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Down the long ladder




Splitting vs. non-splitting orders

A theme: Many structural theorems about linear orders can be
viewed as dichotomy theorems that distinguish between:

» Orders that can be split (in some sense) into two separated
copies of themselves,

» Orders for which there is no such splitting.



Example: Lindenbaum'’s splitting theorem

Thm (Lindenbaum-Tarski): Suppose that X is a linear order.
Then exactly one holds:

i. Vm,n>1we have mX = nX, ¢

ii. Vm, n such that m £ n we have mX 2 nX.



Example: Jullien’s indecomposability theorem

Thm (Jullien-Hagendorf): Suppose X is an indecomposable linear
order. Then exactly one holds:

i. 2X embeds in X,
ii. X is strictly indecomposable to the right or left.



Example: Holland's dichotomy theorem

Thm (Holland): Suppose X is a primitive and transitive linear
order. Then exactly one holds: —

i. X is doubly transitive,

ii. X is uniquely transitive.




Main result

We found a “splitting vs. non-splitting” dichotomy for orbit
equivalence relations of subgroups of Aut(R, <).

Thm (E., Paul): Suppose G is a subgroup of Aut(R, <) whose
orbits are each dense in R, and E = Eg is its orbit equivalence
relation. Then exactly one holds:

i. E = Ey for some group of translations H of R,
ii. Fg < E, where B is the Baumslag-Solitar group BS(1,2).
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Aut(R, <) and its subgroups

» Let ' denote the group Aut(R, <) = Homeo, (R).

- IR
» For subgroups G, H < T, we write G = H to mean G is
conjugate to H in T. —

» We view (R, +) as a subgroup of I' by identifying r € R with
the translation x — x 4 r.

» We say G is a group of translations if G is a proper subgroup _
of (R, +). —




Order-isomorphism of equivalence relations

Def: For E, F equivalence relations on R, we write E = F and say
E is order-isomorphic to F if there is g € [ such that gE = F.
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Def: For E, F equivalence relations on R:
i. We write E < F if there is g € I such that gE C F.

ii. We write E <, F if there is an order-embedding g : R — R
such that gE C F.
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» Observe: if G = H then Eg & Ey.
o Why: gGg~! = H implies gE¢c = En.

» Converse (very) false in general.



Ordered full groups

Def:
i. For E an equivalence relation on R, define

[E] ={g el :VxeR, gxEx}.

—

ii. For G <T, define
— [6] = [Ec].

We call [G] the ordered full group of G.

Easy fact: For G,H < T, we have Eg = Ey iff [G] = [H].



Groups of translations are full

In general, [G] may be much larger than G. But for groups of
translations we have the following:

Fact: If G is a group of translations, then [G] = G.
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From this and the easy fact from the previous'slide, we get:

Fact: If G, H are groups of translations, then Eg = Ey if and only
if G = H. More generally, if G, H <T are both conjugate to
groups of translations, then Eg = Ep if and only if G = H.



» Groups of translations G, H are conjugate iff one is a scalar
multiple of the other.

» This fact combined with the facts above gives that a group of
translations G can be recovered up to a scalar factor from the
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order-type (i.e. =-type) of Eg.



The Baumslag-Solitar group BS(1,2)

{ a4
o
> Let B < T denote the group generated by the maps
x+— x4+ 1 and x — 2x.

» Then B is the Baumslag-Solitar group BS(1,2).

» We think of its orbit equivalence relation Eg as R's version of
the tail-equivalence relation. —



Main result, again

We say G < T is primitive if each of its orbits Gx is dense in R.
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Here again is our dichotomy theorem:
Thm (E., Paul): Suppose G < T is primitive. Then exactly one
holds:

i. Eg = Ey for some group of translations H,
i. Eg <,Fq.




Toward a proof: sums of linear orders

Def: Given linear orders X and Y:

i. The sum X 4+ Y is the order obtained by placing a copy of Y
to the right of X ("X followed by Y").
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Y = e

ii. For n € N, nX denotes the n-fold sum X + X +.--- + X.

X = o~



Isomorphisms and convex embeddings

Def: Given linear orders X and Y
i. Write X 2 Y if X is isomorphic to Y.
ii. Write X <cony Y if there is a convex embedding of X in Y.
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Observe: X <cony Y iff Y =2 A+ X + B for some (possibly empty) »
orders A and B.
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A fundamental observation

Until further notice let A, B, X, Y/, ... denote linear orders.

Many structural results concerning automorphisms and convex
embeddings of linear orders depend on the following observation.

Prop’n (Lindenbaum): If X 2 A+ X + B, then X 2 A+ X and
X=X+ B.

