Tarski's circle squaring problem with algebraic translations and few pieces

Andrew Marks (Berkeley), joint work with Spencer Unger (University of Toronto)

Thm: A closed disc and closed square of the same area in \mathbb{R}^2 can be equidecomposed using 9216 pieces and algebraic translations.

Equidecomposition in \mathbb{R}^n

If $a \colon \Gamma \curvearrowright X$ is a group action, $A, B \subseteq X$ are a-equidecomposable if there exist a finite partition $A = A_1 \sqcup \ldots \sqcup A_n$ of A and $\gamma_1, \ldots, \gamma_n \in \Gamma$ so $B = \gamma_1 \cdot_a A_1 \sqcup \ldots \gamma_n \cdot_a A_n$.

- ▶ Banach-Tarski 1924 (AC): A unit ball and a union of two disjoint unit balls in \mathbb{R}^3 are equidecomposable by isometries.
- Tarski 1929 (AC): If a: Γ

 X there is a finitely additive a-invariant measure on all subsets of X (i.e. a is amenable) iff there does not exist a partition X = A

 B so that X is a-equidecomposable with A and X is a-equidecomposable with B (i.e. a is not paradoxical). Proof. Hall-Rado matching. □
- No Banach-Tarski in \mathbb{R}^2 : There is no equidecomposition of a unit ball and two unit balls in \mathbb{R}^2 . *Proof.* There is a finitely additive isometry-invariant extension of Lebesgue measure to all subsets of \mathbb{R}^2 , since $\mathsf{Isom}(\mathbb{R}^2)$ is amenable.
- ▶ Thm Laczkovich (1990), answering Tarski (1925): A closed disc and closed square of the same area in \mathbb{R}^2 are equidecomposable by translations.

Laczkovich's general equidecomposition theorem

Thm (Laczkovich 1992): Suppose $A, B \subseteq \mathbb{R}^k$ are bounded sets with $\overline{\dim}_{\mathrm{box}}(\partial A), \overline{\dim}_{\mathrm{box}}(\partial B) < k$ and $\lambda(A) = \lambda(B) > 0$, then A and B are equidecomposable by translations.

$$\partial A := \operatorname{cl}(A) \setminus \operatorname{int}(A)$$
 is the topological boundary of A , and λ is Lebesgue measure. E.g. if A is a closed disc, then $\overline{\dim}_{\operatorname{box}}(\partial A) = 1$

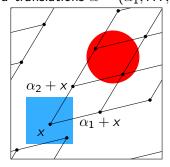
Laczkovich's theorem uses a beautiful collection of ingredients: compactness arguments to turn infinite into finite combinatorics, quantitative bounds on equidistribution, Fourier analysis, and Diophantine approximation.

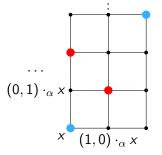
Our paper gives a new proof of this theorem that tries to be as simple and self-contained as possible: "A new proof of Laczkovich's circle squaring theorem I". We'd greatly appreciate any feedback – we want it to be as readable and accessible as possible (and accessible to undergraduates)!

Proof of Laczkovich's theorem. Step 1: work in the torus

Scale the closed disc and square $A, B \subseteq \mathbb{R}^2$ to lie in $[0,1)^2$. Then A, B are equidecomposable by translations in \mathbb{R}^2 iff they are equidecomposable by translations in $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$.

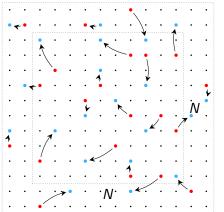
d translations $\alpha=(\alpha_1,\ldots,\alpha_d)$ give an action of \mathbb{Z}^d on $\mathbb{T}^2.$





Equidecomposition gives bounds on equidistribution

There is an equidecomposition of A and B in this action iff there is a bounded distance bijection in the associated Schreier graph.



