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Complexes, stellar moves, amalgamation, and set theory

(projective) amalgamation −→



(projective) Fraïssé limits

(dual) Ramsey theory

topological dynamics/
extreme amenability

There is an issue of one-dimensionality on the right-hand side.
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A simplicial complex is a family A of non-empty finite sets closed
under taking non-empty subsets and such that

Vr(A) ∩ A = ∅,

where Vr(A) = the union of all sets in A.

Sets in A are faces of A.
Elements of Vr(A) are vertices of A.
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A simplicial map f : A→ B is a function f : Vr(A)→ Vr(B) such
that

s ∈ A⇒ f (s) ∈ B.
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Stellar moves

Stellar moves and
geometric realization
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Stellar moves

Alexander, Newman, 1926–1931

stellar moves −→


subdivision

welding
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Stellar moves

A a simplicial complex, s a non-empty finite set

Subdivision sA of A by s is defined as follows.
Fix a new vertex s ‹ .
Declare sA to consist of{

y ∪ {s ‹}, if s 6⊆ y and s ∪ y ∈ A;

y , if s 6⊆ y and y ∈ A.

The family sA is a simplicial complex.

Welding is the inverse operation to subdivision.
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Stellar moves

{
y ∪ {s ‹}, if s 6⊆ y and s ∪ y ∈ A;

y , if s 6⊆ y and y ∈ A.
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Stellar moves

simplicial complex −→


geometric realization

set theoretic realization
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Stellar moves

A geometric realization is determined by

r : Vr(A)→ Rn

such that
for s ∈ A, the points r(v), with v ∈ s, are in general position and
for s, t ∈ A,

conv
(
r(s)

)
∩ conv

(
r(t)

)
= conv

(
r(s ∩ t)

)
.

The geometric realization is

|A|r =
⋃
s∈A

conv
(
r(s)

)
.
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Stellar moves

Adiprasito–Pak, 2024

A, B simplicial complexes that have

rA : Vr(A)→ Rn, rB : Vr(B)→ Rn,

determining geometric realizations of A and B such that

|A|rA = |B|rB .

Then there are iterated subdivisions A′ of A and B ′ of B such that
A′ and B ′ are isomorphic.



Complexes, stellar moves, amalgamation, and set theory

Weld-division maps

Weld-division maps
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Weld-division maps

Aim: carry over stellar moves from simplicial complexes to
simplicial maps:
— refine the weld operation to define a class of simplicial maps

called weld maps
— lift the subdivision operation to define an operation on

simplicial maps called subdivision
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Weld-division maps

Weld maps

A a simplicial complex, s a finite non-empty set, x ∈ s

The weld map
πAx ,s : sA→ A

maps each vertex in Vr(A) to itself,

maps the new vertex s ‹ of sA to x , when s ∈ A, that is,

s ‹ → x .

πAx ,s is a simplicial map.
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Weld-division maps

Subdivision of simplicial maps

B a simplicial complex, S ⊆ B

S is additive if, for s, t ∈ S ,

s ∪ t ∈ B ⇒ s ∪ t ∈ S .

If ~S1 and ~S2 are non-decreasing (with respect to ⊆) enumerations
of S , then

~S1B = ~S2B.

We write
SB.
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Weld-division maps

f : B → A a simplicial map, s be a non-empty finite set

Consider
f −1(s) = {t ∈ B : f (t) = s}.

f −1(s) is an additive family of faces of B .

sf :
(
f −1(s)

)
B → sA

maps t ‹ , for each t ∈ f −1(s), to s ‹
maps v of B to f (v).

The map sf is simplicial.

sf is called a subdivision of f by s.
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Weld-division maps

Weld-division maps = simplicial maps obtained from weld maps
using subdivision of simplicial maps and composition.
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The category D(A) and the amalgamation theorem

The category D(A)

and
the amalgamation theorem
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The category D(A) and the amalgamation theorem

Fix a simplicial complex A

Objects = all simplicial complexes obtained from A by iterated
subdivision (taken up to isomorphisms preserving the face structure)

Morphisms = all weld-division maps among above objects

The category above is called the weld-division category and is
denoted by

D(A).
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The category D(A) and the amalgamation theorem

Theorem (S.)

