A dichotomy theorem for order types of orbit equivalence relations on $\ensuremath{\mathbb{R}}$

Garrett Ervin joint with Eric Paul

March 5th, 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Down the long ladder

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

<u>A theme</u>: Many structural theorems about linear orders can be viewed as dichotomy theorems that distinguish between:

 Orders that can be split (in some sense) into two separated copies of themselves,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Orders for which there is no such splitting.

Thm (Lindenbaum-Tarski): Suppose that X is a linear order. Then exactly one holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

i.
$$\forall m, n \geq 1$$
 we have $mX \cong nX$,

ii. $\forall m, n \text{ such that } m \neq n \text{ we have } mX \not\cong nX.$

Thm (Jullien-Hagendorf): Suppose X is an indecomposable linear order. Then exactly one holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- i. 2X embeds in X,
- ii. X is strictly indecomposable to the right or left.

Thm (Holland): Suppose X is a primitive and transitive linear order. Then exactly one holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- i. X is doubly transitive,
- ii. X is \overline{uniq} uely transitive.

We found a "splitting vs. non-splitting" dichotomy for orbit equivalence relations of subgroups of $Aut(\mathbb{R}, <)$.

Thm (E., Paul): Suppose G is a subgroup of $Aut(\mathbb{R}, <)$ whose orbits are each dense in \mathbb{R} , and $E = E_G$ is its orbit equivalence relation. Then exactly one holds:

- Let Γ denote the group Aut(ℝ, <) = Homeo₊(ℝ).
 For subgroups G, H ≤ Γ, we write G ≅ H to mean G is conjugate to H in Γ.
- We view (ℝ, +) as a subgroup of Γ by identifying r ∈ ℝ with the translation x → x + r.
- ▶ We say *G* is a *group of translations* if *G* is a proper subgroup of $(\mathbb{R}, +)$.

Def: For E, F equivalence relations on \mathbb{R} , we write $E \cong F$ and say E is *order-isomorphic* to F if there is $g \in \Gamma$ such that gE = F.

XEY (F op Fgy E(q x, y) EE)

Def: For E, F equivalence relations on \mathbb{R} :

i. We write $E \leq F$ if there is $g \in \Gamma$ such that $gE \subseteq F$.

ii. We write $E \leq_* F$ if there is an order-embedding $g : \mathbb{R} \to \mathbb{R}$ such that $\overline{gE \subseteq F}$.

strictly incr.

▶ <u>Observe</u>: if $G \cong H$ then $E_G \cong E_H$. ◊ Why: $gGg^{-1} = H$ implies $gE_G = E_H$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Converse (very) false in general.

Def:

i. For E an equivalence relation on \mathbb{R} , define

$$[E] := \{g \in \Gamma : \forall x \in \mathbb{R}, gx Ex\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

ii. For $G \leq \Gamma$, define $[G] := [E_G]$.

We call [G] the ordered full group of G.

Easy fact: For $G, H \leq \Gamma$, we have $E_G \cong E_H$ iff $[G] \cong [H]$.

In general, [G] may be much larger than G. But for groups of translations we have the following:

Fact: If G is a group of translations, then [G] = G. $[H : H : f \in CG]$ $\mathcal{K} \longrightarrow If(\mathcal{K}) - \mathcal{K}[$ is compared.

From this and the easy fact from the previous slide, we get:

Fact: If G, H are groups of translations, then $E_G \cong E_H$ if and only if $G \cong H$. More generally, if $G, H \leq \Gamma$ are both conjugate to groups of translations, then $E_G \cong E_H$ if and only if $G \cong H$.

- Groups of translations G, H are conjugate iff one is a scalar multiple of the other.
- ► This fact combined with the facts above gives that a group of translations G can be recovered up to a scalar factor from the order-type (i.e. ≈-type) of E_G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Baumslag-Solitar group BS(1,2)

- Let B ≤ I denote the group generated by the maps x → x + 1 and x → 2x.
- Then B is the Baumslag-Solitar group BS(1,2).
- We think of its orbit equivalence relation E_B as ℝ's version of the tail-equivalence relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We say $G \leq \Gamma$ is *primitive* if each of its orbits Gx is dense in \mathbb{R} . Here again is our dichotomy theorem:

Thm (E., Paul): Suppose $G \leq \Gamma$ is primitive. Then exactly one holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- i. $E_G \cong E_H$ for some group of translations H,
- ii. $E_B \leqslant E_G$.

Toward a proof: sums of linear orders

Def: Given linear orders X and Y:

i. The sum X + Y is the order obtained by placing a copy of Y to the right of X ("X followed by Y").

ii. For $n \in \mathbb{N}$, nX denotes the *n*-fold sum $X + X + \cdots + X$.

Isomorphisms and convex embeddings

Def: Given linear orders X and Y:

- i. Write $X \cong Y$ if X is isomorphic to Y.
- ii. Write $X \leq_{conv} Y$ if there is a convex embedding of X in Y.

<u>Observe</u>: $X \leq_{conv} Y$ iff $Y \cong A + X + B$ for some (possibly empty) orders A and B.

A fundamental observation

Until further notice let A, B, X, Y, \ldots denote linear orders.

Many structural results concerning automorphisms and convex embeddings of linear orders depend on the following observation.