Now if there is a bounded distance bijection then there exists a constant c so that for all $N \in \mathbb{N}$ and all $x \in \mathbb{T}^2$,

$$\left| \left| \left\{ 0, \ldots, N-1 \right\}^d \cdot_{\alpha} x \cap A \right| - \left| \left\{ 0, \ldots, N-1 \right\}^d \cdot_{\alpha} x \cap B \right| \right| \leq c N^{d-1}.$$

Equidistribution gives equidecomposition

Let $F_N(x,\alpha) = \{0,\ldots,N-1\}^d \cdot_\alpha x = \{n_1\alpha_1+\ldots+n_d+x\alpha_d\colon 0\leq n_i < N\}$. By the ergodic theorem, expect $|F_N(x,\alpha)\cap A|\approx |F_N(x,\alpha)|\lambda(A)$.

If F is a finite set, let $D(F,A) = \left| \frac{|F \cap A|}{|F|} - \lambda(A) \right|$ be the **discrepancy** of F with respect to A.

Laczkovich proves "almost" a converse to the previous observation.

Lemma A (Laczkovich): If $\exists c, \delta > 0$ such that $D(F_N(x,\alpha),A), D(F_N(x,\alpha),B) \leq cN^{-1-\delta}$, then A and B are equidecomposable in the translation action given by α . *Proof.* Clever counting argument using Hall-Rado.

Lemma B (Laczkovich): There exists $\alpha = (\alpha_1, \dots, \alpha_d)$ so $D(F_N(x, \alpha), A), D(F_N(x, \alpha), B) \leq cN^{-1-\delta}$. *Proof.* Almost every α works if d large enough. Use the Erdős-Turán-Koksma inequality and metric diophantine approx.

Our new idea: use product actions

Recall if
$$F \subseteq \mathbb{T}^k$$
 is finite and $A \subseteq \mathbb{T}^k$ then $D(F,A) = \left| \frac{|F \cap A|}{|F|} - \lambda(A) \right|$.

Instead of using a random actions in Lemma B, we can instead use actions of $\mathbb{Z}^{kd} \curvearrowright \mathbb{T}^k$ that are products of one-dimensional actions $\mathbb{Z}^d \curvearrowright \mathbb{T}$. If $\alpha \colon \mathbb{Z}^{kd} \curvearrowright \mathbb{T}^k$ is a product action, then $F_N(x,\alpha)$ is a product of 1-dimensional sets.

If $F \subseteq \mathbb{T}$ is finite, let $D(F) = \sup_{\text{intervals } I} D(F, I)$. In one dimension D(F) can be bounded using the simpler Erdős-Turán inequality (simpler than Erdős-Turán-Koksma) where it is easier to bound the results.

Then one can "lift" upper bounds on $D(F_i)$ to bounds on $D(\prod_i F_i, A)$ when $A \subseteq \mathbb{T}^k$ has $\overline{\dim}_{\text{box}}(\partial A) < k$.

Example lifting argument for convex sets

 $D(F_1 \times F_2, A) < D(F_1) + D(F_2).$

$$D(F,A) = \left| \frac{|F \cap A|}{|F|} - \lambda(A) \right|$$
 and $D(F) = \sup_{\text{intervals } I} D(F,I)$.
Lemma: If $A \subseteq [0,1)^2$ is convex, and $F_1, F_2 \subseteq \mathbb{T}$ are finite, then

Proof. A_x and A^y are convex for all x, y. Let λ^1 and λ^2 be Lebesgue measure on the two copies of \mathbb{T} . Let μ_i be the uniform probability measure supported on F_i . Note that $D(F_i) = \sup_{\text{intervals } I} |\mu_i(I) - \lambda(I)|$.

$$D(F_{1} \times F_{2}, A)$$

$$= |\mu_{1} \times \mu_{2}(A) - \lambda^{1} \times \lambda^{2}(A)|$$

$$\leq |\mu_{1} \times \mu_{2}(A) - \mu_{1} \times \lambda^{2}(A)| + |\mu_{1} \times \lambda^{2}(A) - \lambda^{1} \times \lambda^{2}(A)|$$

$$\leq \int |\mu_{2}(A_{x}) - \lambda^{2}(A_{x})| d\mu_{1}(x) + \int |\mu_{1}(A^{y}) - \lambda^{1}(A^{y})| d\lambda^{2}(y)$$

$$\leq D(F_{2}) + D(F_{1})$$

since $|\mu_2(A_x) - \lambda^2(A_x)| \le D(F_2)$ and $|\mu_1(A^y) - \lambda^1(A^y)| \le D(F_1)$ for all x, y.

