Tarski's circle squaring problem with algebraic
translations and few pieces
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Thm: A closed disc and closed square of the same area in R? can
be equidecomposed using 9216 pieces and algebraic translations.



Equidecomposition in R”
If a: T ~ X is a group action, A, B C X are a-equidecomposable
if there exist a finite partition A= A; U...UA, of A and
Y1,y YnE€Tso B=v1 - A1U...v 3 An.

» Banach-Tarski 1924 (AC): A unit ball and a union of two
disjoint unit balls in R3 are equidecomposable by isometries.

» Tarski 1929 (AC): If a: T ~ X there is a finitely additive
a-invariant measure on all subsets of X (i.e. a is amenable) iff
there does not exist a partition X = AL B so that X is
a-equidecomposable with A and X is a-equidecomposable with
B (i.e. ais not paradoxical). Proof. Hall-Rado matching. [

» No Banach-Tarski in R?: There is no equidecomposition of a
unit ball and two unit balls in R%. Proof. There is a finitely
additive isometry-invariant extension of Lebesgue measure to
all subsets of R?, since Isom(RR?) is amenable. O

» Thm Laczkovich (1990), answering Tarski (1925): A
closed disc and closed square of the same area in R? are
equidecomposable by translations.



Laczkovich's general equidecomposition theorem

ThmEczkovic@QZ): Suppose A, B C R¥ are bounded sets
with dimpex(0A), dimpex (0B) < k and A(A) = A(B) > 0,
then A and B are equidecomposable by translations.

0A = cl(A) \ int(A) is the topological boundary of A, and X is
Lebesgue measure. E.g. if A is a closed disc, then dimy, (9A) = 1

Laczkovich's theorem uses a beautiful collection of ingredients:
compactness arguments to turn infinite into finite combinatorics,
quantitative bounds on equidistribution, Fourier analysis, and
Diophantine approximation.

Our paper gives a new proof of this theorem that tries to be as
simple and self-contained as possible: “A new proof of
Laczkovich's circle squaring theorem |". We'd greatly appreciate
any feedback — we want it to be as readable and accessible as
possible (and accessible to undergraduates)!



Proof of Laczkovich's theorem. Step 1: work in the torus
Scale the closed disc and square A, B C R? to lie in [0,1)2. Then

A, B are equidecomposable by translations in R? iff they are
equidecomposable by translations in T2 = R?/Z2.

P
®

d translations o = (au, ..., aqg) give an action of Z9 on T2.
.o
o + x
(0,1) - x
a1+ X
X (1,0) 0 x




Equidecomposition gives bounds on equidistribution
There is an equidecomposition of A and B in this action iff there is
a bounded distance bijection in the associated Schreier graph.

//
s N

Now if there is a bounded distance bijection then there exists a
constant ¢ so that for all N € N and all x € T?,

{0,....,N—=1} ., xnA - |{0,...,N—1}¢ .. xN B|| < cNL.



Equidistribution gives equidecomposition
Let Fy(x,a) ={0,...,N -1} ., x =
{ma1+...4+ ng + xag: 0 < n; < N}. By the ergodic theorem,
expect |Fy(x,a) NA| = |Fn(x, a)|A(A).

If F is a finite set, let D(F,A) = |F‘r,_jr“ — A(A)| be the

discrepancy of F with respect to A.
Laczkovich proves “almost” a converse to the previous observation.

Lemma A (Laczkovich): If 3¢, > 0 such that

D(Fn(x, ), A), D(Fn(x,a),B) < cN~'=9 then A and B are
equidecomposable in the translation action given by «.

Proof. Clever counting argument using Hall-Rado. Ol

Lemma B (Laczkovich): There exists a = (a1, ..., aq) so
D(Fn(x,a),A), D(Fn(x,a), B) < cN~179.

Proof. Almost every « works if d large enough. Use the
Erdés-Turan-Koksma inequality and metric diophantine approx. [



Our new idea: use product actions

Recall if F C Tk is finite and A C Tk then

D(F, A) = |IF22 — a(A)|.

Instead of using a random actions in Lemma B, we can instead use
actions of Zk9 ~ Tk that are products of one-dimensional actions
79 ~ T. If a: Z¥¥ ~ Tk is a product action, then Fy(x,a) is a
product of 1-dimensional sets.

If £ C Tis finite, let D(F) = supintervals  D(F, 1). In one
dimension D(F) can be bounded using the simpler Erdés-Turan
inequality (simpler than Erdés-Turdn-Koksma) where it is easier to
bound the results.

Then one can "lift" upper bounds on D(F;) to bounds on
D(I1, Fi, A) when A C T* has dimpex(0A) < k.



Example lifting argument for convex sets

D(F, A) = | "L = X(A)| and D(F) = supipeervais 1 D(F 1)

Lemma: If A C [0, 1) is convex, and Fi, F, C T are finite, then
D(F; x Fa, A) < D(F1) + D(FR).

Proof. A, and AY are convex for all x,y. Let A! and A% be
Lebesgue measure on the two copies of T. Let u; be the uniform
probability measure supported on F;. Note that

D(Fi) = supitervals 1 |1 (1) — A(T)]-
D(F1 x F, A)
= |p1 x pa(A) = At x A3(A)]
< 1 x pa(A) = x N2(A)] + [ x A2(A) — AL x A(A)]

< [ (A = (A0 dpa(x) + / (A7) — () dA3(y)
< D F2) + D(Fl)

since |12(Ax) — A(Ay)| < D(F2) and [u1 (A7) — AY(AY)| < D(Fy)
for all x,y. Ol



Finishing the proof
Thm (Erdos-Turan inequality): There is an absolute constant C
so that if F C T, then for any number m,

="l mr K[F]
k=1
For Fy(x,a) = {mai + ...+ ngag + x: 0 < n; < N}, letting || x||

denote the distance from x to the nearest integer, summing
geometric series and using |sin(7mx)| > 2||x|| we get

1 I 1
D(F, <C
(Fn(x,a)) < (m—i—l+2dekz_:1k||ka1|"‘Hkad’)

These types of sums
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2 nllnaa][ -~ [Inag]

are studied in the number theory literature. Are related e.g. to the
Littlewood conjecture: liminf,_, n||nazl|||naz| = 0 for all ai, as.



