Continuous Hyperfiniteness

Hyung Mook Kang, Steve Jackson

Department of Mathematics University of North Texas

June 2025

1 Preliminary Descriptive Set Theory

2 Borel vs Continuous Weiss Question

1 Preliminary Descriptive Set Theory

Borel vs Continuous Weiss Question

A topological space X is **Polish** if it is separable, completely metrizable.

A topological space X is **Polish** if it is separable, completely metrizable. If we want to ignore the topology and only consider the σ -algebra of X (where the σ -algebra of X is the collection of subsets of X generated by open sets, complement and countable union), then X is called a **standard Borel space**.

A topological space X is **Polish** if it is separable, completely metrizable. If we want to ignore the topology and only consider the σ -algebra of X (where the σ -algebra of X is the collection of subsets of X generated by open sets, complement and countable union), then X is called a **standard Borel space**.

Examples

 $\mathbb{R}, \mathbb{C}, C[0,1], L^{p}, l^{p}(1 \leq p < \infty), 2^{\omega}(\text{Cantor space}), \omega^{\omega}(\text{Baire space})$

An equivalence relation E on X is **Borel** if it is a Borel subset of $X \times X$.

An equivalence relation E on X is **Borel** if it is a Borel subset of $X \times X$. E is **finite** if all its equivalence classes are finite.

An equivalence relation E on X is **Borel** if it is a Borel subset of $X \times X$. E is **finite** if all its equivalence classes are finite. E is **countable** if all its equivalence classes are countable.

An equivalence relation E on X is **Borel** if it is a Borel subset of $X \times X$.

E is **finite** if all its equivalence classes are finite.

E is **countable** if all its equivalence classes are countable.

E is **(Borel) hyperfinite** if it is an increasing union of a sequence of finite Borel equivalence relations.

An equivalence relation *E* on *X* is **Borel** if it is a Borel subset of $X \times X$.

E is **finite** if all its equivalence classes are finite.

E is **countable** if all its equivalence classes are countable.

E is **(Borel) hyperfinite** if it is an increasing union of a sequence of finite Borel equivalence relations.

Examples

Define the equivalence relation E_0 on 2^{ω} by $xE_0y \Leftrightarrow (\exists m)(\forall n > m) \ x(n) = y(n).$

VLC 2022

An equivalence relation *E* on *X* is **Borel** if it is a Borel subset of $X \times X$.

E is **finite** if all its equivalence classes are finite.

E is **countable** if all its equivalence classes are countable.

E is **(Borel) hyperfinite** if it is an increasing union of a sequence of finite Borel equivalence relations.

Examples

Define the equivalence relation E_0 on 2^{ω} by $xE_0y \Leftrightarrow (\exists m)(\forall n > m) \ x(n) = y(n)$. Then E_0 is hyperfinite.

VLC 2022

• By Feldman-Moore, for any countable Borel equivalence relation *E* on *X*, there is a countable group *G* Borel acting on *X* such that $E = E_G^X$.

- By Feldman-Moore, for any countable Borel equivalence relation E on X, there is a countable group G Borel acting on X such that $E = E_G^X$.
- By an action to be **Borel**, we mean the action as a map $G \times X \to X$ is a Borel map.

- By Feldman-Moore, for any countable Borel equivalence relation E on X, there is a countable group G Borel acting on X such that $E = E_G^X$.
- By an action to be **Borel**, we mean the action as a map $G \times X \to X$ is a Borel map.
- E_G^X is the induced orbit equivalence relation of the action of G on X. i.e., $xE_G^X y \Leftrightarrow \exists g \in G \ g \cdot x = y$.

- By Feldman-Moore, for any countable Borel equivalence relation E on X, there is a countable group G Borel acting on X such that E = E_G^X.
- By an action to be **Borel**, we mean the action as a map $G \times X \to X$ is a Borel map.
- E_G^X is the induced orbit equivalence relation of the action of G on X. i.e., $xE_G^X y \Leftrightarrow \exists g \in G \ g \cdot x = y$.
- From this, Kechris et al. expanded the theory of countable Borel equivalence relations, which has since become a thriving area.

