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A topological space X is Polish if it is separable, completely metrizable.
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Definition

A topological space X is Polish if it is separable, completely metrizable.
If we want to ignore the topology and only consider the o-algebra of X
(where the o-algebra of X is the collection of subsets of X generated by
open sets, complement and countable union), then X is called a standard
Borel space.
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Preliminary Descriptive Set Theory

Definition

A topological space X is Polish if it is separable, completely metrizable.
If we want to ignore the topology and only consider the o-algebra of X
(where the o-algebra of X is the collection of subsets of X generated by
open sets, complement and countable union), then X is called a standard
Borel space.

R,C, C[0,1],LP,IP(1 < p < 00),2¥(Cantor space),w* (Baire space)
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Definition

An equivalence relation E on X is Borel if it is a Borel subset of X x X.
E is finite if all its equivalence classes are finite.
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Preliminary Descriptive Set Theory

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X x X.
E is finite if all its equivalence classes are finite.
E is countable if all its equivalence classes are countable.
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Preliminary Descriptive Set Theory

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X x X.
E is finite if all its equivalence classes are finite.

E is countable if all its equivalence classes are countable.

E is (Borel) hyperfinite if it is an increasing union of a sequence of finite
Borel equivalence relations.
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Preliminary Descriptive Set Theory

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X x X.
E is finite if all its equivalence classes are finite.

E is countable if all its equivalence classes are countable.

E is (Borel) hyperfinite if it is an increasing union of a sequence of finite
Borel equivalence relations.

Define the equivalence relation Ey on 2% by
xEoy < (3m)(Vn > m) x(n) = y(n).
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Preliminary Descriptive Set Theory

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X x X.
E is finite if all its equivalence classes are finite.

E is countable if all its equivalence classes are countable.

E is (Borel) hyperfinite if it is an increasing union of a sequence of finite
Borel equivalence relations.

Define the equivalence relation Ey on 2% by
xEoy < (3m)(Vn > m) x(n) = y(n).
Then Eg is hyperfinite.
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Preliminary Descriptive Set Theory

@ By Feldman-Moore, for any countable Borel equivalence relation E on
X, there is a countable group G Borel acting on X such that E = Eé.
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X, there is a countable group G Borel acting on X such that E = Eé.

@ By an action to be Borel, we mean the action as a map G x X — X
is a Borel map.
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@ By Feldman-Moore, for any countable Borel equivalence relation E on
X, there is a countable group G Borel acting on X such that E = Eé.

@ By an action to be Borel, we mean the action as a map G x X — X
is a Borel map.

° Eé is the induced orbit equivalence relation of the action of G on X.
ie., XEéy<:>E|g€ Gg-x=y.
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Preliminary Descriptive Set Theory

@ By Feldman-Moore, for any countable Borel equivalence relation E on
X, there is a countable group G Borel acting on X such that E = Eé.

@ By an action to be Borel, we mean the action as a map G x X — X
is a Borel map.

° Eé is the induced orbit equivalence relation of the action of G on X.
ie., XEéy<:>E|g€ Gg-x=y.

@ From this, Kechris et al. expanded the theory of countable Borel
equivalence relations, which has since become a thriving area.
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Preliminary Descriptive Set Theory

Definition

Let X, Y be a standard Borel spaces with a Borel equivalence relations E,
F on X, Y respectively. Then
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Preliminary Descriptive Set Theory

Definition

Let X, Y be a standard Borel spaces with a Borel equivalence relations E,
F on X, Y respectively. Then

e E is Borel reducible to F (E <g F) if there is a Borel map f : X — Y
such that for any x,y € X, xEy < f(x)Ff(y).
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Preliminary Descriptive Set Theory

Definition
Let X, Y be a standard Borel spaces with a Borel equivalence relations E,
F on X, Y respectively. Then
e E is Borel reducible to F (E <g F) if there is a Borel map f : X — Y
such that for any x,y € X, xEy < f(x)Ff(y).
o E is Borel embeddable to F (E Cp F) if there is an injective Borel
map f : X — Y which Borel reduces E to F.
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Preliminary Descriptive Set Theory

Definition

Let X, Y be a standard Borel spaces with a Borel equivalence relations E,
F on X, Y respectively. Then
e E is Borel reducible to F (E <g F) if there is a Borel map f : X — Y
such that for any x,y € X, xEy < f(x)Ff(y).

o E is Borel embeddable to F (E Cp F) if there is an injective Borel
map f : X — Y which Borel reduces E to F.

