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Preliminary Descriptive Set Theory

Definition

A topological space X is Polish if it is separable, completely metrizable.

If we want to ignore the topology and only consider the σ-algebra of X
(where the σ-algebra of X is the collection of subsets of X generated by
open sets, complement and countable union), then X is called a standard
Borel space.

Examples

R,C,C [0, 1], Lp, lp(1 ≤ p < ∞), 2ω(Cantor space), ωω(Baire space)
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Preliminary Descriptive Set Theory

Definition

An equivalence relation E on X is Borel if it is a Borel subset of X × X .

E is finite if all its equivalence classes are finite.
E is countable if all its equivalence classes are countable.
E is (Borel) hyperfinite if it is an increasing union of a sequence of finite
Borel equivalence relations.

Examples

Define the equivalence relation E0 on 2ω by
xE0y ⇔ (∃m)(∀n > m) x(n) = y(n).
Then E0 is hyperfinite.
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Preliminary Descriptive Set Theory

By Feldman-Moore, for any countable Borel equivalence relation E on
X , there is a countable group G Borel acting on X such that E = EX

G .

By an action to be Borel, we mean the action as a map G × X → X
is a Borel map.

EX
G is the induced orbit equivalence relation of the action of G on X .

i.e., xEX
G y ⇔ ∃g ∈ G g · x = y .

From this, Kechris et al. expanded the theory of countable Borel
equivalence relations, which has since become a thriving area.
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Preliminary Descriptive Set Theory

Definition

Let X , Y be a standard Borel spaces with a Borel equivalence relations E ,
F on X , Y respectively. Then

E is Borel reducible to F (E ≤B F ) if there is a Borel map f : X → Y
such that for any x , y ∈ X , xEy ⇔ f (x)Ff (y).

E is Borel embeddable to F (E ⊑B F ) if there is an injective Borel
map f : X → Y which Borel reduces E to F .

Comparing the Borel complexities of various Borel equivalence relations
has recently been a booming area.
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Borel vs Continuous Weiss Question

Question. Weiss (1984)

Let X be a standard Borel space. Let G be a countable discrete amenable
group Borel acting on X . Then EX

G is hyperfinite?

This has been one of the biggest open problems in Descriptive Set Theory.

Weiss (1984) proved when G = Zn.

Gao and Jackson (2015) proved when G is countable Abelian.

Schneider and Steward (2013) proved when G is locally nilpotent.

Conley, Jackson, Marks, Seward and Tucker-Drob (2020) proved
when G is polycyclic.
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Borel vs Continuous Weiss Question

Theorem

Let X be a standard Borel space. Let E be a countable Borel equivalence
relation on X . Then the following are equivalent:

1 E is (Borel) hyperfinite.

2 E is Borel liminf finite (liminf of a sequence of finite Borel equivalence
relations).

3 E is induced by a Borel action of Z on X .

4 E ⊑B E0

5 E ≤B E0

Proof.

(1 ⇔ 2) immediate (1 ⇔ 3) Weiss, Slaman and Steel (1 ⇔ 4 ⇔ 5) by
Dougherty, Jackson and Kechris
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Borel vs Continuous Weiss Question

Let’s raise the Borel Weiss question in continuous way.

Definition

A topological space X is zero dimensional if it admits a clopen basis.
Let a group G act on X . Then we say the action is continuous if the
action as a map from G × X to X is continuous.

Examples

2ω, ωω are zero-dimensional second countable Hausdorff spaces (in fact,
they are Polish).
If G is a countable discrete group, then the shift action of G on 2G (which
is zero-dimensional second countable Hausdorff space) is continuous,
where the action is (g · x)(h) = x(g−1h)
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Borel vs Continuous Weiss Question

Question. continuous Weiss

Let X be a zero dimensional second countable Hausdorff space. Let G be
a countable discrete group continuously acting on X . Then is it true that

1 EX
G is continuously G -hyperfinite (increasing union of a sequence of

finite G -clopen equivalence relations on its field)

2 EX
G is continuously G -liminf finite (liminf of a sequence of finite

G -clopen equivalence relations on its field)

3 EX
G is induced by a continuous action of Z on X .

4 EX
G ⊑c E0

5 EX
G ≤c E0

?
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Borel vs Continuous Weiss Question

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X .

(1 ⇒ 2) and (4 ⇒ 5) are immediate.

(1) is true when G acts on itself (X = G ).

We show (1) is false when G is finitely generated, X is compact and
admits an hyperaperiodic element (which is true when X = 2G and
the action is shift by Gao, Jackson, Seward (2016)). By similar proof,
we can show under the same condition, there is no (G -)continuous
toast on X .
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Borel vs Continuous Weiss Question

Definition

Let G be a finitely generated group with a finite generator S (without
identity) acting on a topological space X .