Let X, Y be a standard Borel spaces with a Borel equivalence relations E, F on X, Y respectively. Then

Let X, Y be a standard Borel spaces with a Borel equivalence relations E, F on X, Y respectively. Then

• *E* is Borel reducible to *F* ($E \leq_{\mathbb{B}} F$) if there is a Borel map $f : X \to Y$ such that for any $x, y \in X$, $xEy \Leftrightarrow f(x)Ff(y)$.

- Let X, Y be a standard Borel spaces with a Borel equivalence relations E, F on X, Y respectively. Then
 - *E* is Borel reducible to *F* ($E \leq_{\mathbb{B}} F$) if there is a Borel map $f : X \to Y$ such that for any $x, y \in X$, $xEy \Leftrightarrow f(x)Ff(y)$.
 - E is Borel embeddable to F (E ⊑_B F) if there is an injective Borel map f : X → Y which Borel reduces E to F.

Let X, Y be a standard Borel spaces with a Borel equivalence relations E, F on X, Y respectively. Then

- *E* is Borel reducible to *F* ($E \leq_{\mathbb{B}} F$) if there is a Borel map $f : X \to Y$ such that for any $x, y \in X$, $xEy \Leftrightarrow f(x)Ff(y)$.
- E is Borel embeddable to F (E ⊑_B F) if there is an injective Borel map f : X → Y which Borel reduces E to F.

Comparing the Borel complexities of various Borel equivalence relations has recently been a booming area.

Preliminary Descriptive Set Theory

2 Borel vs Continuous Weiss Question

< 円

Let X be a standard Borel space. Let G be a countable discrete amenable group Borel acting on X. Then E_G^X is hyperfinite?

Let X be a standard Borel space. Let G be a countable discrete amenable group Borel acting on X. Then E_G^X is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

Let X be a standard Borel space. Let G be a countable discrete amenable group Borel acting on X. Then E_G^X is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

• Weiss (1984) proved when $G = \mathbb{Z}^n$.

Let X be a standard Borel space. Let G be a countable discrete amenable group Borel acting on X. Then E_G^X is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

- Weiss (1984) proved when $G = \mathbb{Z}^n$.
- Gao and Jackson (2015) proved when G is countable Abelian.

Let X be a standard Borel space. Let G be a countable discrete amenable group Borel acting on X. Then E_G^X is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

- Weiss (1984) proved when $G = \mathbb{Z}^n$.
- Gao and Jackson (2015) proved when G is countable Abelian.
- Schneider and Steward (2013) proved when G is locally nilpotent.

Let X be a standard Borel space. Let G be a countable discrete amenable group Borel acting on X. Then E_G^X is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

- Weiss (1984) proved when $G = \mathbb{Z}^n$.
- Gao and Jackson (2015) proved when G is countable Abelian.
- Schneider and Steward (2013) proved when G is locally nilpotent.
- Conley, Jackson, Marks, Seward and Tucker-Drob (2020) proved when G is polycyclic.

Theorem

Let X be a standard Borel space. Let E be a countable Borel equivalence relation on X. Then the following are equivalent:

Theorem

Let X be a standard Borel space. Let E be a countable Borel equivalence relation on X. Then the following are equivalent:

- *E* is (Borel) hyperfinite.
- *E* is Borel limit finite (limit of a sequence of finite Borel equivalence relations).
- **③** *E* is induced by a Borel action of \mathbb{Z} on *X*.
- $\bullet E \leq_{\mathbb{B}} E_0$

Theorem

Let X be a standard Borel space. Let E be a countable Borel equivalence relation on X. Then the following are equivalent:

- *E* is (Borel) hyperfinite.
- *E* is Borel limit finite (limit of a sequence of finite Borel equivalence relations).
- *E* is induced by a Borel action of \mathbb{Z} on *X*.
- $\bullet E \leq_{\mathbb{B}} E_0$

Proof.

