Locally checkable labeling problems in the Borel hierarchy

Felix Weilacher UC Berkeley

February 2025

Outline

Part I: Introduction

Part II: Warmup: $\text{CONTINUOUS}(\mathbb{F}_2) \subsetneq \text{BAIRE}_1(\mathbb{F}_2)$

Part III: The inductive step

LCLs on groups

Definition

Let Γ be a countable group. An **LCL** on Γ is a triple $\Pi=(\Lambda, W, \mathcal{A}),$ where

- Λ is a finite set (labels)
- $W \subset \Gamma$ is finite (window)
- $\mathcal{A} \subseteq \Lambda^{W}$ (allowed configurations)
- If Γ ∩ X is a free action of Γ on a set X, a Π-labeling of X (also called a solution to Π) is a function c : X → Λ such that for all x ∈ X, the function W → Λ given by γ ↦ c(γ ⋅ x) is in A.

LCLs on groups

For example, if Γ = ⟨S⟩, for k ∈ N the problem of (proper) k-coloring the Cayley graph Cay(Γ, S) is an LCL (k, S ∪ {1}, A), where

$$\mathcal{A} = \{ c \mid \forall \gamma \in S, c(1) \neq c(\gamma) \}$$

That is k-colorings are exactly solutions to this LCL on Γ (with respect to left multiplication).

Some other familiar perspectives:

- Wang tiles (especially for $\Gamma = \mathbb{Z}^2$)
- An SFT Y ⊆ Λ^Γ is exactly the set of solutions to some LCL on Γ with labels Λ. Solutions to the LCL on X correspond to Γ-equivariant maps X → Y.

Descriptive combinatorics

Given an LCL Π on Γ , we are interested in constructive versions of the question: "does Γ admit a Π labeling?" Versions of this give rise to **complexity classes**.

- Let Γ ∩ X be a free Borel action on a standard Borel space.
 Does X admit a Borel Π-labeling?
 If the answer is always yes, we say Π ∈ BOREL(Γ)
- Let Γ ∩ (X, μ) be a free Borel action on a standard probability space. Does X admit a μ-measurable Π-labeling? If the answer is always yes, we say Π ∈ MEASURE(Γ)
- ► Let $\Gamma \curvearrowright X$ be a free continuous action on a **zero dimensional** Polish space. Does X admit a continuous Π -labeling If the answer is always yes, we say $\Pi \in \text{CONTINUOUS}(\Gamma)$

Other classes will be defined similarly as we go.

The Bernoulli Shift

- For any Γ, let S(Γ) denote the free part of the Bernoulli shift Γ ∼ (2^ω)^Γ.
- Any free Borel action Γ → X on a standard Borel space admits a Borel equivariant injection to S(Γ). Likewise in the topological setting if X is zero dimensional.

Thus.

```
BOREL(\Gamma) = \{\Pi \mid \mathcal{S}(\Gamma) \text{ admits a Borel } \Pi\text{-labeling}\},\
```

and likewise for CONTINUOUS(Γ).

Example: 2-coloring

Proposition

 $\mathcal{S}(\mathbb{Z})$ does not admit a Borel 2-coloring (with respect to the generating set $\{\pm 1\}$). Thus 2-coloring \notin BOREL(\mathbb{Z}).

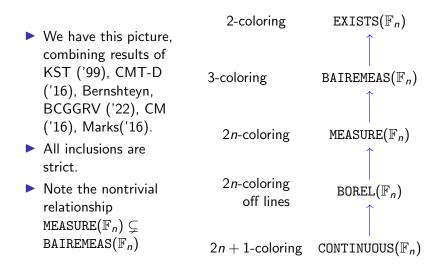
- We will show that there is no Baire measurable 2-coloring. Suppose there is and let A ⊆ S(Z) be the set of white points.
- WLOG, A is nonmeager. Let U be a basic open set on which A is comeager. U specifies a finite initial segment of labels of nodes in a finite window around the identity.
- If k is large enough, the windows of U and k · U are disjoint. If k is odd, this leads to a contradiction.

Proposition (Kechris-Solecki-Todorcevic '99)

3-coloring \in CONTINUOUS(\mathbb{Z}).

Complexity classes for $\ensuremath{\mathbb{Z}}$

 Π ∈ BAIREMEAS(Γ) if any free Borel action of Γ on a Polish space admits a Baire measurable Π-coloring. Complexity classes for \mathbb{F}_n $(n \ge 2)$



The Baire Hierarchy

Our goal is to understand the interval between $CONTINUOUS(\mathbb{F}_n)$ and $BOREL(\mathbb{F}_n)$.

