Canonicity of the Shift

Zoltán Vidnyánszky

Eötvös University, Budapest

Caltech Logic Seminar, 26/02/2025

joint work with B. Bursics and A. Kocsis

Assume that V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure. Can talk about:

Borel graphs: G is a Borel graph is G is a symmetric Borel a subset of $V(G) \times V(G)$.

Borel chromatic numbers: minimal *n* for which *G* has a Borel *n*-coloring. Notation: $\chi_B(G)$.

Borel homomorphisms: G admits a Borel homomorphism to H, if there is a Borel map $\varphi : V(G) \to V(H)$ such that $\forall x, x' \in V(G)((x, x') \in G \implies (\varphi(x), \varphi(x')) \in H)$. Notation: $G \leq_B H$.

Let $[\mathbb{N}]^{\mathbb{N}}$ denote the set of infinite subsets of \mathbb{N} . Definition Define the map S by

 $\mathcal{S}(x) = x \setminus \{\min x\},\$

and let $xG_S y \iff x = S(y)$ or S(x) = y.

Let $[\mathbb{N}]^{\mathbb{N}}$ denote the set of infinite subsets of \mathbb{N} . Definition Define the map S by

 $\mathcal{S}(x) = x \setminus \{\min x\},\$ and let $xG_{\mathcal{S}}y \iff x = \mathcal{S}(y)$ or $\mathcal{S}(x) = y.$ $\chi_{\mathcal{B}}(G_{\mathcal{S}}) \leq \aleph_{0}.$

Let $[\mathbb{N}]^{\mathbb{N}}$ denote the set of infinite subsets of \mathbb{N} . Definition Define the map S by

 $S(x) = x \setminus \{ \min x \},\$

and let $xG_{\mathcal{S}}y \iff x = \mathcal{S}(y)$ or $\mathcal{S}(x) = y$.

 $\chi_B(G_S) \leq \aleph_0.$

More generally, if $f : X \to X$ is a Borel function, define $xG_f y \iff x = f(y)$ or f(x) = y.

Let $[\mathbb{N}]^{\mathbb{N}}$ denote the set of infinite subsets of \mathbb{N} . Definition Define the map S by

 $S(x) = x \setminus \{ \min x \},\$

and let $xG_Sy \iff x = S(y)$ or S(x) = y.

 $\chi_B(G_S) \leq \aleph_0.$ More generally, if $f : X \to X$ is a Borel function, define $xG_f y \iff x = f(y)$ or f(x) = y. $\chi_B(G_f) \leq \aleph_0.$

Theorem For any acyclic G_f we have $G_f \leq_B G_S$.

Lemma

There is an f invariant Borel set B so that $G_f \upharpoonright B$ admits a Borel 3-coloring and $G_f \upharpoonright X \setminus B$ admits a Borel homomorphism to G_S .

Lemma

There is an f invariant Borel set B so that $G_f \upharpoonright B$ admits a Borel 3-coloring and $G_f \upharpoonright X \setminus B$ admits a Borel homomorphism to G_S .

Fix a Borel \aleph_0 -coloring $c : X \to \mathbb{N}$ and define $d : X \to 2$ by d(x) = 0 iff c(f(x)) < c(x). Let B be the collection of $x \in X$ in front of which both d(x) = 0 and d(x) = 1 is cofinal, that is,

$$B = \{x : \exists^{\infty} i \exists^{\infty} j \ d(f^i(x)) = 0 \land d(f^j(x)) = 1\}.$$

3-coloring B.

Let $C = \{x \in B : d(x) = 1 \land d(f(x)) = 0\}.$

C is independent and cofinal in front of every $x \in X$.

Lemma

1 *G*^{*f*} ↾ *B* admits a Borel homomorphism to the acyclic part of *G*_{S₃}, where S₃ : 3^ℕ → 3^ℕ is defined by S₃(x)(n) = x(n + 1).

Lemma

- **I** $G_f \upharpoonright B$ admits a Borel homomorphism to the acyclic part of G_{S_3} , where $S_3 : 3^{\mathbb{N}} \to 3^{\mathbb{N}}$ is defined by $S_3(x)(n) = x(n+1)$.
- **2** The acyclic part of G_{S_3} admits a Borel homomorphism to G_S .

Lemma

- **I** $G_f \upharpoonright B$ admits a Borel homomorphism to the acyclic part of G_{S_3} , where $S_3 : 3^{\mathbb{N}} \to 3^{\mathbb{N}}$ is defined by $S_3(x)(n) = x(n+1)$.
- **2** The acyclic part of G_{S_3} admits a Borel homomorphism to G_S .