Putting everything together

Thm (M.-Unger): Suppose ¢ > 0 and A, B C R¥ are bounded
Lebesgue measurable sets such that A(A) = A(B) > 0, and
dimypex (0A) < k — € and dimy,x(0B) < k — €. Suppose ¢ > 0 and

1,a1,...,aq € R are linearly independent over QQ so for all N
N 1
Sn(aq,...,aq) = <, N€
(O a) = 2, T gy < N

and ¢ < de — 1. Then A and B are equidecomposable in R¥ by
finitely many translations whose coordinates are integer linear
combinations of 1, aq, ..., aq.



Diophantine approximation

How well can a real number be approximated by rationals?
(Motivation: precise correspondences between how well « is
approximated by rationals, and how quickly ergodic averages
converge in the translation action by a in R/Z).

Thm (Dirichlet): For every real number «, there are infinitely
many integers p and g so that | — g\ < %. Equivalently, for
infinitely many q, ||gal| < g~1. Proof. Pigeonhole principle. O

Thm (Roth, 1955): If a is an algebraic number, then for every
€ > 0 there are only finitely many g so that: ‘a — g) < #.

Equivalently, there is a constant ¢, ¢ 5o ||ag| > ca.eq™17€ for all g.

Thm (Schmidt 1970): If a1,...,a4 € R are algebraic irrationals
that are linearly independent over Q, then for every € > 0, there is
a constant ¢ so that for every integer g > 0,

lgoall -+ lgaqgl| > cg~ <.



Equidecompositions with algebraic irrationals
Immediate corollary of Schmidt’s theorem: if 1,a1,..., a4 are
algebraic numbers linearly independent over Q, then for all € > 0,
5[\/(041, e ,ad) < Nte,

Cor: Laczkovich's equidecompositions can be done with algebraic
translations. E.g. a closed disc and square are equidecomposable
in an action of Z® ~ T? by algebraic translations.

This answers a 1990 problem of Laczkovich.

Thm (M.-Unger, using an idea and Lemma of Calegari): If
1,a1,...,aq are algebraic numbers that are linearly independent
over QQ, then for any € > 0,

5/\/(&17 R ,Oéd) < Nl_%+€.

Cor: a closed disc and square are equidecomposable in an action
of Z* ~ T? by algebraic translations.

Open: are a closed disc and square are equidecomposable in an
action of Z? ~ T? by algebraic translations?



Bounding the number of pieces to square the circle
The bound on the number of pieces comes from a bound on a
certain flow from the circle to the square. This flow in turn comes
from an infinite summation over Sy(a1, a2) roughly of the form
S a1 N72Sn(a1, a2). So from effective bounds on such sums we
can get effective bounds on the number of pieces.

Recall Roth’s Thm: for all algebraic a and € > 0 there exists
Cae > 0 s0 that |[gal| > c, g1 7€ for all integers g > 0.

Open: is there an algorithm that can calculate ¢, for a given
algebraic a and € > 07

Progress for av = v/2.
> Baker (1964) ||gv/2|| > 1076 1-9%°
(first progress on effective versions of Roth's theorem)
> Easton (1986) [|qv/2|| > 2.2-108q~17%.
» Korobov (1990), Bennett (1996) ||q\f|| > 0.25q715.
» Voutier (2007) Hq?@” > 0.25q 14325



Effective bounds and computer assistance
We need to bound > %_; N=2Sy(a1, az) for some algebraic
irrational a1, an. Take ag = V2 and as = V4. We can bound
their individual rational approximations to «; using Voutier, and
effectively control their simultaneous approximations since they are

linearly independent over Q and lie in a number field of degree 3.

i N 1 0.9325
Thm (M-U): 30 st < 1575.42N08325(log N + 1)

Gives circle-squaring with 103! pieces. The best previous bound:
10% (Laczkovich).

Obvious improvement: compute these sums Sy(a1, az) exactly for
small N, and use the upper bound only once N is large enough
that the remaining infinite tail is small. This doesn’t work because
the series converges too slowly.

Actual method: break the infinite sum Y 7_; N=2Sy (a1, a) into
7 different intervals, using a different algorithm for each to try and
get a bound as accurate as possible.

Thm (M.-Unger): The circle can be squared with 9,216 pieces.



Ingredients in our computer assisted proof

>
>
>

A new "axis-parallel” flow
Voutier's effective exponents of irrationality.

An effective version of Khintchine's transference principle, and
Laczkovich's method for bounding Sy(a1, a2) from bounds on
simultaneous approximations to asg, am.

The Bombieri-van der Poorten-Shiu fast algorithm for
continued fraction expansions of algebraic numbers.

Slater’s 3-gap theorem: in an irrational rotation in T by «, the
return times to an interval [0, b) have three possible values
which can be effectively calculated from the continued
fraction expansion of « and from b.

Fast convolution algorithms

Interval arithmetic to do all of the above calculations without
floating point errors.

The Savio supercomputer and = 5 years of vCPU time.

10,000+ lines of code. (Half is various tests of correctness)



Thanks!