- Recall that a function X → Λ with X Polish is Baire class α if it is Σ⁰_{1+α}-measurable.
- Equivalently (since our Λ is finite) f⁻¹(λ) ∈ Δ⁰_{1+α} for each λ ∈ Λ.
- For Π an LCL on Γ, say Π ∈ BAIRE_α(Γ) if S(Γ) admits a Baire class α Π-labeling. (Equivalently, any zero dimensional Polish Γ-space admits one)
- CONTINUOUS(Γ) = BAIRE₀(Γ).

• BOREL(
$$\Gamma$$
) = $\bigcup_{\alpha < \omega_1} \text{BAIRE}_{\alpha}(\Gamma)$

Level by level Borel combinatorics

Theorem (Lecomte-Zelený '14, '16)

For each $\alpha < \omega_1$, there is...

- A D₂(Π₀¹) graph of maximum degree 1 with no Baire class α countable coloring (Any such graph has a Borel 2-coloring).
- A closed graph of maximum degree 1 with no Baire class α finite coloring.

Question (Lecomte-Zelený '14)

Is there a version of the \mathbb{G}_0 -dichotomy for each level of the Borel hierarchy? That is, a Borel graph G_α such that for each analytic graph H, exactly one:

- H has a Baire class α countable coloring.
- There is a continuous homomorphism $G_{\alpha} \rightarrow H$.

Level by level Borel combinatorics

Theorem (Marks-Unger '16)

A disc and square of the same area in \mathbb{R}^2 are equidecomposable by translations using Borel pieces

Their pieces are Boolean combinations of Σ⁰₄ sets, in particular they are Δ⁰₅.

Theorem (Máthé-Noel-Pikhurko '23)

An equidecomposition is possible with pieces that are Boolean combinations of Σ_2^0 sets.

Question

What about $\mathbf{\Delta}_2^0$ pieces?

Main Result

Theorem

For each $1 < m \in \mathbb{N}$, and $1 \le n \in \omega$, there is an LCL $\Pi = (\Lambda, ...)$ on \mathbb{F}_m and $\Lambda_* \subset \Lambda$ such that

- ▶ $\Pi \in \text{BAIRE}_n(\mathbb{F}_m).$
- ► For any Borel Π -labeling $c : S(\mathbb{F}_m) \to \Lambda$, $c^{-1}(\Lambda_*)$ is Π_n^0 -hard. Thus $\Pi \notin \text{BAIRE}_{n-1}(\mathbb{F}_m)$.

Note there are only countably many LCLs on a given group!

Question

What is the least α for which $BAIRE_{\alpha}(\mathbb{F}_m) = BOREL(\mathbb{F}_m)$.

Main Result

```
\text{EXISTS}(\mathbb{F}_n)
               BAIREMEAS(\mathbb{F}_n)
                 MEASURE(\mathbb{F}_n)
                   BOREL(\mathbb{F}_n)
                                ???
                  BAIRE<sub>\omega</sub>(\mathbb{F}_n)
                   BAIRE_2(\mathbb{F}_n)
                   BAIRE_1(\mathbb{F}_n)
\text{CONTINUOUS}(\mathbb{F}_n) = \text{BAIRE}_0(\mathbb{F}_n)
```

A coloring corollary

Corollary

For any $1 \le n \in \omega$, there is a connected, locally finite, quasi-transitive graph G such that the Bernoulli shift of G has a Baire class n 3-coloring, but not n - 1.

It is easy to see that if such a graph has a Borel 2-coloring, it has a continuous one.

Theorem (Lecomte-Zelený '14, '16)

For each $\alpha < \omega_1$, there is...

A D₂(Π¹₀) graph of maximum degree 1 with no Baire class α countable coloring (Any such graph has a Borel 2-coloring).

 A closed graph of maximum degree 1 with no Baire class α finite coloring.

Outline

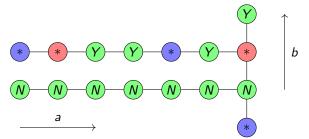
Part I: Introduction

Part II: Warmup: $\text{CONTINUOUS}(\mathbb{F}_2) \subsetneq \text{BAIRE}_1(\mathbb{F}_2)$

Part III: The inductive step

A non local problem

- Since all the 𝔽_m's are subgroups of eachother, it suffices to consider 𝔽₂ = ⟨a, b⟩.
- Consider the following (non local) labeling problem with label set {Y, N, *} × {R, B, G}: First 3-color the *b*-orbits with {R, B, G}.
- For the first coordinate, mark all points colored R or B with the *. For G points, label them Y if there is some *-point in their a-orbit, and N otherwise.