For (2), use toast.

Theorem (Kechris-Solecki-Todořcević, 1999)

There exists a Borel graph \mathbb{G}_0 such that for any Borel graph G exactly one of the following holds.

1
$$\chi_B(G) \leq \aleph_0$$
,
2 $\mathbb{G}_0 \leq_B G$.

Chromatic number of the shift

Proposition (KST) $\chi_B(G_S) = \aleph_0.$

Chromatic number of the shift

Proposition (KST) $\chi_B(G_S) = \aleph_0.$

Theorem (Galvin-Prikry 1973)

For any $k \in \mathbb{N}$ and any Borel coloring $c : [\mathbb{N}]^{\mathbb{N}} \to k$ there exits an $A \in [\mathbb{N}]^{\mathbb{N}}$ such that c is constant on $[A]^{\mathbb{N}}$.

Chromatic number of the shift

Proposition (KST) $\chi_B(G_S) = \aleph_0.$

Theorem (Galvin-Prikry 1973) For any $k \in \mathbb{N}$ and any Borel coloring $c : [\mathbb{N}]^{\mathbb{N}} \to k$ there exits an $A \in [\mathbb{N}]^{\mathbb{N}}$ such that c is constant on $[A]^{\mathbb{N}}$.

Proposition (KST, 1,2,3, ∞)

Let $C \subseteq [\mathbb{N}]^{\mathbb{N}}$ be Borel and S-invariant. TFAE:

- 1 $\chi_B(G_S \upharpoonright C) < \aleph_0$,
- 2 $\chi_B(G_S \upharpoonright C) \leq 3$,
- **3** there is a $C' \subseteq C$ Borel such that both $C \setminus C'$ and C' are cofinal in front of every $x \in C$.

Conjecture

Let C be Borel and S-invariant and assume that $\chi_B(G_S \upharpoonright C) = \aleph_0$ then

 $\blacksquare [A]^{\mathbb{N}} \subset C \text{ for some } A?$

Conjecture

Let C be Borel and S-invariant and assume that $\chi_B(G_S \upharpoonright C) = \aleph_0$ then

- 1 $[A]^{\mathbb{N}} \subset C$ for some A?
- **2** $G_{\mathcal{S}} \leq_B G_{\mathcal{S}} \upharpoonright C$?

Conjecture

Let C be Borel and S-invariant and assume that $\chi_B(G_S \upharpoonright C) = \aleph_0$ then

- 1 $[A]^{\mathbb{N}} \subset C$ for some A?
- **2** $G_{\mathcal{S}} \leq_B G_{\mathcal{S}} \upharpoonright C$?
- 1 (Di Prisco-Todorčević 2006) No.

Conjecture

Let C be Borel and S-invariant and assume that $\chi_B(G_S \upharpoonright C) = \aleph_0$ then

- 1 $[A]^{\mathbb{N}} \subset C$ for some A?
- **2** $G_{\mathcal{S}} \leq_B G_{\mathcal{S}} \upharpoonright C$?
- 1 (Di Prisco-Todorčević 2006) No.
- 2 (Pequignot 2017) No (BQO theory and Marcone 1994).

Conjecture

Let C be Borel and S-invariant and assume that $\chi_B(G_S \upharpoonright C) = \aleph_0$ then

- 1 $[A]^{\mathbb{N}} \subset C$ for some A?
- **2** $G_{\mathcal{S}} \leq_B G_{\mathcal{S}} \upharpoonright C$?
- 1 (Di Prisco-Todorčević 2006) No.
- Pequignot 2017) No (BQO theory and Marcone 1994).
 (Todorčević V 2021) No, in a strong sense.

Complexity

Theorem (Todorčević - V 2021)

The collection of Borel $C \subset [\mathbb{N}]^{\mathbb{N}}$ for which $\chi_B(G_S \upharpoonright C) \leq 3$ is Σ_2^1 -complete.

Understanding complexity

Theorem (Σ_2^1 -Determinacy)

A Borel coloring problem is Σ_2^1 -complete iff there exists a Borel graph G together with a smooth Borel superequivalence relation F of E_G , so that G does not admit a Borel coloring but it does restricted to every F-class.

Understanding complexity

Theorem (Σ_2^1 -Determinacy)

A Borel coloring problem is Σ_2^1 -complete iff there exists a Borel graph G together with a smooth Borel superequivalence relation F of E_G , so that G does not admit a Borel coloring but it does restricted to every F-class.

