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I. Overview
The plan

Matchings (and related notions) play a central role in graph theory
and its applications.

We review some basic concepts and history, and survey some more
recent developments.

We will eventually generalize a bit to discuss k-factors in addition
to matchings.

This includes joint work with Matt Bowen, Alekos Kechris, Ben
Miller, and Felix Weilacher.
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II. Definitions and background
Definitions

Definitions
A graph G on a (probably infinite) set X is a symmetric, irreflexive
subset of X 2. We colloquially refer to elements of X as vertices
and (symmetrized) elements of G as edges.

Such a graph G is bipartite if there is a partition X = AtB so that
every edge is between some element of A and some element of B.

A matching in a graph G is a subgraph M ⊆ G for which every
vertex is incident with at most one edge of M.

The vertices incident with an edge of M will be called its support.

The matching M is perfect if its support is X .



II. Definitions and background
Hall’s theorem

Theorem (Hall, 1935)

A locally finite bipartite graph admits a perfect matching if and
only if it satisfies Hall’s condition.

Definition
A locally finite graph G on X satisfies Hall’s condition if for all
finite C ⊆ X , |NG (C )| ≥ |C |.

Remark
Note that a locally finite bipartite graph in which every vertex is
incident to the same number of edges automatically satisfies Hall’s
condition. Such graphs are called (d-)regular.
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III. Descriptive combinatorics is born
Laczkovich’s work

Lazckovich identified various equidecomposition tasks with the
search for perfect matchings. Using Hall’s Theorem, he resolved
Tarski’s circle-squaring problem.

Theorem (Laczkovich, 1990)

A disc and square of the same area are equidecomposable via
(finitely many) translations of the plane.

Remark
The argument, ultimately relying upon compactness, produces
set-theoretically hideous pieces. Laczkovich realized that solving
the problem with nicer pieces corresponds to finding matchings
with better regularity properties.



III. Descriptive combinatorics is born
Laczkovich’s work

Question
Can we get measurable matchings out of Hall’s theorem?

Answer
Not in general, even when the graph itself is very nice.



III. Descriptive combinatorics is born
Graphs with no measurable matching

Example (Laczkovich, 1988)

This 2-regular bipartite graph has no measurable perfect matching:



III. Descriptive combinatorics is born
Graphs with no measurable matching

Example (with Kechris, 2013)

This can be tweaked into a 2n-regular graph with no measurable
perfect matching:



III. Descriptive combinatorics is born
Graphs with no measurable matching

Remark
Finding such examples with odd degree seems much harder.

Theorem (Kun, 2025+)

For every d ≥ 2, there is a measure-preserving d-regular acyclic
Borel graph on a standard probability space (X , µ) admitting no
µ-measurable perfect matching.

Remark
Kun’s examples are highly non-hyperfinite, while the
Laczkovich-style examples are hyperfinite. Is there any hope of
finding a 3-regular acyclic (or just bipartite) hyperfinite Borel
graph with no measurable matching?
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IV. Hyperfinite graphs
More precise context

From now on we assume that X is a Polish space equipped with a
Borel probability measure µ.

Remark
You don’t really lose anything by assuming that X is the unit
interval and that µ is Lebesgue measure.

Remark
We also assume that G is Borel (as a subset of X 2), and
investigate Borel matchings. If such a matching’s support is conull
(or comeager), we can say we’ve found a Borel perfect matching
mod null (resp., mod meager).



IV. Hyperfinite graphs
Definitions

Definition
We say that a graph is component-finite if every connected
component is finite.

Definition
We say that a graph is hyperfinite if it is an increasing union of
component-finite Borel graphs.

Remark
Hyperfinite graphs are “well approximated” by finite graphs, so one
might hope they behave much like finite graphs. This hope is false
in the Borel context, but is generally true mod null or meager.

Remark
Every locally countable Borel graph is hyperfinite mod meager.



IV. Hyperfinite graphs
Acyclic hyperfinite graphs

Definition
A G -ray is an injective sequence (xn) of vertices with every
(xn, xn+1) ∈ G .

Definition
A G -ray is bad if every even-indexed vertex of the sequence has
degree 2.



IV. Hyperfinite graphs
Acyclic hyperfinite graphs

Theorem (with Miller, 2017)

Suppose that G is an acyclic hyperfinite Borel graph with no bad
G -rays. Then G admits a Borel matching whose support contains
every vertex of degree at least 2, mod null or meager.