Comparing the Borel complexities of various Borel equivalence relations
has recently been a booming area.
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Borel vs Continuous Weiss Question

Question. Weiss (1984)

Let X be a standard Borel space. Let G be a countable discrete amenable
group Borel acting on X. Then Eé is hyperfinite?
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Question. Weiss (1984)

Let X be a standard Borel space. Let G be a countable discrete amenable
group Borel acting on X. Then Eé is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.
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group Borel acting on X. Then Eé is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

o Weiss (1984) proved when G = Z".
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Question. Weiss (1984)

Let X be a standard Borel space. Let G be a countable discrete amenable
group Borel acting on X. Then Eé is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

o Weiss (1984) proved when G = Z".
@ Gao and Jackson (2015) proved when G is countable Abelian.
@ Schneider and Steward (2013) proved when G is locally nilpotent.
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Borel vs Continuous Weiss Question

Question. Weiss (1984)

Let X be a standard Borel space. Let G be a countable discrete amenable
group Borel acting on X. Then Eé is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

o Weiss (1984) proved when G = Z".
@ Gao and Jackson (2015) proved when G is countable Abelian.
@ Schneider and Steward (2013) proved when G is locally nilpotent.

@ Conley, Jackson, Marks, Seward and Tucker-Drob (2020) proved
when G is polycyclic.
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Borel vs Continuous Weiss Question

Let X be a standard Borel space. Let E be a countable Borel equivalence
relation on X. Then the following are equivalent:
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Borel vs Continuous Weiss Question

Let X be a standard Borel space. Let E be a countable Borel equivalence
relation on X. Then the following are equivalent:

@ E is (Borel) hyperfinite.

@ E is Borel liminf finite (liminf of a sequence of finite Borel equivalence
relations).

© E is induced by a Borel action of Z on X.
Q EC &
Q@ E<g b
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Borel vs Continuous Weiss Question

Let X be a standard Borel space. Let E be a countable Borel equivalence
relation on X. Then the following are equivalent:

@ E is (Borel) hyperfinite.

@ E is Borel liminf finite (liminf of a sequence of finite Borel equivalence
relations).

© E is induced by a Borel action of Z on X.
Q ECg K
Q@ E<g b

(1 < 2) immediate (1 < 3) Weiss, Slaman and Steel (1 < 4 < 5) by
Dougherty, Jackson and Kechris O
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Let’s raise the Borel Weiss question in continuous way.
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Let’s raise the Borel Weiss question in continuous way.

Definition

A topological space X is zero dimensional if it admits a clopen basis.
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Borel vs Continuous Weiss Question

Let’s raise the Borel Weiss question in continuous way.

Definition

A topological space X is zero dimensional if it admits a clopen basis.
Let a group G act on X. Then we say the action is continuous if the
action as a map from G x X to X is continuous.
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Borel vs Continuous Weiss Question

Let’s raise the Borel Weiss question in continuous way.

Definition

A topological space X is zero dimensional if it admits a clopen basis.
Let a group G act on X. Then we say the action is continuous if the
action as a map from G x X to X is continuous.

Examples
2¢, w® are zero-dimensional second countable Hausdorff spaces (in fact,
they are Polish).

| A\

\
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Borel vs Continuous Weiss Question

Let’s raise the Borel Weiss question in continuous way.

Definition

A topological space X is zero dimensional if it admits a clopen basis.
Let a group G act on X. Then we say the action is continuous if the
action as a map from G x X to X is continuous.

Examples

| A\

2¢, w® are zero-dimensional second countable Hausdorff spaces (in fact,
they are Polish).