 $(1 \Leftrightarrow 2)$ immediate $(1 \Leftrightarrow 3)$ Weiss, Slaman and Steel $(1 \Leftrightarrow 4 \Leftrightarrow 5)$ by Dougherty, Jackson and Kechris

Hyung Mook Kang, Steve Jackson (UNT)

Borel vs Continuous Weiss Question

Let's raise the Borel Weiss question in continuous way.

Definition

A topological space X is zero dimensional if it admits a clopen basis.

Definition

A topological space X is **zero dimensional** if it admits a clopen basis. Let a group G act on X. Then we say the action is **continuous** if the action as a map from $G \times X$ to X is continuous.

Definition

A topological space X is **zero dimensional** if it admits a clopen basis. Let a group G act on X. Then we say the action is **continuous** if the action as a map from $G \times X$ to X is continuous.

Examples

 $2^{\omega},~\omega^{\omega}$ are zero-dimensional second countable Hausdorff spaces (in fact, they are Polish).

Definition

A topological space X is **zero dimensional** if it admits a clopen basis. Let a group G act on X. Then we say the action is **continuous** if the action as a map from $G \times X$ to X is continuous.

Examples

 2^{ω} , ω^{ω} are zero-dimensional second countable Hausdorff spaces (in fact, they are Polish). If G is a countable discrete group, then the shift action of G on 2^{G} (which is zero-dimensional second countable Hausdorff space) is continuous, where the action is $(g \cdot x)(h) = x(g^{-1}h)$

11/30

イロト イヨト イヨト イヨト

Question. continuous Weiss

Let X be a zero dimensional second countable Hausdorff space. Let G be a countable discrete group continuously acting on X. Then is it true that

Question. continuous Weiss

Let X be a zero dimensional second countable Hausdorff space. Let G be a countable discrete group continuously acting on X. Then is it true that

- E_G^X is continuously G-hyperfinite (increasing union of a sequence of finite G-clopen equivalence relations on its field)
- **2** E_G^X is continuously *G*-liminf finite (liminf of a sequence of finite *G*-clopen equivalence relations on its field)
- E_G^X is induced by a continuous action of \mathbb{Z} on X.

$$I_G^X \sqsubseteq_c E_0$$

$$\bullet E_G^X \leq_c E_G$$

2

VLC 2022

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X.

• (1 \Rightarrow 2) and (4 \Rightarrow 5) are immediate.

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X.

- (1 \Rightarrow 2) and (4 \Rightarrow 5) are immediate.
- (1) is true when G acts on itself (X = G).
- We show (1) is false when G is finitely generated, X is compact and admits an hyperaperiodic element (which is true when $X = 2^{G}$ and the action is shift by Gao, Jackson, Seward (2016)).

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X.

- (1 \Rightarrow 2) and (4 \Rightarrow 5) are immediate.
- (1) is true when G acts on itself (X = G).
- We show (1) is false when G is finitely generated, X is compact and admits an hyperaperiodic element (which is true when $X = 2^{G}$ and the action is shift by Gao, Jackson, Seward (2016)). By similar proof, we can show under the same condition, there is no (G-)continuous toast on X.

Definition

Let G be a finitely generated group with a finite generator S (without identity) acting on a topological space X.

- $\{T_n\}$ is an (unlayered) toast on X iff
 - **(**) For any *n*, T_n is a finite equivalence relation on its field and $T_n \subseteq E_G^X$.
 - $\bigcup_{n\in\omega}\operatorname{Field}(T_n)=X$
 - (hit or miss property) For any n < m, T_n -class C and T_m -class C', either C and C' are disjoint or $C \subseteq C'$.
 - For any $n \in \omega$ and T_n -class C, there is m > n and a T_m -class C' such that $C \subseteq C' \setminus \partial C'$.

Definition

Let G be a finitely generated group with a finite generator S (without identity) acting on a topological space X.

