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Thm: A closed disc and closed square of the same area in R2 can
be equidecomposed using 9216 pieces and algebraic translations.



Equidecomposition in Rn

If a : Γ ↷ X is a group action, A,B ⊆ X are a-equidecomposable
if there exist a finite partition A = A1 ⊔ . . . ⊔ An of A and
γ1, . . . , γn ∈ Γ so B = γ1 ·a A1 ⊔ . . . γn ·a An.

▶ Banach-Tarski 1924 (AC): A unit ball and a union of two
disjoint unit balls in R3 are equidecomposable by isometries.

▶ Tarski 1929 (AC): If a : Γ ↷ X there is a finitely additive
a-invariant measure on all subsets of X (i.e. a is amenable) iff
there does not exist a partition X = A ⊔ B so that X is
a-equidecomposable with A and X is a-equidecomposable with
B (i.e. a is not paradoxical). Proof. Hall-Rado matching.

▶ No Banach-Tarski in R2: There is no equidecomposition of a
unit ball and two unit balls in R2. Proof. There is a finitely
additive isometry-invariant extension of Lebesgue measure to
all subsets of R2, since Isom(R2) is amenable.

▶ Thm Laczkovich (1990), answering Tarski (1925): A
closed disc and closed square of the same area in R2 are
equidecomposable by translations.



Laczkovich’s general equidecomposition theorem

Thm (Laczkovich 1992): Suppose A,B ⊆ Rk are bounded sets
with dimbox(∂A),dimbox(∂B) < k and λ(A) = λ(B) > 0,
then A and B are equidecomposable by translations.

∂A := cl(A) \ int(A) is the topological boundary of A, and λ is
Lebesgue measure. E.g. if A is a closed disc, then dimbox(∂A) = 1

Laczkovich’s theorem uses a beautiful collection of ingredients:
compactness arguments to turn infinite into finite combinatorics,
quantitative bounds on equidistribution, Fourier analysis, and
Diophantine approximation.

Our paper gives a new proof of this theorem that tries to be as
simple and self-contained as possible: “A new proof of
Laczkovich’s circle squaring theorem I”. We’d greatly appreciate
any feedback – we want it to be as readable and accessible as
possible (and accessible to undergraduates)!



Proof of Laczkovich’s theorem. Step 1: work in the torus
Scale the closed disc and square A,B ⊆ R2 to lie in [0, 1)2. Then
A,B are equidecomposable by translations in R2 iff they are
equidecomposable by translations in T2 = R2/Z2.

d translations α = (α1, . . . , αd) give an action of Zd on T2.

x
α1 + x

α2 + x

x

(0, 1) ·α x

(1, 0) ·α x
...

...

· · · · · ·



Equidecomposition gives bounds on equidistribution
There is an equidecomposition of A and B in this action iff there is
a bounded distance bijection in the associated Schreier graph.

N

N

Now if there is a bounded distance bijection then there exists a
constant c so that for all N ∈ N and all x ∈ T2,∣∣∣|{0, . . . ,N − 1}d ·α x ∩ A| − |{0, . . . ,N − 1}d ·α x ∩ B|

∣∣∣ ≤ cNd−1.



Equidistribution gives equidecomposition
Let FN(x , α) = {0, . . . ,N − 1}d ·α x =
{n1α1 + . . .+ nd + xαd : 0 ≤ ni < N}. By the ergodic theorem,
expect |FN(x , α) ∩ A| ≈ |FN(x , α)|λ(A).

If F is a finite set, let D(F ,A) =
∣∣∣ |F∩A||F | − λ(A)

∣∣∣ be the

discrepancy of F with respect to A.

Laczkovich proves “almost” a converse to the previous observation.

Lemma A (Laczkovich): If ∃c, δ > 0 such that
D(FN(x , α),A),D(FN(x , α),B) ≤ cN−1−δ, then A and B are
equidecomposable in the translation action given by α.
Proof. Clever counting argument using Hall-Rado.

Lemma B (Laczkovich): There exists α = (α1, . . . , αd) so
D(FN(x , α),A),D(FN(x , α),B) ≤ cN−1−δ.
Proof. Almost every α works if d large enough. Use the
Erdős-Turán-Koksma inequality and metric diophantine approx.