{Tn} is an (unlayered) toast on X iff
1 For any n, Tn is a finite equivalence relation on its field and Tn ⊆ EX

G .
2

⋃
n∈ω

Field(Tn) = X

3 (hit or miss property) For any n < m, Tn-class C and Tm-class C
′,

either C and C ′ are disjoint or C ⊆ C ′.
4 For any n ∈ ω and Tn-class C , there is m > n and a Tm-class C

′ such
that C ⊆ C ′\∂C ′.

{Tn} is a layered toast on X iff {Tn} is an unlayered toast and
For any n ∈ ω and Tn-class C , there is a Tn+1-class C

′ such that
C ⊆ C ′\∂C ′.

For a toast {Tn} on X ,

{Tn} is Borel iff for any n ∈ ω, Tn is Borel subset of X × X .
{Tn} is (G -)continuous iff for any n ∈ ω, Tn is G -clopen in X .

Hyung Mook Kang, Steve Jackson (UNT) Continuous Hyperfiniteness VLC 2022 14 / 30
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Borel vs Continuous Weiss Question

Figure: Layered toast
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Borel vs Continuous Weiss Question

Question

Let G be a finitely generated group shift acting on 2G . Then

1 (Continuous toast cover) Is there a countable Gδ cover B of 2G such
that any B ∈ B is a continuous toast?

2 (Borel toast cover) Is there a countable Borel cover B of 2G such that
any B ∈ B is a Borel toast?

Hyung Mook Kang, Steve Jackson (UNT) Continuous Hyperfiniteness VLC 2022 16 / 30



Borel vs Continuous Weiss Question

Definition

Let Γ1, Γ2 be definabilities and let κ, µ be cardinals. Then G ↷ X has the
µ-size Γ1-piecewise Γ2-chromatic number ≤ κ if there is a Γ1 cover of X
with size µ such that each element of cover has the Γ2-chromatic number
≤ κ.

Folklore

Continuous chromatic number of Zn shift acting on F (2Z
n
) is 3 when

n = 1 and 4 when n ≥ 2.

Theorem (Jackson, Kang)

Zn shift acting on F (2Z
n
) has the finite-size Gδ-piecewise continuous

chromatic number 3.
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Borel vs Continuous Weiss Question

We show (2) is true (and in fact it can be uniformly continuously
G -liminf finite) when the action is free and G is a union of groups
with finite asymptotic dimensions.

We show (2) is false when G has an element of infinite order and G
shift acts on X = 2G . In fact, we show that there doesn’t exist a
G -clopen finite equivalence relation on its field containing 0.
Therefore, asic(G ↷ 2G ) = ∞. (cf. If G is a countable discrete group
with uniform local polynomial volume growth Borel acting on a
standard Borel space X , then asdimB(G ↷ X ) < ∞ (by Conley,
Jackson, Marks, Seward and Tucker-Drob (2020))

(Conjecture) (2) is false for any G shift acting on X = 2G .
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Borel vs Continuous Weiss Question

Lemma

Let X be a second countable Hausdorff space with a countable discrete
group G continuously acting on X . Then for any d ∈ ω the following are
equivalent:

1 For any finite A ⊆ G there is a bounded G -clopen equivalence
relation E on X such that for any x ∈ X , B(x ;A) meets at most
d + 1-many E -equivalence classes.

2 For any finite A ⊆ G there is a clopen covering {V0,V1, · · · ,Vd} of
X such that for any i = 0, 1, · · · , d , FA(Vi ) is G -clopen finite.

If any one of the above holds, we say asic(G ↷ X ) ≤ d .

Proof.

Conley, Jackson, Marks, Seward and Tucker-Drob (2020) modulo
Borel/clopen argument
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Borel vs Continuous Weiss Question

(4) (Continuous embedding problem) is true when G = Zn (n = 1 by
Boykin and Jackson, later extended to arbitrary n by Gao and
Jackson).

We show (4) is true when G is locally finite.

(Question) Is (4) true for G abelian? Equivalently, when G = Z<ω?
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Borel vs Continuous Weiss Question

General Burnside Problem: If G is a finitely generated torsion group,
then is G necessarily finite?

This is proven false by Evgeny Golod and Igor Shafarevich (1964) but
it is false even for Grigorchuk group.

General Burnside Problem is equivalent to: If G is a torsion group,
then it is locally finite.

By Ching Chou, General Burnside Problem holds for any elementary
amenable group.

Therefore, (4) is true when G is torsion elementary amenable group.
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(1) is sometimes false

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X .

An element x ∈ X
is hyperaperiodic if the closure of the orbit equivalence class of x is in the
free part of X .

Proof.