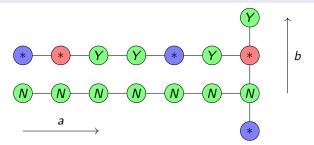


A non local problem

 If c : S(𝔽₂) → {R, B, G} is a continuous 3-coloring of the b-orbits, then our resulting {Y, N, *} labeling is Baire class 1: Y and N are Σ⁰₁ and Π⁰₁ respectively.

Proposition

For any Borel solution $S(\mathbb{F}_2) \to \{Y, N, *\} \times \{R, B, G\}$, to our problem, the set of points labeled N is Π_1^0 -hard.

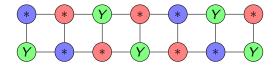


\mathbb{F}_2 vs \mathbb{Z}^2

This seems natural, but it is not obvious that the 3-colorings of different b-orbits cannot be correlated in some way.

Theorem (Gao-Jackson-Krohne-Seward)

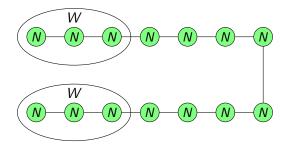
3-coloring \in BOREL(\mathbb{Z}^2).



▶ Here "
$$N$$
" = \emptyset .

N is Π_1^0 -hard

- We will show $int(N) = \emptyset$ while $N \neq \emptyset$.
- ▶ The former is easy. Suppose $U \subseteq N$ is a basic open, say with window $W \subseteq \mathbb{F}_2$.



N is Π_1^0 -hard

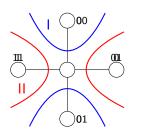
To show $N \neq \emptyset$, we use:

Theorem (Marks '16)

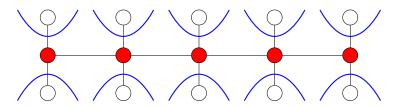
Let Γ, Δ be countable groups, and $A \subseteq \mathcal{S}(\Gamma * \Delta)$ Borel. At least one:

- There is a continuous Γ -equivariant map $f : S(\Gamma) \to A$.
- There is a continuous Δ -equivariant map $f : S(\Delta) \to A^c$.
- We apply this with A the set of G points. In the first case, image(f) ⊆ N.
- In the second case, pulling back our coloring along f yields a Borel 2-coloring of S(ℤ) (with {R, B}).

The Marks Game

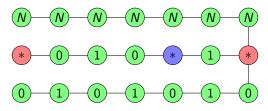


- Consider a game where the players define a point x ∈ (2^ω)^{Γ*Δ}. I labels "Δ-words" and II Γ. I wins iff x ∈ A.
- Suppose I has a winning strategy. Playing copies of that strategy against eachother gives us an element of A depending in a Γ-equivariant and continuous way on the labels on the red points.

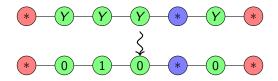


A local problem

- 3-coloring is an LCL. The following additional rules are also local:
 - ► A point has is labeled with * if and only if it is not G.
 - If x is labeled with N, so are $a \cdot x$ and $a^{-1} \cdot x$.
- But we can't use a local rule to directly force orbits with no * to be labeled N.
- Instead, we use the label set {0, 1, N, *} × {R, B, G}, and require 0 and 1 to give a partial 2-coloring. This completes our definition of an LCL Π.



A local problem



- To show Π ∈ BAIRE₁(𝔽₂), we start with a our Baire-1 {Y, N, *} × {R, B, G}-labeling of S(𝔽₂), and note that we can 2-color the Y-points in a relatively continuous way.
- We now want to show that in any Borel Π-labeling of S(F₂), the set of points labeled N is Π⁰₁-hard.
- $int(N) = \emptyset$ as before, so let us show $N \neq \emptyset$.
- Marks' lemma gave us a continuous *a*-equivariant map f : S(ℤ) → G. If N = Ø, the image of this map is Borel 2-colored by {0,1}.