- $\{T_n\}$ is an (unlayered) toast on X iff
 - **(**) For any *n*, T_n is a finite equivalence relation on its field and $T_n \subseteq E_G^X$.
 - $\bigcup_{n\in\omega}\operatorname{Field}(T_n)=X$
 - (hit or miss property) For any n < m, T_n -class C and T_m -class C', either C and C' are disjoint or $C \subseteq C'$.
 - For any $n \in \omega$ and T_n -class C, there is m > n and a T_m -class C' such that $C \subseteq C' \setminus \partial C'$.
- $\{T_n\}$ is a layered toast on X iff $\{T_n\}$ is an unlayered toast and For any $n \in \omega$ and T_n -class C, there is a T_{n+1} -class C' such that $C \subseteq C' \setminus \partial C'$.

Definition

Let G be a finitely generated group with a finite generator S (without identity) acting on a topological space X.

- $\{T_n\}$ is an (unlayered) toast on X iff
 - **(**) For any *n*, T_n is a finite equivalence relation on its field and $T_n \subseteq E_G^X$.
 - $\bigcup_{n\in\omega}\operatorname{Field}(T_n)=X$
 - (hit or miss property) For any n < m, T_n -class C and T_m -class C', either C and C' are disjoint or $C \subseteq C'$.
 - For any $n \in \omega$ and T_n -class C, there is m > n and a T_m -class C' such that $C \subseteq C' \setminus \partial C'$.
- $\{T_n\}$ is a layered toast on X iff $\{T_n\}$ is an unlayered toast and For any $n \in \omega$ and T_n -class C, there is a T_{n+1} -class C' such that $C \subseteq C' \setminus \partial C'$.
- For a toast $\{T_n\}$ on X,
 - $\{T_n\}$ is Borel iff for any $n \in \omega$, T_n is Borel subset of $X \times X$.
 - $\{T_n\}$ is (G-)continuous iff for any $n \in \omega$, T_n is G-clopen in X.

Figure: Layered toast

Hyung Mook Kang, Steve Jackson (UNT)

Continuous Hyperfiniteness

VLC 2022

5 / 30

Question

Let G be a finitely generated group shift acting on 2^{G} . Then

- (Continuous toast cover) Is there a countable G_{δ} cover \mathcal{B} of 2^{G} such that any $B \in \mathcal{B}$ is a continuous toast?
- ② (Borel toast cover) is there a countable Borel cover \mathcal{B} of 2^{*G*} such that any *B* ∈ \mathcal{B} is a Borel toast?

Let Γ_1 , Γ_2 be definabilities and let κ , μ be cardinals. Then $G \curvearrowright X$ has the μ -size Γ_1 -piecewise Γ_2 -chromatic number $\leq \kappa$ if there is a Γ_1 cover of X with size μ such that each element of cover has the Γ_2 -chromatic number $\leq \kappa$.

Let Γ_1 , Γ_2 be definabilities and let κ , μ be cardinals. Then $G \curvearrowright X$ has the μ -size Γ_1 -piecewise Γ_2 -chromatic number $\leq \kappa$ if there is a Γ_1 cover of X with size μ such that each element of cover has the Γ_2 -chromatic number $\leq \kappa$.

Folklore

Continuous chromatic number of \mathbb{Z}^n shift acting on $F(2^{\mathbb{Z}^n})$ is 3 when n = 1 and 4 when $n \ge 2$.

17 / 30

Let Γ_1 , Γ_2 be definabilities and let κ , μ be cardinals. Then $G \curvearrowright X$ has the μ -size Γ_1 -piecewise Γ_2 -chromatic number $\leq \kappa$ if there is a Γ_1 cover of X with size μ such that each element of cover has the Γ_2 -chromatic number $\leq \kappa$.

Folklore

Continuous chromatic number of \mathbb{Z}^n shift acting on $F(2^{\mathbb{Z}^n})$ is 3 when n = 1 and 4 when $n \ge 2$.