Proof. @




Splitting lemma
x

Def: We say X is splitting if 2X = X. —_—t
- X <

Observe: If X is splitting, then mX = nX for any m,n > 1.

Lem (Splitting Lemma): 2X = X iff 2X < on, X.
Proof.

X = Al xtle £ B

Y
X = X+ X~+8
X

= X ~+ X 0



Splitting theorem

Thm (Splitting Theorem) (Lindenbaum): TFAE:
22X =X,
ii. Vm,n > 1 we have mX = nX,

iii. 3m > 1 such that (m+ 1)X <cony mX.

—

Proof.



Global colorings of linear orders

> We'll use Lindenbaum’s results about splitting orders to prove
our dichotomy theorem.

> First we generalize these results to linear orders that are
colored by a global coloring scheme.

Def: Suppose C is a class of colors that we use to color every
linear order X.

We write color(x) for the color (from C) of a given point x from a
given order X.



Sums, isomorphisms, embeddings of orders with color

Def: Given linear orders X and Y colored by our color scheme:
i. The sum X + Y is the order obtained by placing a (colored)
copy of Y to the right of X.
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We write X £ Y if there is an isomorphism f : X — Y such
that color(x) = color(f(x)) for all x € X.
We write X <cony Y if there is a convex embedding

ii.
f : X = Y such that color(x) = color(f(x)) for all x € X.



» Lindenbaum’s proposition
X2A+X+B=(X2A+X)AXZX+B) [/

remains true for orders with colorings.

o Why: the maps we constructed witnessing the isomorphisms on
the right were piecewise combinations of the isomorphism from
the left and the identity, both of which are color-preserving.

» |t follows that the Splitting Lemma and Splitting Theorem
remain true for orders with colorings.



Automorphisms of linear orders

P> To see how Lindenbaum'’s results can help us prove our
dichotomy theorem, it will help to understand what
order-automorphisms of R look like.

» Observe: if f: R — R is an element of I = Aut(R, <) and
x € R, then exactly one holds:
i. f(x)=x,
i< I < x < f(x) < FA(x) < ...,

i, <P <FX)<x<flx)<...
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Examples

Ex. Consider g(x) = x + 1.

Ex. Consider f(x) = 2x.
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Irreducible automorphisms

Def: Suppose f € I and x € R.
i. The orbit of x under f is of(x) := {f"(x) : n € Z}.

ii. The orbital of x under f is Of(x) := the convex closure of

or(xXT—

Def: We say f € I is irreducible if for some (equiv. any) x € R,
we have O¢(x) =R.
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For example, f(x) = x 4 1 is irreducible (as is any non-identity
translation), whereas g(x) = 2x is not.




The Holder-Conrad Theorem

Holder proved a theorem, later improved by Conrad, showing that
groups G < T consisting only of irreducible automorphisms are
essentially groups of translations.

Thm (Holder-Conrad): Suppose G < T is primitive. If every g € G
is irreducible, then G = H for some group of translations H.™

pum—

A N e




» It follows from Holder-Conrad that to prove our dichotomy
theorem, it suffices to show the following:

Claim: If G is a primitive group of order-automorphisms of R
and there is a non-irreducible g € G, then Eg < Eg.
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» We'll sketch in this case (using Lindenbaum’s results) that

EB <x EG-
—




B splits its segments

Obs:

> Let X =[0,1) and view X as being colored by the orbit
equivalence relation Eg.

» Then X =2 2X:
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If G splits some segment, Eg <, Eg

Idea:

» Sps G < T and g € G is increasing on the orbital Og(x) for
————
some x € R.

» Let X = [x,g(x)) and view X as colored by Eg.

> If X 22X, we can find a copy of B = BS(1,2) acting on
e —
Og(x) that preserves Eg:

» This then give « Ec.



Proof of the dichotomy theorem

» So suppose E = E¢ is the orbit equivalence relation of some
primitive G < T, and E % Ey for any group of translations H.

» By Holder-Conrad, there is g € G with a bounded (say, on the

right) orbrtat O (x):
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» Let X = [x,g(x)), and view X as being colored by Eg.



Proof of the dichotomy theorem

> By primitivity, we can slide the right endpoint of this orbital
slightly to the left.

» Then the right side of the image orbital lies inside the original
orbital:
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» The w-tail of X's in the jostled orbital lie in some copy of X
in the original.

» In particular 2X <cony X, so by Lindenbaum, 2X = X. O



Turning@

» In the argument above, if we could instead find g € [G] with

i. Og(x) =R and

i X =[x, g(x)) = 2X, /
such that

iii. B acts primitively on Og(x),

then we could conclude Eg < E.

» (i.) and (ii.) are always possible; (iii.) is frequently possible
and likely always possible. —



Thank you!