Finishing the proof

Thm (Erdős-Turán inequality): There is an absolute constant C so that if $F \subseteq \mathbb{T}$, then for any number m,

$$D(F) \le C\left(\frac{1}{m+1} + \sum_{k=1}^{m} \frac{1}{k|F|} \left| \sum_{x \in F} e^{2\pi i kx} \right| \right)$$

For $F_N(x,\alpha) = \{n_1\alpha_1 + \ldots + n_d\alpha_d + x \colon 0 \le n_i < N\}$, letting ||x|| denote the distance from x to the nearest integer, summing geometric series and using $|\sin(\pi x)| \ge 2||x||$ we get

$$D(F_N(x,\alpha)) \leq C\left(\frac{1}{m+1} + \frac{1}{2^d N^d} \sum_{k=1}^m \frac{1}{k \|k\alpha_1\| \cdots \|k\alpha_d\|}\right)$$

These types of sums

$$S_N(\alpha_1,\ldots,\alpha_d) = \sum_{n=1}^N \frac{1}{n||n\alpha_1||\cdots||n\alpha_d||}$$

are studied in the number theory literature. Are related e.g. to the Littlewood conjecture: $\liminf_{n\to\infty} n||n\alpha_1|| ||n\alpha_2|| = 0$ for all α_1, α_2 .

Putting everything together

Thm (M.-Unger): Suppose $\epsilon > 0$ and $A, B \subseteq \mathbb{R}^k$ are bounded Lebesgue measurable sets such that $\lambda(A) = \lambda(B) > 0$, and $\overline{\dim}_{\mathrm{box}}(\partial A) \le k - \epsilon$ and $\overline{\dim}_{\mathrm{box}}(\partial B) \le k - \epsilon$. Suppose c > 0 and $1, \alpha_1, \ldots, \alpha_d \in \mathbb{R}$ are linearly independent over \mathbb{Q} so for all N

$$S_N(\alpha_1,\ldots,\alpha_d) = \sum_{n=1}^N \frac{1}{n\|n\alpha_1\|\cdots\|n\alpha_d\|} \ll_u N^c,$$

and $c < d\epsilon - 1$. Then A and B are equidecomposable in \mathbb{R}^k by finitely many translations whose coordinates are integer linear combinations of $1, \alpha_1, \ldots, \alpha_d$.

Diophantine approximation

How well can a real number be approximated by rationals? (Motivation: precise correspondences between how well α is approximated by rationals, and how quickly ergodic averages converge in the translation action by α in \mathbb{R}/\mathbb{Z}).

Thm (Dirichlet): For every real number α , there are infinitely many integers p and q so that $|\alpha - \frac{p}{q}| < \frac{1}{q^2}$. Equivalently, for infinitely many q, $||q\alpha|| < q^{-1}$. Proof. Pigeonhole principle.

Thm (Roth, 1955): If α is an algebraic number, then for every $\epsilon>0$ there are only finitely many q so that: $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2+\epsilon}}.$ Equivalently, there is a constant $c_{\alpha,\epsilon}$ so $\|\alpha q\|\geq c_{\alpha,\epsilon}q^{-1-\epsilon}$ for all q.

Thm (Schmidt 1970): If $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$ are algebraic irrationals that are linearly independent over \mathbb{Q} , then for every $\epsilon > 0$, there is a constant c so that for every integer q > 0, $\|q\alpha_1\| \cdots \|q\alpha_d\| > cq^{-1-\epsilon}$.

Equidecompositions with algebraic irrationals

Immediate corollary of Schmidt's theorem: if $1, \alpha_1, \ldots, \alpha_d$ are algebraic numbers linearly independent over \mathbb{Q} , then for all $\epsilon > 0$, $S_N(\alpha_1, \ldots, \alpha_d) \ll N^{1+\epsilon}$.

Cor: Laczkovich's equidecompositions can be done with algebraic translations. E.g. a closed disc and square are equidecomposable in an action of $\mathbb{Z}^6 \curvearrowright \mathbb{T}^2$ by algebraic translations.

This answers a 1990 problem of Laczkovich.