Definition

Let G be a Borel graph. Let $\chi_{wB}(G)$ the minimal n such that there exists a smooth Borel superequivalence relation F of E_G , so that G admits a Borel n-coloring restricted to every F-class.

Theorem/Conjecture. Let $C \subseteq [\mathbb{N}]^{\mathbb{N}}$ be Borel. Then exactly one of the following holds.

- 1 $\chi_{wB}(G_{\mathcal{S}} \upharpoonright C) \leq 3$,
- $2 \quad G_{\mathcal{S}} \leq_B G_{\mathcal{S}} \upharpoonright C.$

• C can be closed.

- C can be closed.
- Use the description of Borel homomorphisms from G_S .

- C can be closed.
- Use the description of Borel homomorphisms from G_S .
- Mimic their properties.

Let
$$\alpha \in \omega_1$$
. For a family \mathcal{F} of finite subset of n define $\mathcal{F}_n = \{t : n < t \land \{n\} \cup t \in \mathcal{F}\}$ and $A \subseteq \mathbb{N}$ let $A/n = \{m \in A : m > n\}.$

A family \mathcal{F} of finite subsets of \mathbb{N} is α -uniform on $A \subseteq \mathbb{N}$ if

•
$$\alpha = 0$$
 and $\mathcal{F} = \emptyset$,

Let $\alpha \in \omega_1$. For a family \mathcal{F} of finite subset of n define $\mathcal{F}_n = \{t : n < t \land \{n\} \cup t \in \mathcal{F}\}$ and $A \subseteq \mathbb{N}$ let $A/n = \{m \in A : m > n\}.$

A family \mathcal{F} of finite subsets of \mathbb{N} is α -uniform on $A \subseteq \mathbb{N}$ if

•
$$\alpha = 0$$
 and $\mathcal{F} = \emptyset$,

• $\alpha = \beta + 1$ and for every $n \in \mathbb{N}$ the collection \mathcal{F}_n is β uniform on A/n,

Let $\alpha \in \omega_1$. For a family \mathcal{F} of finite subset of n define $\mathcal{F}_n = \{t : n < t \land \{n\} \cup t \in \mathcal{F}\}$ and $A \subseteq \mathbb{N}$ let $A/n = \{m \in A : m > n\}.$

A family \mathcal{F} of finite subsets of \mathbb{N} is α -uniform on $A \subseteq \mathbb{N}$ if

•
$$\alpha = 0$$
 and $\mathcal{F} = \emptyset$,

- $\alpha = \beta + 1$ and for every $n \in \mathbb{N}$ the collection \mathcal{F}_n is β uniform on A/n,
- *α* is a limit and there is an increasing sequence *α_n < α* such that *F_n* is *α_n* uniform on *A/n*.

Theorem (di Prisco-Todorčević 2006)

For every $\varphi : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ Borel homomorphism there is an A, an $\alpha < \omega_1$, an α -uniform family \mathcal{F} on A and a mapping $\psi : \mathcal{F} \to \mathbb{N}$ such that for all $B \in [A]^{\mathbb{N}}$ we have

$$\varphi(B) = \{\psi(j(\mathcal{S}^i(B))) : i \in \mathbb{N}\},\$$

where j(B) is the initial segment of B in \mathcal{F} .

Further directions

Can we characterize $\chi_{wB}(G)$?

Can we characterize $\chi_{wB}(G)$?

Question

Let G be a 3-regular acyclic Borel graph with $\chi_{wB}(G) = 4$. Is it true that $Free(\mathbb{Z}_2^{\star 3} \curvearrowright 2^{\mathbb{Z}_2^{\star 3}})$ admits a Borel homomorphism to G?

Can we characterize $\chi_{wB}(G)$?

Question

Let G be a 3-regular acyclic Borel graph with $\chi_{wB}(G) = 4$. Is it true that $Free(\mathbb{Z}_2^{\star 3} \curvearrowright 2^{\mathbb{Z}_2^{\star 3}})$ admits a Borel homomorphism to G?

Question

Is it possible to characterize Borel graphs with $\chi_{wB}(G) \geq \aleph_0$?

Further directions

Question

Is it true that a hyper-hyperfinite CBER is weakly hyperfinite?

Further directions

Question

Is it true that a hyper-hyperfinite CBER is weakly hyperfinite?

Question

What happens with the Borel reducibility hierarchy if we weaken reductions this way?

Thank you for your attention!