Our new idea: use product actions

Recall if F ⊆ Tk is finite and A ⊆ Tk then

D(F ,A) =
∣∣∣ |F∩A||F | − λ(A)

∣∣∣.
Instead of using a random actions in Lemma B, we can instead use
actions of Zkd ↷ Tk that are products of one-dimensional actions
Zd ↷ T. If α : Zkd ↷ Tk is a product action, then FN(x , α) is a
product of 1-dimensional sets.

If F ⊆ T is finite, let D(F ) = supintervals I D(F , I ). In one
dimension D(F ) can be bounded using the simpler Erdős-Turán
inequality (simpler than Erdős-Turán-Koksma) where it is easier to
bound the results.

Then one can “lift” upper bounds on D(Fi ) to bounds on
D(
∏

i Fi ,A) when A ⊆ Tk has dimbox(∂A) < k .



Example lifting argument for convex sets
D(F ,A) =

∣∣∣ |F∩A||F | − λ(A)
∣∣∣ and D(F ) = supintervals I D(F , I ).

Lemma: If A ⊆ [0, 1)2 is convex, and F1,F2 ⊆ T are finite, then
D(F1 × F2,A) ≤ D(F1) + D(F2).

Proof. Ax and Ay are convex for all x , y . Let λ1 and λ2 be
Lebesgue measure on the two copies of T. Let µi be the uniform
probability measure supported on Fi . Note that
D(Fi ) = supintervals I |µi (I )− λ(I )|.

D(F1 × F2,A)

= |µ1 × µ2(A)− λ1 × λ2(A)|
≤ |µ1 × µ2(A)− µ1 × λ2(A)|+ |µ1 × λ2(A)− λ1 × λ2(A)|

≤
∫

|µ2(Ax)− λ2(Ax)| dµ1(x) +

∫
|µ1(A

y )− λ1(Ay )| dλ2(y)

≤ D(F2) + D(F1)

since |µ2(Ax)− λ2(Ax)| ≤ D(F2) and |µ1(A
y )− λ1(Ay )| ≤ D(F1)

for all x , y .



Finishing the proof
Thm (Erdős-Turán inequality): There is an absolute constant C
so that if F ⊆ T, then for any number m,

D(F ) ≤ C

(
1

m + 1
+

m∑
k=1

1

k |F |

∣∣∣∣∣∑
x∈F

e2πikx

∣∣∣∣∣
)

For FN(x , α) = {n1α1 + . . .+ ndαd + x : 0 ≤ ni < N}, letting ∥x∥
denote the distance from x to the nearest integer, summing
geometric series and using | sin(πx)| ≥ 2∥x∥ we get

D(FN(x , α)) ≤ C

(
1

m + 1
+

1

2dNd

m∑
k=1

1

k∥kα1∥ · · · ∥kαd∥

)
These types of sums

SN(α1, . . . , αd) =
N∑

n=1

1

n∥nα1∥ · · · ∥nαd∥

are studied in the number theory literature. Are related e.g. to the
Littlewood conjecture: lim infn→∞ n∥nα1∥∥nα2∥ = 0 for all α1, α2.



Putting everything together

Thm (M.-Unger): Suppose ϵ > 0 and A,B ⊆ Rk are bounded
Lebesgue measurable sets such that λ(A) = λ(B) > 0, and
dimbox(∂A) ≤ k − ϵ and dimbox(∂B) ≤ k − ϵ. Suppose c > 0 and
1, α1, . . . , αd ∈ R are linearly independent over Q so for all N

SN(α1, . . . , αd) =
N∑

n=1

1

n∥nα1∥ · · · ∥nαd∥
≪u Nc ,

and c < dϵ− 1. Then A and B are equidecomposable in Rk by
finitely many translations whose coordinates are integer linear
combinations of 1, α1, . . . , αd .



Diophantine approximation

How well can a real number be approximated by rationals?
(Motivation: precise correspondences between how well α is
approximated by rationals, and how quickly ergodic averages
converge in the translation action by α in R/Z).

Thm (Dirichlet): For every real number α, there are infinitely
many integers p and q so that |α− p

q | <
1
q2
. Equivalently, for

infinitely many q, ∥qα∥ < q−1. Proof. Pigeonhole principle.

Thm (Roth, 1955): If α is an algebraic number, then for every

ϵ > 0 there are only finitely many q so that:
∣∣∣α− p

q

∣∣∣ < 1
q2+ϵ .

Equivalently, there is a constant cα,ϵ so ∥αq∥ ≥ cα,ϵq
−1−ϵ for all q.