Corollary

Suppose that G is an acyclic hyperfinite Borel graph and that
every vertex has degree at least 3. Then G admits a Borel perfect
matching, mod null or meager.

Remark
In particular, there can be no 3-regular acyclic example like Kun’s
that is also hyperfinite.

Question
What about more general bipartite graphs?



IV. Hyperfinite graphs
Bipartite hyperfinite graphs

Theorem (Bowen-Kun-Sabok, 2021)

Suppose that G is a one-ended regular bipartite hyperfinite Borel
graph on (X , µ). Moreover, assume that µ is G -invariant. Then G
admits a perfect matching mod null.

Theorem (Bowen-Poulin-Zomback, 2022)

Suppose that G is a one-ended regular bipartite hyperfinite Borel
graph on X . Then G admits a perfect matching mod meager.

Remark
In fact, the above work establishes the more general existence of
k-factors, which are k-regular subgraphs of G . So a 1-factor is just
a perfect matching.

Remark
Both arguments proceed by “rounding cycles” in a fractional
k-factor to obtain an integer-valued one.



IV. Hyperfinite graphs
Bipartite hyperfinite graphs

Theorem (with Bowen and Weilacher, 2025+)

Suppose that d ≥ 2 and that G is a d-regular bipartite hyperfinite
Borel graph on (X , µ). Then G admits a Borel 2-factor mod null
or meager.

Corollary

In particular, when d is odd one can iteratively pull off 2-factors
and obtain a perfect matching! This finally rules out all bipartite
hyperfinite versions of Kun’s example.

Remark
In a soft sense, this means among regular bipartite hyperfinite
graphs Laczkovich’s example is the only one.
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V. Sketch of the proof
Fractional k-factors

Definition
Let I = [0, 1] denote the usual unit interval. For positive n ∈ N, let
In = {0, 1n , . . . ,

n−1
n , 1} denote the 1

n -discretized interval.

Definition
Given a graph G on X and k ∈ N, a fractional k-factor of G is a
symmetric function f : G → I satisfying for all x ∈ X ,∑

xGy

f (x , y) = k .

Remark
It makes sense to ask about Borel fractional k-factors, etc., in the
usual fashion.



V. Sketch of the proof
Rounding lemma

Lemma
Suppose that G is a bipartite hyperfinite Borel graph on (X , µ)
and that k , d are positive naturals. Suppose further that G admits
a Borel Id -valued fractional matching. Then G admits a Borel
(I2 ∩ Id)-valued fractional matching mod null or meager.

Remark
I2 ∩ Id = {0, 1} when d is odd, while
I2 ∩ Id = {0, 12 , 1} when d is even.

Remark
So this lemma grants a Borel perfect matching mod null or meager
whenever d is odd and G is a d-regular hyperfinite Borel graph..



V. Sketch of the proof
Rounding lemma

Proof
• First, since all cycles have even length, we can round them

away (mod null or meager) to build an Id -valued fractional
matching f so that the subgraph

H = {(x , y) : f (x , y) > 0}

is acyclic.

• Next, check that the fractional matching forces every bad
H-ray to be eventually 2-regular.

• Then the previous result with Miller grants a Borel matching
mod null or meager, except possibly on some 2-regular
components of H on which f is constantly 1/2. This is the
type of fractional matching we want.



V. Sketch of the proof
The main theorem

Theorem (with Bowen and Weilacher, 2025+)

Suppose that d ≥ 2 and that G is a d-regular bipartite hyperfinite
Borel graph on (X , µ). Then G admits a Borel 2-factor mod null
or meager.

Remark
The odd d case reduces to the even d case by stripping away a
perfect matching, so we will focus on the case d = 4 for
convenience.

Remark
The main idea is to strategically reweight a fractional matching
and “induce mitosis.”



V. Sketch of the proof
The main theorem

Sketch of the proof

The lemma grants a Borel I2-valued Borel fractional matching f
mod null or meager. We build an I3-valued fractional 2-factor g by
declaring

g =
1

3
when f = 0

g =
2

3
when f =

1

2
g = 1 when f = 1.

This generalizes to other even d with enough arithmetic.



V. Sketch of the proof
The main theorem

Sketch of the proof, cont.

• Now define a graph H on 2× X that injectively projects to G
by letting each of (0, x) and (1, x) claim a set of G -edges
whose g -values sum to 1.

• As H admits an I3-valued fractional matching, another
application of the rounding lemma grants a perfect matching
of H mod null or meager.

• Projecting this matching back to G yields the desired 2-factor
mod null or meager.



Part VI

Thanks!