If G is a countable discrete group, then the shift action of G on 2¢ (which
is zero-dimensional second countable Hausdorff space) is continuous,
where the action is (g - x)(h) = x(g~h)

\
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Borel vs Continuous Weiss Question

Question. continuous Weiss

Let X be a zero dimensional second countable Hausdorff space. Let G be
a countable discrete group continuously acting on X. Then is it true that
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Borel vs Continuous Weiss Question

Question. continuous Weiss

Let X be a zero dimensional second countable Hausdorff space. Let G be
a countable discrete group continuously acting on X. Then is it true that

@ EJ is continuously G-hyperfinite (increasing union of a sequence of
finite G-clopen equivalence relations on its field)

Q Eé is continuously G-liminf finite (liminf of a sequence of finite
G-clopen equivalence relations on its field)

() Eé is induced by a continuous action of Z on X.
o Eé;( =

o Eé( <c Eo
7
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Borel vs Continuous Weiss Question

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X.

o (1 = 2) and (4 = 5) are immediate.
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Borel vs Continuous Weiss Question

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X.

o (1 = 2) and (4 = 5) are immediate.
@ (1) is true when G acts on itself (X = G).

@ We show (1) is false when G is finitely generated, X is compact and
admits an hyperaperiodic element (which is true when X = 26 and
the action is shift by Gao, Jackson, Seward (2016)).
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Borel vs Continuous Weiss Question

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X.

o (1 = 2) and (4 = 5) are immediate.

@ (1) is true when G acts on itself (X = G).

@ We show (1) is false when G is finitely generated, X is compact and
admits an hyperaperiodic element (which is true when X = 26 and
the action is shift by Gao, Jackson, Seward (2016)). By similar proof,
we can show under the same condition, there is no (G-)continuous
toast on X.
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Borel vs Continuous Weiss Question

Let G be a finitely generated group with a finite generator S (without
identity) acting on a topological space X.
e {T,} is an (unlayered) toast on X iff
@ For any n, T, is a finite equivalence relation on its field and T, C Eé(.

@ U Field(T,) = X

new

© (hit or miss property) For any n < m, T,-class C and T,-class C’,
either C and C’ are disjoint or C C C’.

@ For any n € w and T,-class C, there is m > n and a T,,-class C’ such
that C C C'\oC'.
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Borel vs Continuous Weiss Question

Let G be a finitely generated group with a finite generator S (without
identity) acting on a topological space X.
e {T,} is an (unlayered) toast on X iff
@ For any n, T, is a finite equivalence relation on its field and T, C Eé.

@ U Field(T,) = X

new

© (hit or miss property) For any n < m, T,-class C and T,-class C’,
either C and C’ are disjoint or C C C’.
@ For any n € w and T,-class C, there is m > n and a T,,-class C’ such

that C C C'\oC'.
e {T,} is a layered toast on X iff {T,} is an unlayered toast and
For any n € w and T,-class C, there is a T,y1-class C’ such that
c cch\oc'.
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Borel vs Continuous Weiss Question

Let G be a finitely generated group with a finite generator S (without
identity) acting on a topological space X.
e {T,} is an (unlayered) toast on X iff
@ For any n, T, is a finite equivalence relation on its field and T, C Eé.
Q@ U Field(T,) = X

new

© (hit or miss property) For any n < m, T,-class C and T,-class C’,
either C and C’ are disjoint or C C C’.
@ For any n € w and T,-class C, there is m > n and a T,,-class C’ such
that C C C"\oC'.
e {T,} is a layered toast on X iff {T,} is an unlayered toast and
For any n € w and T,-class C, there is a T,y1-class C’ such that
c cchoc'.
@ For a toast {T,} on X,

o {T,} is Borel iff for any n € w, T, is Borel subset of X x X.
o {T,} is (G-)continuous iff for any n € w, T, is G-clopen in X.
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Borel vs Continuous Weiss Question

Figure: Layered toast
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Borel vs Continuous Weiss Question

Let G be a finitely generated group shift acting on 2. Then

© (Continuous toast cover) Is there a countable Gs cover B of 2¢ such
that any B € B is a continuous toast?

@ (Borel toast cover) Is there a countable Borel cover B of 2¢ such that
any B € B is a Borel toast?

v
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Borel vs Continuous Weiss Question

Definition

Let 1, > be definabilities and let , i be cardinals. Then G ~ X has the
u-size 1-piecewise Ip-chromatic number < k if there is a I'; cover of X
with size p such that each element of cover has the I',-chromatic number

< K.
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Definition

Let 1, > be definabilities and let , i be cardinals. Then G ~ X has the
u-size 1-piecewise Ip-chromatic number < k if there is a I'; cover of X
with size p such that each element of cover has the I',-chromatic number

< K.