For f ′, g ′ ∈ D(A) with the same codomain,
there exist f , g ∈ D(A) such that

f ′ ◦ f = g ′ ◦ g .

So, D(A) fulfills the projective amalgamation property.
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Consequences in projective Fraïssé theory

Consequences in
projective Fraïssé theory
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Consequences in projective Fraïssé theory

For a simplicial complex A, consider its reduct

(Vr(A),RA),

where
aRAb ⇔ a and b belong to a face of A.

DR(A) = the category with the objects above, where A is an
iterated subdivision of A, and the same morphisms as in D(A)

Corollary

DR(A) is a projective Fraïssé class.
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Consequences in projective Fraïssé theory

DR(A) has a (unique up to an isomorphism) generic projective
sequence

A = A0
f0←− A1

f1←− A2
f2←− A3

f3←− · · ·

with f0, f2, . . . morphisms in DR(A), so weld-division maps.

projective Fraïssé limit (A,RA) of DR(A) = inverse limit of the
sequence above

Theorem (S.)

(i) The binary relation RA is a compact equivalence relation on A.
(ii) A/RA is homeomorphic to a geometric realization of A.
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The proof of amalgamation
and
set theory
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The proof of amalgamation and set theory

Set theoretic realization of simplicial complexes

Ur = a set of urelements

Fin+ = all sets obtained from Ur by iteratively applying the
operation "take all finite non-empty subsets"

The above is after J. Barwise, Admissible Sets.
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The proof of amalgamation and set theory

A a simplicial complex with Vr(A) ⊆ Ur
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The proof of amalgamation and set theory

A ⊆ Fin+ a simplicial complex with t1 6∈ tc(t2), for t1, t2 ∈ A

s ∈ Fin+

Declare sA to consist of{
y ∪ {s}, if s 6⊆ y and s ∪ y ∈ A;

y , if s 6⊆ y and y ∈ A.

sA ⊆ Fin+ is a simplicial complex with t1 6∈ tc(t2), for t1, t2 ∈ sA

Note: if s is a face of A, the new vertex in sA is s.
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The proof of amalgamation and set theory

Formal definition of D(A)

For a sequence of sets s0 · · · sl in Fin+, the objects are simplicial
complexes

s0 · · · slA

obtained as iterated subdivisions of A.

Weld maps and subdivision of simplicial maps are defined by
the same formulas as before.

We add combinatorial isomorphisms.
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The proof of amalgamation and set theory

Isomorphisms

Type 1: t a face of A, r , s ⊆ t, r ∪ s 6= ∅, r ∩ s = ∅; then

t → s ∪ {t}, r ∪ {t} → t

is an isomorphism

from
(
r ∪ {t}

)
(r ∪ s) t A to

(
s ∪ {t}

)
(r ∪ s) t A.
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The proof of amalgamation and set theory

Type 2: s, t faces of A; then

(s \ t) ∪ {t} → (t \ s) ∪ {s}

is an isomorphism

from
(
(s \ t) ∪ {t}

)
s t A to

(
(t \ s) ∪ {s}

)
t s A.
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The proof of amalgamation and set theory

Type 3: {x} a face of A; then

x ↔ {x}

are isomorphisms
between A and {x}A.

Combinatorial isomorphisms are maps generated by
isomorphisms of type 1–3 by composition and subdivision.
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Questions

1. Work out a precise framework of the calculus of sequences of
finite sets.

2. Does projective amalgamation hold for the category generated
by welds and combinatorial isomorphisms?

3. Are subdivisions of a fixed simplicial complex rigid?

4. Does the dual Ramsey theorem hold for D(A) ?
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