Thm (M.-Unger, using an idea and Lemma of Calegari): If $1, \alpha_1, \ldots, \alpha_d$ are algebraic numbers that are linearly independent over \mathbb{Q} , then for any $\epsilon > 0$,

$$S_N(\alpha_1,\ldots,\alpha_d) \ll N^{1-\frac{1}{d}+\epsilon}$$
.

Cor: a closed disc and square are equidecomposable in an action of $\mathbb{Z}^4 \curvearrowright \mathbb{T}^2$ by algebraic translations.

Open: are a closed disc and square are equidecomposable in an action of $\mathbb{Z}^2 \curvearrowright \mathbb{T}^2$ by algebraic translations?

Bounding the number of pieces to square the circle

The bound on the number of pieces comes from a bound on a certain flow from the circle to the square. This flow in turn comes from an infinite summation over $S_N(\alpha_1,\alpha_2)$ roughly of the form $\sum_{N=1}^{\infty} N^{-2} S_N(\alpha_1,\alpha_2)$. So from effective bounds on such sums we can get effective bounds on the number of pieces.

Recall **Roth's Thm**: for all algebraic α and $\epsilon > 0$ there exists $c_{\alpha,\epsilon} > 0$ so that $\|q\alpha\| \ge c_{\alpha_{\epsilon}}q^{-1-\epsilon}$ for all integers q > 0.

Open: is there an algorithm that can calculate $c_{\alpha,\epsilon}$ for a given algebraic α and $\epsilon>0$?

Progress for $\alpha = \sqrt[3]{2}$.

- ▶ Baker (1964) $||q\sqrt[3]{2}|| \ge 10^{-6}q^{-1.955}$ (first progress on effective versions of Roth's theorem)
- Easton (1986) $||a\sqrt[3]{2}|| > 2.2 \cdot 10^{-8} a^{-1.795}$.
- Norobov (1990), Bennett (1996) $||q\sqrt[3]{2}|| \ge 0.25q^{-1.5}$.
- Voutier (2007) $||q\sqrt[3]{2}|| > 0.25q^{-1.4325}$.

Effective bounds and computer assistance

We need to bound $\sum_{N=1}^{\infty} N^{-2} S_N(\alpha_1, \alpha_2)$ for some algebraic irrational α_1, α_2 . Take $\alpha_1 = \sqrt[3]{2}$ and $\alpha_2 = \sqrt[3]{4}$. We can bound their individual rational approximations to α_i using Voutier, and effectively control their simultaneous approximations since they are linearly independent over \mathbb{Q} and lie in a number field of degree 3.

Thm (M-U):
$$\sum_{n=1}^{N} \frac{1}{n \|n\sqrt[3]{2}\| \|n\sqrt[3]{4}\|} \le 1575.42 N^{0.9325} (\log N + 1)$$
 Gives circle-squaring with 10^{31} pieces. The best previous bound:

 10^{40} (Laczkovich). Obvious improvement: compute these sums $S_N(\alpha_1, \alpha_2)$ exactly for

Obvious improvement: compute these sums $S_N(\alpha_1, \alpha_2)$ exactly for small N, and use the upper bound only once N is large enough that the remaining infinite tail is small. This doesn't work because the series converges too slowly.

Actual method: break the infinite sum $\sum_{N=1}^{\infty} N^{-2} S_N(\alpha_1, \alpha_2)$ into 7 different intervals, using a different algorithm for each to try and get a bound as accurate as possible.

Thm (M.-Unger): The circle can be squared with 9,216 pieces.

Ingredients in our computer assisted proof

- ► A new "axis-parallel" flow
- ▶ Voutier's effective exponents of irrationality.
- An effective version of Khintchine's transference principle, and Laczkovich's method for bounding $S_N(\alpha_1, \alpha_2)$ from bounds on simultaneous approximations to α_1, α_2 .
- ► The Bombieri-van der Poorten-Shiu fast algorithm for continued fraction expansions of algebraic numbers.
- Slater's 3-gap theorem: in an irrational rotation in \mathbb{T} by α , the return times to an interval [0,b) have three possible values which can be effectively calculated from the continued fraction expansion of α and from b.
- Fast convolution algorithms
- Interval arithmetic to do all of the above calculations without floating point errors.
- ▶ The Savio supercomputer and ≈ 5 years of vCPU time.
- ▶ 10,000+ lines of code. (Half is various tests of correctness)

Thanks!