Theorem (Jackson, Kang)

 \mathbb{Z}^n shift acting on $F(2^{\mathbb{Z}^n})$ has the finite-size G_{δ} -piecewise continuous chromatic number 3.

17 / 30

イロト イヨト イヨト ・

• We show (2) is true (and in fact it can be uniformly continuously *G*-liminf finite) when the action is free and *G* is a union of groups with finite asymptotic dimensions.

- We show (2) is true (and in fact it can be uniformly continuously *G*-liminf finite) when the action is free and *G* is a union of groups with finite asymptotic dimensions.
- We show (2) is false when G has an element of infinite order and G shift acts on $X = 2^G$.

- We show (2) is true (and in fact it can be uniformly continuously *G*-liminf finite) when the action is free and *G* is a union of groups with finite asymptotic dimensions.
- We show (2) is false when G has an element of infinite order and G shift acts on $X = 2^{G}$. In fact, we show that there doesn't exist a G-clopen finite equivalence relation on its field containing **0**.

- We show (2) is true (and in fact it can be uniformly continuously *G*-liminf finite) when the action is free and *G* is a union of groups with finite asymptotic dimensions.
- We show (2) is false when G has an element of infinite order and G shift acts on X = 2^G. In fact, we show that there doesn't exist a G-clopen finite equivalence relation on its field containing **0**. Therefore, asi_c(G ∩ 2^G) = ∞.

- We show (2) is true (and in fact it can be uniformly continuously *G*-liminf finite) when the action is free and *G* is a union of groups with finite asymptotic dimensions.
- We show (2) is false when G has an element of infinite order and G shift acts on $X = 2^{G}$. In fact, we show that there doesn't exist a G-clopen finite equivalence relation on its field containing **0**. Therefore, $\operatorname{asi}_{c}(G \curvearrowright 2^{G}) = \infty$. (cf. If G is a countable discrete group with uniform local polynomial volume growth Borel acting on a standard Borel space X, then $\operatorname{asdim}_{\mathbb{B}}(G \curvearrowright X) < \infty$ (by Conley, Jackson, Marks, Seward and Tucker-Drob (2020))

- We show (2) is true (and in fact it can be uniformly continuously *G*-liminf finite) when the action is free and *G* is a union of groups with finite asymptotic dimensions.
- We show (2) is false when G has an element of infinite order and G shift acts on X = 2^G. In fact, we show that there doesn't exist a G-clopen finite equivalence relation on its field containing 0. Therefore, asi_c(G へ 2^G) = ∞. (cf. If G is a countable discrete group with uniform local polynomial volume growth Borel acting on a standard Borel space X, then asdim_B(G へ X) < ∞ (by Conley, Jackson, Marks, Seward and Tucker-Drob (2020))
- (Conjecture) (2) is false for any G shift acting on $X = 2^{G}$.

Lemma

Let X be a second countable Hausdorff space with a countable discrete group G continuously acting on X. Then for any $d \in \omega$ the following are equivalent:

- For any finite A ⊆ G there is a bounded G-clopen equivalence relation E on X such that for any x ∈ X, B(x; A) meets at most d + 1-many E-equivalence classes.
- For any finite A ⊆ G there is a clopen covering {V₀, V₁, · · · , V_d} of X such that for any i = 0, 1, · · · , d, ℑ_A(V_i) is G-clopen finite.

If any one of the above holds, we say $\operatorname{asi}_c(G \curvearrowright X) \leq d$.

Lemma

Let X be a second countable Hausdorff space with a countable discrete group G continuously acting on X. Then for any $d \in \omega$ the following are equivalent:

- For any finite A ⊆ G there is a bounded G-clopen equivalence relation E on X such that for any x ∈ X, B(x; A) meets at most d + 1-many E-equivalence classes.
- For any finite A ⊆ G there is a clopen covering {V₀, V₁, · · · , V_d} of X such that for any i = 0, 1, · · · , d, ℑ_A(V_i) is G-clopen finite.