Outline

Part I: Introduction

Part II: Warmup: $CONTINUOUS(\mathbb{F}_2) \subsetneq BAIRE_1(\mathbb{F}_2)$

Part III: The inductive step

The inductive step

Theorem

Let $n \in \omega$. Γ be a countable group and $\Pi = (\Lambda, ...) \in BAIRE_n(\Gamma)$, and $\Lambda_* \subset \Lambda$ such that for any Borel Π -labeling $c : S(\Gamma) \to \Lambda$, $c^{-1}(\Lambda_*)$ is Π_n^0 -hard. Then there is an $\Pi' = (\Lambda', ...) \in BAIRE_{n+1}(\mathbb{Z} * \Gamma)$, and $\Lambda'_* \subset \Lambda'$ such that for any Borel Π' -labeling $c : S(\mathbb{Z} * \Gamma) \to \Lambda'$, $c^{-1}(\Lambda'_*)$ is Π_{n+1}^0 -hard.

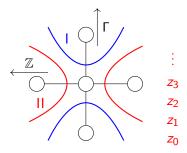
Proposition

Let $c:\mathcal{S}(\mathbb{Z}*\Gamma)\to\Lambda$ be Borel and a $\Pi\text{-labeling}$ of each $\Gamma\text{-orbit}.$ Then

$${\sf N}:=\{x\mid \mathbb{Z}\cdot x\subseteq c^{-1}({\sf \Lambda}\setminus{\sf \Lambda}_*)\}$$

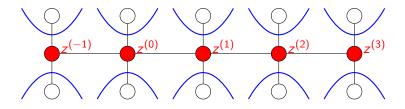
is Π^0_{n+1} -hard.

The Marks-Wadge game



- We modify the Marks game so that Player II is also playing a z ∈ 2^ω off to the side. Recall the players are constructing some x ∈ S(Z * Γ).
 Fix a Σ⁰_n-complete set U ⊆ 2^ω. II wins if c(x) ∈ Λ_{*} ⇔ z ∈ U.
- Suppose II has a winning strategy. We get a continuous Γ-equivariant map (f,g) : S(Γ) → S(ℤ * Γ) × (2^ω)^Γ, the second coordinate recording the z's played by the copies of player II.
- c ∘ f is a Borel Π-labeling of S(Γ). g reduces (c ∘ f)⁻¹(Λ_{*}) to U, a contradiction.

The Marks-Wadge game



So I has a winning strategy. We get a Z-equivariant continuous map f : S(Z) × (2^ω)^Z → S(Z * Γ), the second coordinate giving us z's to feed to player I.

•
$$c(f(x,(z^{(i)})_{i\in\mathbb{Z}})) \notin \Lambda_* \Leftrightarrow z^{(0)} \in U.$$

• So f reduces $U^{\mathbb{Z}} \subseteq (2^{\omega})^{\mathbb{Z}}$ to $N := \{x \mid \mathbb{Z} \cdot x \subseteq f^{-1}(\Lambda \setminus \Lambda_*)\}.$

Another local problem

We turn this into an LCL Π' on ℤ * Γ with label set {0,1, N, *} × Λ as before:

- First solve Π on each Γ-orbit.
- Mark a point with * iff it has a label from Λ_{*}.
- ▶ If a point is marked with *N*, so are both its ℤ-neighbors.
- The remaining points must be 2-colored by {0,1}

As before, starting with a Baire class n solution to Π gives a Baire class n + 1 solution to Π'.

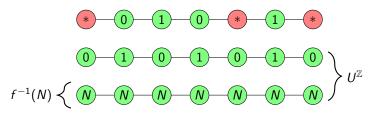
Proposition

Let $c : S(\mathbb{Z} * \Gamma) \to \{0, 1, N, *\} \times \Lambda$ be a Borel Π' -labeling. Then $c^{-1}(\{N\} \times \Lambda)$ is Π^0_{n+1} -hard.

2-coloring and complexity

We still have a continuous equivariant map f : S(Z) → S(Z * Γ) so that f(z) is marked with a * if and only if z⁽⁰⁾ ∉ U.

• The issue is that some orbits in $U^{\mathbb{Z}}$ could be entirely 2-colored.



Lemma

Let $U \subseteq 2^{\omega}$ be Σ_n^0 -complete. Let $c : U^{\mathbb{Z}} \cap S(\mathbb{Z}) \rightarrow 2$ be a Borel partial 2-coloring with \mathbb{Z} -invariant domain. Then $(S(\mathbb{Z}) \cap U^{\mathbb{Z}}) \setminus \operatorname{dom}(c)$ is Π_{n+1}^0 -hard (as a subset of $S(\mathbb{Z})$).