Continuous chromatic number of Z" shift acting on F(2%") is 3 when
n=1 and 4 when n > 2.
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Borel vs Continuous Weiss Question

Definition

Let 1, > be definabilities and let , i be cardinals. Then G ~ X has the
u-size 1-piecewise Ip-chromatic number < k if there is a I'; cover of X
with size p such that each element of cover has the I',-chromatic number
< K.

Continuous chromatic number of Z" shift acting on F(2%") is 3 when
n=1 and 4 when n > 2.

Theorem (Jackson, Kang)

Z" shift acting on F(2%") has the finite-size Gs-piecewise continuous
chromatic number 3.
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Borel vs Continuous Weiss Question

@ We show (2) is true (and in fact it can be uniformly continuously
G-liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.
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@ We show (2) is true (and in fact it can be uniformly continuously
G-liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.

@ We show (2) is false when G has an element of infinite order and G
shift acts on X = 2°.
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@ We show (2) is true (and in fact it can be uniformly continuously
G-liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.

@ We show (2) is false when G has an element of infinite order and G
shift acts on X = 2€. In fact, we show that there doesn't exist a
G-clopen finite equivalence relation on its field containing 0.
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Borel vs Continuous Weiss Question

@ We show (2) is true (and in fact it can be uniformly continuously
G-liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.

@ We show (2) is false when G has an element of infinite order and G
shift acts on X = 2€. In fact, we show that there doesn't exist a
G-clopen finite equivalence relation on its field containing 0.
Therefore, asic(G ~ 2¢) = 0.
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@ We show (2) is true (and in fact it can be uniformly continuously
G-liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.

@ We show (2) is false when G has an element of infinite order and G
shift acts on X = 2€. In fact, we show that there doesn't exist a
G-clopen finite equivalence relation on its field containing 0.
Therefore, asic(G ~ 2¢) = co. (cf. If G is a countable discrete group
with uniform local polynomial volume growth Borel acting on a
standard Borel space X, then asdimg(G ~ X) < oo (by Conley,
Jackson, Marks, Seward and Tucker-Drob (2020))
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Borel vs Continuous Weiss Question

@ We show (2) is true (and in fact it can be uniformly continuously
G-liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.

@ We show (2) is false when G has an element of infinite order and G
shift acts on X = 2%. In fact, we show that there doesn’t exist a
G-clopen finite equivalence relation on its field containing 0.
Therefore, asic(G ~ 2¢) = co. (cf. If G is a countable discrete group
with uniform local polynomial volume growth Borel acting on a
standard Borel space X, then asdimp(G ~ X) < oo (by Conley,
Jackson, Marks, Seward and Tucker-Drob (2020))

o (Conjecture) (2) is false for any G shift acting on X = 2°.
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Borel vs Continuous Weiss Question

Let X be a second countable Hausdorff space with a countable discrete
group G continuously acting on X. Then for any d € w the following are
equivalent:
@ For any finite A C G there is a bounded G-clopen equivalence
relation E on X such that for any x € X, B(x; A) meets at most
d + 1-many E-equivalence classes.
@ For any finite A C G there is a clopen covering { Vo, V1,---, V4} of
X such that for any i =0,1,--- ,d, §a(V;) is G-clopen finite.

If any one of the above holds, we say asi.(G ~ X) < d.
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Borel vs Continuous Weiss Question

Let X be a second countable Hausdorff space with a countable discrete
group G continuously acting on X. Then for any d € w the following are
equivalent:
© For any finite A C G there is a bounded G-clopen equivalence
relation E on X such that for any x € X, B(x; A) meets at most
d + 1-many E-equivalence classes.
@ For any finite A C G there is a clopen covering {Vp, V4, -+, V4} of
X such that for any i =0,1,--- ,d, §a(V;) is G-clopen finite.

If any one of the above holds, we say asi (G ~ X) < d.

Conley, Jackson, Marks, Seward and Tucker-Drob (2020) modulo
Borel/clopen argument

VLC 2022
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Borel vs Continuous Weiss Question

@ (4) (Continuous embedding problem) is true when G =Z" (n =1 by
Boykin and Jackson, later extended to arbitrary n by Gao and
Jackson).
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@ (4) (Continuous embedding problem) is true when G =Z" (n =1 by
Boykin and Jackson, later extended to arbitrary n by Gao and
Jackson).