Thm (Schmidt 1970): If α1, . . . , αd ∈ R are algebraic irrationals
that are linearly independent over Q, then for every ϵ > 0, there is
a constant c so that for every integer q > 0,
∥qα1∥ · · · ∥qαd∥ ≥ cq−1−ϵ.



Equidecompositions with algebraic irrationals
Immediate corollary of Schmidt’s theorem: if 1, α1, . . . , αd are
algebraic numbers linearly independent over Q, then for all ϵ > 0,
SN(α1, . . . , αd) ≪ N1+ϵ.

Cor: Laczkovich’s equidecompositions can be done with algebraic
translations. E.g. a closed disc and square are equidecomposable
in an action of Z6 ↷ T2 by algebraic translations.

This answers a 1990 problem of Laczkovich.

Thm (M.-Unger, using an idea and Lemma of Calegari): If
1, α1, . . . , αd are algebraic numbers that are linearly independent
over Q, then for any ϵ > 0,

SN(α1, . . . , αd) ≪ N1− 1
d
+ϵ.

Cor: a closed disc and square are equidecomposable in an action
of Z4 ↷ T2 by algebraic translations.
Open: are a closed disc and square are equidecomposable in an
action of Z2 ↷ T2 by algebraic translations?



Bounding the number of pieces to square the circle
The bound on the number of pieces comes from a bound on a
certain flow from the circle to the square. This flow in turn comes
from an infinite summation over SN(α1, α2) roughly of the form∑∞

N=1N
−2SN(α1, α2). So from effective bounds on such sums we

can get effective bounds on the number of pieces.

Recall Roth’s Thm: for all algebraic α and ϵ > 0 there exists
cα,ϵ > 0 so that ∥qα∥ ≥ cαϵq

−1−ϵ for all integers q > 0.

Open: is there an algorithm that can calculate cα,ϵ for a given
algebraic α and ϵ > 0?

Progress for α = 3
√
2.

▶ Baker (1964) ∥q 3
√
2∥ ≥ 10−6q−1.955

(first progress on effective versions of Roth’s theorem)
▶ Easton (1986) ∥q 3

√
2∥ ≥ 2.2 · 10−8q−1.795.

▶ Korobov (1990), Bennett (1996) ∥q 3
√
2∥ ≥ 0.25q−1.5.

▶ Voutier (2007) ∥q 3
√
2∥ ≥ 0.25q−1.4325.



Effective bounds and computer assistance
We need to bound

∑∞
N=1N

−2SN(α1, α2) for some algebraic
irrational α1, α2. Take α1 =

3
√
2 and α2 =

3
√
4. We can bound

their individual rational approximations to αi using Voutier, and
effectively control their simultaneous approximations since they are
linearly independent over Q and lie in a number field of degree 3.
Thm (M-U):

∑N
n=1

1
n∥n 3√2∥∥n 3√4∥

≤ 1575.42N0.9325(logN + 1)

Gives circle-squaring with 1031 pieces. The best previous bound:
1040 (Laczkovich).

Obvious improvement: compute these sums SN(α1, α2) exactly for
small N, and use the upper bound only once N is large enough
that the remaining infinite tail is small. This doesn’t work because
the series converges too slowly.

Actual method: break the infinite sum
∑∞

N=1N
−2SN(α1, α2) into

7 different intervals, using a different algorithm for each to try and
get a bound as accurate as possible.
Thm (M.-Unger): The circle can be squared with 9,216 pieces.



Ingredients in our computer assisted proof
▶ A new “axis-parallel” flow

▶ Voutier’s effective exponents of irrationality.

▶ An effective version of Khintchine’s transference principle, and
Laczkovich’s method for bounding SN(α1, α2) from bounds on
simultaneous approximations to α1, α2.

▶ The Bombieri-van der Poorten-Shiu fast algorithm for
continued fraction expansions of algebraic numbers.

▶ Slater’s 3-gap theorem: in an irrational rotation in T by α, the
return times to an interval [0, b) have three possible values
which can be effectively calculated from the continued
fraction expansion of α and from b.

▶ Fast convolution algorithms

▶ Interval arithmetic to do all of the above calculations without
floating point errors.

▶ The Savio supercomputer and ≈ 5 years of vCPU time.

▶ 10,000+ lines of code. (Half is various tests of correctness)



Thanks!