The case n = 1:

Lemma

Let $U \subseteq 2^{\omega}$ be Σ_1^0 -complete. Let $c : U^{\mathbb{Z}} \cap S(\mathbb{Z}) \rightarrow 2$ be a Borel partial 2-coloring with \mathbb{Z} -invariant domain. Then $(S(\mathbb{Z}) \cap U^{\mathbb{Z}}) \setminus \operatorname{dom}(c)$ is Π_2^0 -hard (as a subset of $S(\mathbb{Z})$).

- We may assume U is open dense. Then S(Z) ∩ U^Z is comeager.
- dom(c) is meager as we have seen.
- On the other hand, $\mathcal{S}(\mathbb{Z}) \setminus U^{\mathbb{Z}}$ is dense.

Lemma

If $S \subseteq 2^{\omega}$ is meager and dense, it is Σ_2^0 -hard.

Generalizing the lemma

Lemma

If $S \subseteq 2^{\omega}$ is meager and dense, it is Σ_2^0 -hard.

Theorem (Day-Marks)

Let $1 \le n \in \omega$, (X, τ) a Polish space, and $S \subseteq X$. Suppose there is a suitable sequence of topologies, $\tau = \tau_0 \subseteq \tau_1 \subseteq \cdots \subseteq \tau_n$ such that

For all basic open $W \in \tau_n$, $S \cap W$ is $\tau_{n-1} \upharpoonright W$ -comeager. Then S is Σ^0_{n+2} -hard.

Generalizing Hurewicz's theorem

Localized versions of these criteria provide exact characterizations.

Theorem (Hurewicz)

Let (X, τ) be a Polish space and $S \subseteq X$. S is Σ_2^0 -hard if and only if there is some closed set $F \subseteq X$ so that, in $\tau \upharpoonright F$, $S \cap F$ is meager and dense.

Theorem (Day-Marks)

Let $1 \le n \in \omega$, (X, τ) a Polish space, and $S \subseteq X$. S is Σ_{n+2}^{0} -hard if and only if there is some closed set $F \subseteq X$ and a suitable sequence of topologies, $\tau \upharpoonright F = \tau_0 \subseteq \tau_1 \subseteq \cdots \subseteq \tau_n$ such that

 \blacktriangleright $S \cap F$ is τ_n -meager.

▶ For all basic open $W \in \tau_n$, $S \cap W$ is $\tau_{n-1} \upharpoonright W$ -comeager.

Applying the Day-Marks criterion

Lemma

Let $U \subseteq 2^{\omega}$ be Σ_n^0 -complete. Let $c : U^{\mathbb{Z}} \cap S(\mathbb{Z}) \rightarrow 2$ be a Borel partial 2-coloring with \mathbb{Z} -invariant domain. Then $(S(\mathbb{Z}) \cap U^{\mathbb{Z}}) \setminus \operatorname{dom}(c)$ is Π_{n+1}^0 -hard (as a subset of $S(\mathbb{Z})$).

- For an appropriate Σ⁰_n-complete U, it is not hard to find a suitable sequence τ₀ ⊆ ··· ⊆ τ_{n-1} with τ₀ the usual topology, U open dense in τ_{n-1}, and U F_σ-meager in τ_{n-2}.
- ▶ Let $\tau_0^{\mathbb{Z}} \subseteq \cdots \subseteq \tau_{n-1}^{\mathbb{Z}}$ be the product topologies. This turns out to still be suitable.
- dom(c) will be $\tau_{n-1}^{\mathbb{Z}}$ -meager as before.
- On the other hand, since basic open sets in τ^ℤ_{n-1} only restrict finitely many coordinates, U^ℤ will still be relatively τ^ℤ_{n-2}-meager is any of them.

Further questions

Question

What is the least α for which $BAIRE_{\alpha}(\mathbb{F}_2) = BOREL(\mathbb{F}_2)$.

Question

(Assuming PD) Is there an LCL on \mathbb{F}_2 with a Δ_2^1 -measurable solution on $\mathcal{S}(\mathbb{F}_2)$ but no Borel solution? More generally, Δ_{n+1}^1 but not Δ_n^1 ?

Question

What does the $BAIRE_{\alpha}(\mathbb{Z}^n)$ hierarchy look like for n > 1?

- ► Gao-Jackson-Krohne-Seward showed 4-coloring \in CONTINUOUS(\mathbb{Z}^n) and 3-coloring in BOREL(\mathbb{Z}^n) \ CONTINUOUS(\mathbb{Z}^n).
- ▶ Is 3-coloring \in BAIRE₁(\mathbb{Z}^n)?