problem

» To show I € BAIRE;(F>), we start with a our Baire-1
{Y,N,*} x {R, B, G}-labeling of S(FF2), and note that we
can 2-color the Y-points in a relatively continuous way.

» We now want to show that in any Borel lN-labeling of S(F2),
the set of points labeled N is M9-hard.

» int(N) = ) as before, so let us show N # ().

> Marks’ lemma gave us a continuous a-equivariant map
f:8(Z) — G. If N =10, the image of this map is Borel
2-colored by {0, 1}.
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Part Ill: The inductive step



The inductive step

Theorem

Let n € w. T be a countable group and I = (A,...) € BAIRE,(I),
and N, C N such that for any Borel N-labeling ¢ : S(T') — A,

c Y(A) is N%-hard.

Then there is an T = (N',...) € BAIRE,41(Z +T), and N, C N
such that for any Borel I-labeling ¢ : S(Z xT) — N, c=Y(N,) is
I'I?7+1—hard.

Proposition

Let ¢ : S(Z«T) — N be Borel and a N-labeling of each I-orbit.
Then
N:={x|Z-xCc}A\A)}

is M9, -hard.



The Marks-Wadge game

» We modify the Marks game so that
Player Il is also playing a z € 2 off
to the side. Recall the players are

“ constructing some x € S(Z * ).
Z2 .

2 > Fix a X%-complete set U C 2¢. |I
S wins if c(x) e A, &z € U.

0

» Suppose Il has a winning strategy. We get a continuous
M-equivariant map (f,g) : S(I) — S(Z *T) x (2¥), the
second coordinate recording the z's played by the copies of
player Il.

» cof is a Borel M-labeling of S(I'). g reduces (co f)71(A,) to
U, a contradiction.



The Marks-Wadge game

XDKXMX@X@

» So | has a winning strategy. We get a Z-equivariant
continuous map f : S(Z) x (2¥)% — S(Z T, the second
coordinate giving us z's to feed to player I.

> c(f(x,(210)icz)) € A = 20 € U.
» So f reduces U2 C (2)2 to N := {x | Z-x C F~H(A\ AJ)}.




Another local problem

» We turn this into an LCL I’ on Z * [ with label set
{0,1, N,*} x A as before:
» First solve 1 on each -orbit.
» Mark a point with « iff it has a label from A,.
» |If a point is marked with N, so are both its Z-neighbors.
» The remaining points must be 2-colored by {0,1}
> As before, starting with a Baire class n solution to 1 gives a
Baire class n + 1 solution to I.

Let ¢ : S(Z«T) —{0,1, N,*} x A\ be a Borel '-labeling. Then
cH{N} x A) is N, ,-hard.




2-coloring and complexity

> We still have a continuous equivariant map
f:8(Z) — S(Z +T) so that f(z) is marked with a x if and
only if z2©) & U.

» The issue is that some orbits in U% could be entirely 2-colored.

0000660
0000000
1) { @—W——W)—W—m—m)

Let U C 2 be X%-complete. Let ¢ : U N S(Z) — 2 be a Borel
partial 2-coloring with Z-invariant domain. Then
(S(Z) N U%) \ dom(c) is N%, -hard (as a subset of S(Z)).




The case n = 1:

Lemma

Let U C 2 be X9-complete. Let c : U* N S(Z) — 2 be a Borel
partial 2-coloring with Z-invariant domain. Then
(S(Z) N U?%) \ dom(c) is M3-hard (as a subset of S(Z)).

» We may assume U is open dense. Then S(Z) N UZ is
comeager.

» dom(c) is meager as we have seen.
» On the other hand, S(Z) \ U” is dense.

Lemma
If S C 2“ s meager and dense, it is Zg—hard.



Generalizing the lemma

If S C 2“ js meager and dense, it is Zg—hard.

Theorem (Day-Marks)

Let1 < né€w, (X,7) a Polish space, and S C X. Suppose there is
a suitable sequence of topologies, 7 =7 C 71 C --- C 7, such
that

» S is T,-meager.
» For all basic open W € 1,,, SN W is 7,1 | W-comeager.
Then S is £%_ ,-hard.



Generalizing Hurewicz's theorem

Localized versions of these criteria provide exact characterizations.

Theorem (Hurewicz)

Let (X,T) be a Polish space and S C X. S is £3-hard if and only
if there is some closed set F C X so that, inT [ F, SNF is
meager and dense.

Theorem (Day-Marks)

Let 1< n€w, (X,7) a Polish space, and S C X. S is £2, ,-hard
if and only if there is some closed set F C X and a suitable
sequence of topologies, 7 [ F =179 C 7 C --- C 7, such that

» SN F isT,-meager.
» For all basic open W € 1,, SN W is 7,1 | W-comeager.



Applying the Day-Marks criterion

Lemma

Let U C 2 be X%-complete. Let c : U* N S(Z) — 2 be a Borel
partial 2-coloring with Z-invariant domain. Then
(S(Z) N U%) \ dom(c) is N%, -hard (as a subset of S(Z)).

» For an appropriate X%-complete U, it is not hard to find a
suitable sequence 79 C - - C 7,1 with 79 the usual topology,
U open dense in 7,_1, and U F,-meager in 7,_5.

> Let TOZ C -+ C 72 | be the product topologies. This turns
out to still be suitable.

» dom(c) will be 72 ;-meager as before.

» On the other hand, since basic open sets in 72 ; only restrict

finitely many coordinates, U% will still be relatively

T?_z—meager is any of them.



Further questions

Question

What is the least o for which BAIRE,(F2) = BOREL(IF2).

Question

(Assuming PD) Is there an LCL on Fy with a A}-measurable
solution on S(F2) but no Borel solution? More generally, Al
but not A}?

Question

What does the BAIRE(Z") hierarchy look like for n > 17

» Gao-Jackson-Krohne-Seward showed 4-coloring
€ CONTINUQUS(Z") and 3-coloring in
BOREL(Z") \ CONTINUQUS(Z").

» Is 3-coloring € BAIRE{(Z")?
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