If any one of the above holds, we say $\operatorname{asi}_c(G \curvearrowright X) \leq d$.

Proof.

Conley, Jackson, Marks, Seward and Tucker-Drob (2020) modulo Borel/clopen argument

< 1 k

• (4) (Continuous embedding problem) is true when $G = \mathbb{Z}^n$ (n = 1 by Boykin and Jackson, later extended to arbitrary n by Gao and Jackson).

- (4) (Continuous embedding problem) is true when $G = \mathbb{Z}^n$ (n = 1 by Boykin and Jackson, later extended to arbitrary n by Gao and Jackson).
- We show (4) is true when G is locally finite.

- (4) (Continuous embedding problem) is true when $G = \mathbb{Z}^n$ (n = 1 by Boykin and Jackson, later extended to arbitrary n by Gao and Jackson).
- We show (4) is true when G is locally finite.
- (Question) Is (4) true for G abelian? Equivalently, when $G = \mathbb{Z}^{<\omega}$?

• General Burnside Problem: If G is a finitely generated torsion group, then is G necessarily finite?

- General Burnside Problem: If G is a finitely generated torsion group, then is G necessarily finite?
- This is proven false by Evgeny Golod and Igor Shafarevich (1964) but it is false even for Grigorchuk group.

- General Burnside Problem: If G is a finitely generated torsion group, then is G necessarily finite?
- This is proven false by Evgeny Golod and Igor Shafarevich (1964) but it is false even for Grigorchuk group.
- General Burnside Problem is equivalent to: If G is a torsion group, then it is locally finite.

- General Burnside Problem: If G is a finitely generated torsion group, then is G necessarily finite?
- This is proven false by Evgeny Golod and Igor Shafarevich (1964) but it is false even for Grigorchuk group.
- General Burnside Problem is equivalent to: If G is a torsion group, then it is locally finite.
- By Ching Chou, General Burnside Problem holds for any elementary amenable group.

- General Burnside Problem: If G is a finitely generated torsion group, then is G necessarily finite?
- This is proven false by Evgeny Golod and Igor Shafarevich (1964) but it is false even for Grigorchuk group.
- General Burnside Problem is equivalent to: If G is a torsion group, then it is locally finite.
- By Ching Chou, General Burnside Problem holds for any elementary amenable group.
- Therefore, (4) is true when G is torsion elementary amenable group.

Preliminary Descriptive Set Theory

Borel vs Continuous Weiss Question

< 円

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X.

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. An element $x \in X$ is **hyperaperiodic** if the closure of the orbit equivalence class of x is in the free part of X.

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. An element $x \in X$ is **hyperaperiodic** if the closure of the orbit equivalence class of x is in the free part of X.

Proof.

Suppose there is such $\{E_n\}_n$ such that $E_G^X = \bigcup_n E_n$. Let $x' \in X$ be an hyperaperiodic element.

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. An element $x \in X$ is **hyperaperiodic** if the closure of the orbit equivalence class of x is in the free part of X.

Proof.

Suppose there is such $\{E_n\}_n$ such that $E_G^X = \bigcup_n E_n$. Let $x' \in X$ be an hyperaperiodic element. Consider a function $f : [x'] \to \omega$ such that f(x) =the minimum $n \in \omega$ such that x is in the interior of an E_n -class of x.

< □ > < □ > < □ > < □ > < □ > < □ >

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. An element $x \in X$ is **hyperaperiodic** if the closure of the orbit equivalence class of x is in the free part of X.

Proof.

Suppose there is such $\{E_n\}_n$ such that $E_G^X = \bigcup_n E_n$. Let $x' \in X$ be an hyperaperiodic element. Consider a function $f: \overline{[x']} \to \omega$ such that f(x) =the minimum $n \in \omega$ such that x is in the interior of an E_n -class of x. Since $\overline{[x']}$ is closed so compact, range of f is finite.

< □ > < □ > < □ > < □ > < □ > < □ >

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. An element $x \in X$ is **hyperaperiodic** if the closure of the orbit equivalence class of x is in the free part of X.