Suppose there is such {En}n such that EX
G =

⋃
n En. Let x

′ ∈ X be an

hyperaperiodic element. Consider a function f : [x ′] → ω such that
f (x) =the minimum n ∈ ω such that x is in the interior of an En-class of
x . Since [x ′] is closed so compact, range of f is finite. Let n0 be the
maximal number of range of f and let x ′′ ∈ [x ′] such that f (x ′′) = n0.
Since x ′′ is in the interior, pick a point in the boundary of that equivalence
relation, and we get contradiction.
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(2) is sometimes true

Definition

Let X be a zero dimensional second countable Hausdorff space with a
countable discrete group G continuously acting on X .

Then the
continuous asymtotic dimension of G acting on X is less than equal to
d ∈ ω if for any finite A ⊆ G , there is a clopen cover {V0,V1, · · · ,Vd}
such that for any i = 0, 1, · · · d , FA(Vi ) is G -clopen uniformly bounded,
where an equivalence relation E is G -clopen if for any g ∈ G the set
{x : xEg · x} is clopen.

The definition of G -clopenness was first introduced by Gao and Jackson in
“Countable abelian group actions and hyperfinite equivalence relations”
with G = Zn.
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(2) is sometimes true

Proof.

Go back to the proofs of “Borel asymptotic dimension and hyperfinite
equivalence relations” by Conley, Jackson, Marks, Seward and
Tucker-Drob with considering G -clopen instead of Borel!
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(2) is sometimes false

Proof.

Let a ∈ G be an element of infinite order.

Consider the set {x : xEa · x}
where E is a G -clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a
finite set A ⊆ G . Define an element δ in 2G where

δ(g) =

{
1 (If g = a−n for some n)

0 (If otherwise)
. Fix large m so that A is disjoint

from {a−m−1, a−m−2, · · · }. Then am · δ = 0 on A so that am · δEam+1 · δ,
which is a contradiction.

Hyung Mook Kang, Steve Jackson (UNT) Continuous Hyperfiniteness VLC 2022 26 / 30



(2) is sometimes false

Proof.

Let a ∈ G be an element of infinite order. Consider the set {x : xEa · x}
where E is a G -clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a
finite set A ⊆ G .

Define an element δ in 2G where

δ(g) =

{
1 (If g = a−n for some n)

0 (If otherwise)
. Fix large m so that A is disjoint

from {a−m−1, a−m−2, · · · }. Then am · δ = 0 on A so that am · δEam+1 · δ,
which is a contradiction.

Hyung Mook Kang, Steve Jackson (UNT) Continuous Hyperfiniteness VLC 2022 26 / 30



(2) is sometimes false

Proof.

Let a ∈ G be an element of infinite order. Consider the set {x : xEa · x}
where E is a G -clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a
finite set A ⊆ G . Define an element δ in 2G where

δ(g) =

{
1 (If g = a−n for some n)

0 (If otherwise)
.

Fix large m so that A is disjoint

from {a−m−1, a−m−2, · · · }. Then am · δ = 0 on A so that am · δEam+1 · δ,
which is a contradiction.

Hyung Mook Kang, Steve Jackson (UNT) Continuous Hyperfiniteness VLC 2022 26 / 30



(2) is sometimes false

Proof.

Let a ∈ G be an element of infinite order. Consider the set {x : xEa · x}
where E is a G -clopen finite equivalence relation on its domain containing
0. This set contains 0 and since this set is clopen, it is determined by a
finite set A ⊆ G . Define an element δ in 2G where

δ(g) =

{
1 (If g = a−n for some n)

0 (If otherwise)
. Fix large m so that A is disjoint

from {a−m−1, a−m−2, · · · }. Then am · δ = 0 on A so that am · δEam+1 · δ,
which is a contradiction.

Hyung Mook Kang, Steve Jackson (UNT) Continuous Hyperfiniteness VLC 2022 26 / 30



(2) implies (4)

Proof.

Sketch of the proof) Let {En}n realize that EX
G is continuously liminf finite.

Without loss of generality, X is G -invariant subspace of 2ω×G (fix a clopen
basis {Vn}n for X and consider the function x 7→ χVn(g

−1 · x)). For m, n,
consider fm,n : X → X where fm,n(x) = the m-th lexicographically least
element in the orbit equivalence relation of

⋂m
l=n El containing fm−1,n(x).

Then if x and y are G -related, fm,m(x) = fm,m(y) for large m.
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(2) implies (4)

x

y

fm,0(x)

fm,0(y)

fm,1(x)

fm,1(y)

fm,2(x)

fm,2(y)

Figure: Continuously moving the points
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(4) is sometimes true

Proof.

Sketch of the proof) Let {Gn}n be increasing finite subgroups of G
realizing locally finiteness. Let En be the orbit equivalence relation induced
by Gn. Without loss of generality, X is G -invariant subspace of 2ω×G .

For
m, n, consider fm,n : X → X where fm,n(x) = the m-th lexicographically
least element in the orbit equivalence relation of Em containing fm−1,n(x).
Then if x and y are G -related, fm,m(x) = fm,m(y) for large m.
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Figure: Suslin’s Theorem

Thank you!
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