Splitting lemma

Def: We say X is *splitting* if $2X \cong X$. <u>Observe</u>: If X is splitting, then $mX \cong nX$ for any $m, n \ge 1$. **Lem** (Splitting Lemma): $2X \cong X$ iff $2X \le_{conv} X$. Proof.

$$\begin{array}{cccc} x &= & A J + & X + K + B & & (X) \\ x &= & X + & X + B & & & x \\ x &= & X + & X & & D \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Splitting theorem

Thm (Splitting Theorem) (Lindenbaum): TFAE:

i. $2X \cong X$, ii. $\forall m, n \ge 1$ we have $mX \cong nX$, iii. $\exists m \ge 1$ such that $(m+1)X \le_{conv} mX$. Proof.

We'll use Lindenbaum's results about splitting orders to prove our dichotomy theorem.

First we generalize these results to linear orders that are colored by a global coloring scheme.

Def: Suppose C is a class of colors that we use to color every linear order X.

We write color(x) for the color (from C) of a given point x from a given order X.

Sums, isomorphisms, embeddings of orders with color

Def: Given linear orders X and Y colored by our color scheme:

i. The sum X + Y is the order obtained by placing a (colored) copy of Y to the right of X.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ii. We write $X \cong Y$ if there is an isomorphism $f : X \to Y$ such that $\operatorname{color}(x) = \operatorname{color}(f(x))$ for all $x \in X$.
- iii. We write $X \leq_{conv} Y$ if there is a convex embedding $f: X \to Y$ such that color(x) = color(f(x)) for all $x \in X$.

 $X \cong A + X + B \Rightarrow (X \cong A + X) \land (X \cong X + B) / \checkmark$

remains true for orders with colorings.

 Why: the maps we constructed witnessing the isomorphisms on the right were piecewise combinations of the isomorphism from the left and the identity, both of which are color-preserving.

It follows that the Splitting Lemma and Splitting Theorem remain true for orders with colorings.

Automorphisms of linear orders

► To see how Lindenbaum's results can help us prove our dichotomy theorem, it will help to understand what order-automorphisms of R look like.

• <u>Observe</u>: if $f : \mathbb{R} \to \mathbb{R}$ is an element of $\Gamma = \operatorname{Aut}(\mathbb{R}, <)$ and $x \in \mathbb{R}$, then exactly one holds:

i.
$$f(x) = x$$
,
ii. ... $< f^{-1}(x) < x < f(x) < f^{2}(x) < ...$,
iii. ... $< f^{2}(x) < \overline{f(x)} < x < f^{-1}(x) < ...$

Examples

Ex. Consider g(x) = x + 1.

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 - のへで

Irreducible automorphisms

Def: Suppose $f \in \Gamma$ and $x \in \mathbb{R}$.

- i. The orbit of x under f is $o_f(x) := \{f^n(x) : n \in \mathbb{Z}\}.$
- ii. The orbital of x under f is $O_f(x) :=$ the convex closure of $o_f(x)$.

Def: We say $f \in \Gamma$ is *irreducible* if for some (equiv. any) $x \in \mathbb{R}$, we have $O_f(x) = \mathbb{R}$.

For example, f(x) = x + 1 is irreducible (as is any non-identity translation), whereas g(x) = 2x is not.

Hölder proved a theorem, later improved by Conrad, showing that groups $G \leq \Gamma$ consisting only of irreducible automorphisms are essentially groups of translations.

Thm (Hölder-Conrad): Suppose $G \leq \Gamma$ is primitive. If every $g \in G$ is irreducible, then $G \cong H$ for some group of translations H.

- 日本 本語 本 本 田 本 王 本 田 本

It follows from Hölder-Conrad that to prove our dichotomy theorem, it suffices to show the following:

Claim: If G is a primitive group of order-automorphisms of \mathbb{R} and there is a non-irreducible $g \in G$, then $E_B \leq E_G$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We'll sketch in this case (using Lindenbaum's results) that $E_B \leq_* E_G$.

B splits its segments

Obs:

• Let X = [0, 1) and view X as being colored by the orbit equivalence relation E_B .

Then
$$X \cong 2X$$

 $g(x) = x_{r+1}$ f(x) = 2x

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If G splits some segment, $E_B \leqslant_* E_G$

Idea:

- Sps $G \leq \Gamma$ and $g \in G$ is increasing on the orbital $O_g(x)$ for some $x \in \mathbb{R}$.
- Let X = [x, g(x)) and view X as colored by E_G .
- ▶ If $X \cong 2X$, we can find a copy of B = BS(1, 2) acting on $O_g(x)$ that preserves E_G :

Proof of the dichotomy theorem

- So suppose $E = E_G$ is the orbit equivalence relation of some primitive $G \leq \Gamma$, and $E \ncong E_H$ for any group of translations H.
- By Hölder-Conrad, there is g ∈ G with a bounded (say, on the right) orbital O_g(x):

• Let X = [x, g(x)), and view X as being colored by E_G .

Proof of the dichotomy theorem

- By primitivity, we can slide the right endpoint of this orbital slightly to the left.
- Then the right side of the image orbital lies inside the original orbital:

The ω-tail of X's in the jostled orbital lie in some copy of X in the original.

▶ In particular $2X \leq_{conv} X$, so by Lindenbaum, $2X \cong X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In the argument above, if we could instead find g ∈ [G] with

O_g(x) = ℝ and
X = [x, g(x)) ≅ 2X,

such that

B acts primitively on O_g(x),
B acts primitively on C_g(x),

(i.) and (ii.) are always possible; (iii.) is frequently possible

and likely always possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you!