Proof.

Suppose there is such $\{E_n\}_n$ such that $E_G^X = \bigcup_n E_n$. Let $x' \in X$ be an hyperaperiodic element. Consider a function $f : [x'] \to \omega$ such that f(x) =the minimum $n \in \omega$ such that x is in the interior of an E_n -class of x. Since [x'] is closed so compact, range of f is finite. Let n_0 be the maximal number of range of f and let $x'' \in [x']$ such that $f(x'') = n_0$.

A D N A B N A B N A B N

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. An element $x \in X$ is **hyperaperiodic** if the closure of the orbit equivalence class of x is in the free part of X.

Proof.

Suppose there is such $\{E_n\}_n$ such that $E_G^X = \bigcup_n E_n$. Let $x' \in X$ be an hyperaperiodic element. Consider a function $f : [x'] \to \omega$ such that f(x) = the minimum $n \in \omega$ such that x is in the interior of an E_n -class of x. Since $\overline{[x']}$ is closed so compact, range of f is finite. Let n_0 be the maximal number of range of f and let $x'' \in \overline{[x']}$ such that $f(x'') = n_0$. Since x'' is in the interior, pick a point in the boundary of that equivalence relation, and we get contradiction.

A D N A B N A B N A B N

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X.

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. Then the **continuous asymtotic dimension** of G acting on X is less than equal to $d \in \omega$ if for any finite $A \subseteq G$, there is a clopen cover $\{V_0, V_1, \dots, V_d\}$ such that for any $i = 0, 1, \dots, d$, $\mathfrak{F}_A(V_i)$ is G-clopen uniformly bounded

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. Then the **continuous asymtotic dimension** of G acting on X is less than equal to $d \in \omega$ if for any finite $A \subseteq G$, there is a clopen cover $\{V_0, V_1, \dots, V_d\}$ such that for any $i = 0, 1, \dots d$, $\mathfrak{F}_A(V_i)$ is G-clopen uniformly bounded, where an equivalence relation E is G-clopen if for any $g \in G$ the set $\{x : xEg \cdot x\}$ is clopen.

Let X be a zero dimensional second countable Hausdorff space with a countable discrete group G continuously acting on X. Then the **continuous asymtotic dimension** of G acting on X is less than equal to $d \in \omega$ if for any finite $A \subseteq G$, there is a clopen cover $\{V_0, V_1, \dots, V_d\}$ such that for any $i = 0, 1, \dots, d$, $\mathfrak{F}_A(V_i)$ is G-clopen uniformly bounded, where an equivalence relation E is G-clopen if for any $g \in G$ the set $\{x : xEg \cdot x\}$ is clopen.

The definition of *G*-clopenness was first introduced by Gao and Jackson in "Countable abelian group actions and hyperfinite equivalence relations" with $G = \mathbb{Z}^n$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Go back to the proofs of "Borel asymptotic dimension and hyperfinite equivalence relations" by Conley, Jackson, Marks, Seward and Tucker-Drob with considering *G*-clopen instead of Borel!

Let $a \in G$ be an element of infinite order.

э

26 / 30

Let $a \in G$ be an element of infinite order. Consider the set $\{x : xEa \cdot x\}$ where E is a G-clopen finite equivalence relation on its domain containing **0**. This set contains **0** and since this set is clopen, it is determined by a finite set $A \subseteq G$.