@ We show (4) is true when G is locally finite.
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Borel vs Continuous Weiss Question

@ (4) (Continuous embedding problem) is true when G =Z" (n =1 by
Boykin and Jackson, later extended to arbitrary n by Gao and
Jackson).

@ We show (4) is true when G is locally finite.
@ (Question) Is (4) true for G abelian? Equivalently, when G = Z<%?
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Borel vs Continuous Weiss Question

@ General Burnside Problem: If G is a finitely generated torsion group,
then is G necessarily finite?
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Borel vs Continuous Weiss Question

@ General Burnside Problem: If G is a finitely generated torsion group,
then is G necessarily finite?

@ This is proven false by Evgeny Golod and Igor Shafarevich (1964) but
it is false even for Grigorchuk group.
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then is G necessarily finite?

@ This is proven false by Evgeny Golod and Igor Shafarevich (1964) but
it is false even for Grigorchuk group.

@ General Burnside Problem is equivalent to: If G is a torsion group,
then it is locally finite.
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@ General Burnside Problem: If G is a finitely generated torsion group,
then is G necessarily finite?

@ This is proven false by Evgeny Golod and Igor Shafarevich (1964) but
it is false even for Grigorchuk group.

@ General Burnside Problem is equivalent to: If G is a torsion group,
then it is locally finite.

@ By Ching Chou, General Burnside Problem holds for any elementary
amenable group.
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Borel vs Continuous Weiss Question

@ General Burnside Problem: If G is a finitely generated torsion group,
then is G necessarily finite?

@ This is proven false by Evgeny Golod and Igor Shafarevich (1964) but
it is false even for Grigorchuk group.

@ General Burnside Problem is equivalent to: If G is a torsion group,
then it is locally finite.

@ By Ching Chou, General Burnside Problem holds for any elementary
amenable group.

@ Therefore, (4) is true when G is torsion elementary amenable group.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. An element x € X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the

free part of X.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. An element x € X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the

free part of X.

Suppose there is such {E,}, such that EX = U, En. Let X’ € X be an
hyperaperiodic element.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. An element x € X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the
free part of X.

Suppose there is such {E,}, such that EX = U, En. Let X’ € X be an
hyperaperiodic element. Consider a function f : [x/] — w such that

f(x) =the minimum n € w such that x is in the interior of an Ep-class of
X.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. An element x € X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the
free part of X.

Suppose there is such {E,}, such that EX = U, En. Let X’ € X be an
hyperaperiodic element. Consider a function f : m — w such that

f(x) =the minimum n € w such that x is in the interior of an Ep-class of
x. Since [x] is closed so compact, range of f is finite.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. An element x € X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the
free part of X.

Suppose there is such {E,}, such that EX = U, En. Let X’ € X be an
hyperaperiodic element. Consider a function f : m — w such that

f(x) =the minimum n € w such that x is in the interior of an Ep-class of
x. Since [x] is closed so compact, range of f is finite. Let ng be the
maximal number of range of f and let x” € [x] such that f(x") = no.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. An element x € X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the
free part of X.

Suppose there is such {E,}, such that EX = U, En. Let X’ € X be an
hyperaperiodic element. Consider a function f : m — w such that

f(x) =the minimum n € w such that x is in the interior of an Ep-class of
x. Since [x] is closed so compact, range of f is finite. Let ng be the
maximal number of range of f and let x” € [x] such that f(x") = no.
Since x” is in the interior, pick a point in the boundary of that equivalence
relation, and we get contradiction. O
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(2) is sometimes true

Definition
Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X.
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(2) is sometimes true

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. Then the
continuous asymtotic dimension of G acting on X is less than equal to
d € w if for any finite A C G, there is a clopen cover { Vo, V4, -, V4}
such that for any i =0,1,---d, §a(V;) is G-clopen uniformly bounded
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(2) is sometimes true

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. Then the
continuous asymtotic dimension of G acting on X is less than equal to
d € w if for any finite A C G, there is a clopen cover { Vo, V4, -, V4}
such that for any i =0,1,---d, §a(V;) is G-clopen uniformly bounded,
where an equivalence relation E is G-clopen if for any g € G the set

{x : xEg - x} is clopen.
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(2) is sometimes true

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X. Then the
continuous asymtotic dimension of G acting on X is less than equal to
d € w if for any finite A C G, there is a clopen cover { Vo, V4, -, V4}
such that for any i =0,1,---d, §a(V;) is G-clopen uniformly bounded,
where an equivalence relation E is G-clopen if for any g € G the set

{x : xEg - x} is clopen.