Let $a \in G$ be an element of infinite order. Consider the set $\{x : xEa \cdot x\}$ where E is a G-clopen finite equivalence relation on its domain containing **0**. This set contains **0** and since this set is clopen, it is determined by a finite set $A \subseteq G$. Define an element δ in 2^G where $\delta(g) = \begin{cases} 1 \text{ (If } g = a^{-n} \text{ for some } n) \\ 0 \text{ (If otherwise)} \end{cases}$

Let $a \in G$ be an element of infinite order. Consider the set $\{x : xEa \cdot x\}$ where E is a G-clopen finite equivalence relation on its domain containing **0**. This set contains **0** and since this set is clopen, it is determined by a finite set $A \subseteq G$. Define an element δ in 2^G where $\delta(g) = \begin{cases} 1 \text{ (If } g = a^{-n} \text{ for some } n) \\ 0 \text{ (If otherwise)} \end{cases}$. Fix large m so that A is disjoint from $\{a^{-m-1}, a^{-m-2}, \cdots\}$. Then $a^m \cdot \delta = 0$ on A so that $a^m \cdot \delta Ea^{m+1} \cdot \delta$, which is a contradiction.

Sketch of the proof) Let $\{E_n\}_n$ realize that E_G^X is continuously limit finite.

→ < ∃ →</p>

æ

27 / 30

Sketch of the proof) Let $\{E_n\}_n$ realize that E_G^X is continuously liminf finite. Without loss of generality, X is G-invariant subspace of $2^{\omega \times G}$ (fix a clopen basis $\{V_n\}_n$ for X and consider the function $x \mapsto \chi_{V_n}(g^{-1} \cdot x)$).

Sketch of the proof) Let $\{E_n\}_n$ realize that E_G^X is continuously limit finite. Without loss of generality, X is G-invariant subspace of $2^{\omega \times G}$ (fix a clopen basis $\{V_n\}_n$ for X and consider the function $x \mapsto \chi_{V_n}(g^{-1} \cdot x)$). For m, n, consider $f_{m,n} : X \to X$ where $f_{m,n}(x)$ = the *m*-th lexicographically least element in the orbit equivalence relation of $\bigcap_{l=n}^m E_l$ containing $f_{m-1,n}(x)$.

Sketch of the proof) Let $\{E_n\}_n$ realize that E_G^X is continuously liminf finite. Without loss of generality, X is G-invariant subspace of $2^{\omega \times G}$ (fix a clopen basis $\{V_n\}_n$ for X and consider the function $x \mapsto \chi_{V_n}(g^{-1} \cdot x)$). For m, n, consider $f_{m,n} : X \to X$ where $f_{m,n}(x) =$ the m-th lexicographically least element in the orbit equivalence relation of $\bigcap_{l=n}^m E_l$ containing $f_{m-1,n}(x)$. Then if x and y are G-related, $f_{m,m}(x) = f_{m,m}(y)$ for large m.

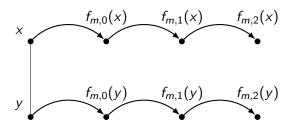


Figure: Continuously moving the points

< □ > < 同 > < 回 > < 回 > < 回 >

э

Sketch of the proof) Let $\{G_n\}_n$ be increasing finite subgroups of G realizing locally finiteness. Let E_n be the orbit equivalence relation induced by G_n . Without loss of generality, X is G-invariant subspace of $2^{\omega \times G}$.

Sketch of the proof) Let $\{G_n\}_n$ be increasing finite subgroups of G realizing locally finiteness. Let E_n be the orbit equivalence relation induced by G_n . Without loss of generality, X is G-invariant subspace of $2^{\omega \times G}$. For m, n, consider $f_{m,n} : X \to X$ where $f_{m,n}(x) =$ the *m*-th lexicographically least element in the orbit equivalence relation of E_m containing $f_{m-1,n}(x)$.

Sketch of the proof) Let $\{G_n\}_n$ be increasing finite subgroups of G realizing locally finiteness. Let E_n be the orbit equivalence relation induced by G_n . Without loss of generality, X is G-invariant subspace of $2^{\omega \times G}$. For m, n, consider $f_{m,n} : X \to X$ where $f_{m,n}(x) =$ the m-th lexicographically least element in the orbit equivalence relation of E_m containing $f_{m-1,n}(x)$. Then if x and y are G-related, $f_{m,m}(x) = f_{m,m}(y)$ for large m.

Figure: Suslin's Theorem

Thank you!

Image: A mathematical states and a mathem

æ