The definition of G-clopenness was first introduced by Gao and Jackson in
“Countable abelian group actions and hyperfinite equivalence relations”
with G = Z".
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Go back to the proofs of “Borel asymptotic dimension and hyperfinite
equivalence relations” by Conley, Jackson, Marks, Seward and
Tucker-Drob with considering G-clopen instead of Borel! Ol
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Let a € G be an element of infinite order.
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(2) is sometimes false

Let a € G be an element of infinite order. Consider the set {x : xEa - x}
where E is a G-clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a

finite set A C G.
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(2) is sometimes false

Let a € G be an element of infinite order. Consider the set {x : xEa - x}
where E is a G-clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a
finite set A C G. Define an element § in 2¢ where

5(g) = 1(If g= a_." for some n)

0 (If otherwise)
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(2) is sometimes false

Let a € G be an element of infinite order. Consider the set {x : xEa - x}
where E is a G-clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a
finite set A C G. Define an element § in 2¢ where

5(g) = 1(If g= a_." for some n)

0 (If otherwise)

from {a=™=1 a=m=2 ...} Then a™-§ =0 on A so that a™ - §Ea™ T . §,
which is a contradiction. [

. Fix large m so that A is disjoint

v,
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(2) implies (4)

Sketch of the proof) Let {E,}, realize that EX is continuously liminf finite.
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(2) implies (4)

Sketch of the proof) Let {E,}, realize that EX is continuously liminf finite.
Without loss of generality, X is G-invariant subspace of 29 ¢ (fix a clopen
basis {V,}, for X and consider the function x — xy, (g7 - x)).
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(2) implies (4)

Sketch of the proof) Let {E,}, realize that EX is continuously liminf finite.
Without loss of generality, X is G-invariant subspace of 29 ¢ (fix a clopen
basis {V,}, for X and consider the function x — x\, (g - x)). For m,n,
consider fp p : X — X where f,, 5(x) = the m-th lexicographically least
element in the orbit equivalence relation of ()", E; containing fm_1,n(x).
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(2) implies (4)

Sketch of the proof) Let {E,}, realize that EX is continuously liminf finite.
Without loss of generality, X is G-invariant subspace of 29 ¢ (fix a clopen
basis {V,}, for X and consider the function x — x\, (g - x)). For m,n,
consider fp p : X — X where f,, 5(x) = the m-th lexicographically least
element in the orbit equivalence relation of ()", E; containing fm_1,n(x).
Then if x and y are G-related, f;, m(Xx) = fm.m(y) for large m. O

o
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(2) implies (4)

fm70(X) fm’l(X) fm’z(X)

x VN

fm,O(y) fm,l()/) fm,2()/)
Y vVt

Figure: Continuously moving the points
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(4) is sometimes true

Sketch of the proof) Let {G,}, be increasing finite subgroups of G
realizing locally finiteness. Let E, be the orbit equivalence relation induced
by G,. Without loss of generality, X is G-invariant subspace of 29*¢.
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(4) is sometimes true

Sketch of the proof) Let {G,}, be increasing finite subgroups of G
realizing locally finiteness. Let E, be the orbit equivalence relation induced
by G,. Without loss of generality, X is G-invariant subspace of 2“*¢. For
m, n, consider fy , : X — X where fy, ,(x) = the m-th lexicographically
least element in the orbit equivalence relation of E, containing fy,_1 n(x).
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(4) is sometimes true

Sketch of the proof) Let {G,}, be increasing finite subgroups of G
realizing locally finiteness. Let E, be the orbit equivalence relation induced
by G,. Without loss of generality, X is G-invariant subspace of 2“*¢. For
m, n, consider fy , : X — X where fy, ,(x) = the m-th lexicographically
least element in the orbit equivalence relation of E, containing fy,_1 n(x).
Then if x and y are G-related, fp m(x) = fm.m(y) for large m. O

v
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Figure: Suslin’s Theorem

Thank you!
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