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Isometry groups of Polish metric spaces

If X is a Polish metric space, then Iso(X ) �the group of isometries of
X� with the topology of pointwise convergence is a Polish group.

Theorem (Gao, Kechris 2003)

The isometry groups of Polish metric spaces are, up to topological
isomorphism, all Polish groups.

Similar characterisations are known for a few subclasses of Polish metric
spaces:

Locally compact Polish spaces and σ-compact Polish spaces
correspond to subgroups of groups of the form

∏
n∈N(Sym(N)⋉GN

n )
where Gn are locally compact Polish groups (Gao, Kechris 2003)

Zero-dimensional locally compact Polish spaces correspond to closed
subroups of Sym(N) (Gao, Kechris 2003)
Compact metric spaces correspond to compact Polish groups
(Melleray 2008)

Some classes of Polish ultrametric spaces (discussed later)

Isometry groups of Polish ultrametric spaces



Ultrametric spaces

De�nition (Krasner 1944)

A metric space (X , d) is ultrametric if d satis�es a stronger version of
the triangle inequality:

d(x , z) = max(d(x , y), d(y , z)), for all x , y , z ∈ X

In fact, M. Krasner was a number theorist working on p-adic numbers,
which are an example of ultrametric space.
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Krasner's problem

Problem (Krasner 1956)

Provide a characterisation of the isometry groups of ultrametric spaces.

Note that Krasner's problem does not mention Polish spaces, though the
main examples of interest for him (p-adic numbers) are indeed Polish.

A related problem to Krasner's was the following:

Problem (Pestov)

Provide a characterisation of all subgroups of the isometry groups of
ultrametric spaces.

This was answered by A.Y. Lemin and Y.M. Smirnov (1986).
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Krasner's problem for Polish ultrametric spaces

Problems (Gao, Kechris 2003)

Characterise the isometry groups of Polish ultrametric spaces

Characterise the isometry groups of Polish locally compact
ultrametric spaces

Some starting points

- Iso(X ) is isomorphic to a closed subgroup of Sym(N)
- More speci�cally, isometry groups of Polish ultrametric spaces are
isomorphic to automorphism groups of R-tree (Gao, Shao 2011)

- If X is not rigid, then Iso(X ) contains a non-trivial involution; so not
all closed subgroups of Sym(N) are isomorphic to some Iso(X ) (Gao,
Kechris 2003)

- If Iso(X ) is simple, then Iso(X ) = {id}, or Iso(X ) ≃ Z2, or
Iso(X ) ≃ Sym(N) (Malicki, Solecki 2009)

- If X is Heine-Borel, then Iso(X ) is the closure of an increasing union
of compact subgroups (Gao, Kechris 2003), hence amenable
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Krasner's problem for Polish ultrametric spaces

- If X is compact ultrametric (Feinberg 1974) or spherically complete
ultrametric (Feinberg, Nosova 1980), then Iso(X ) is isomorphic to a
generalised wreath product à la Holland

De�nition (Malicki 2014)

A W -space is a Polish ultrametric space X such that:

for any two Iso(X )-orbits O1,O2,

d(O1,O2) = min{d(x , y) | x ∈ O1, y ∈ O2}

X is locally non-rigid

- If X is a W -space, then Iso(X ) is a isomorphic to a variant of a
generalised wreath product à la Holland (Malicki 2014, see also later)
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Some unneeded philosophy

A good characterisation should:

Make objects of independent interest �possibly coming from
di�erent areas� correspond

Be potentially useful to attack some other questions

. . .

Of course, a good characterisation might not exist.

We try anyway to obtain a good characterisation.
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L-trees

Let L = (L,⩽L) be a linear order.

De�nition

A L-tree is a partial order T = (T ,⩽T ) together with a surjective map
levT : T → L satisfying the following conditions, for every t, t ′ ∈ T :

1 t ⩽T t ′ ⇒ levT (t) ⩽L levT (t
′)

2

3

4
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L-trees

Let L = (L,⩽L) be a linear order.

De�nition

A L-tree is a partial order T = (T ,⩽T ) together with a surjective map
levT : T → L satisfying the following conditions, for every t, t ′ ∈ T :

1 t ⩽T t ′ ⇒ levT (t) ⩽L levT (t
′)

2 for every ℓ ⩾L levT (t) there exists a unique t∗ ∈ T , denoted t|ℓ ,
such that t∗ ⩾T t and levT (t

∗) = ℓ; in particular, t|levT (t)
= t

3

4
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L-trees
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L-trees

Let L = (L,⩽L) be a linear order.

De�nition

A L-tree is a partial order T = (T ,⩽T ) together with a surjective map
levT : T → L satisfying the following conditions, for every t, t ′ ∈ T :

1 t ⩽T t ′ ⇒ levT (t) ⩽L levT (t
′)

2 for every ℓ ⩾L levT (t) there exists a unique t∗ ∈ T , denoted t|ℓ ,
such that t∗ ⩾T t and levT (t

∗) = ℓ; in particular, t|levT (t)
= t

3 there is an upper bound for {t, t ′}; equivalently, there exists
ℓ ⩾L max(levT (t), levT (t

′)) such that t|ℓ = t ′|ℓ
4
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L-trees
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L-trees
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L-trees

Let L = (L,⩽L) be a linear order.

De�nition

A L-tree is a partial order T = (T ,⩽T ) together with a surjective map
levT : T → L satisfying the following conditions, for every t, t ′ ∈ T :

1 t ⩽T t ′ ⇒ levT (t) ⩽L levT (t
′)

2 for every ℓ ⩾L levT (t) there exists a unique t∗ ∈ T , denoted t|ℓ ,
such that t∗ ⩾T t and levT (t

∗) = ℓ; in particular, t|levT (t)
= t

3 there is an upper bound for {t, t ′}; equivalently, there exists
ℓ ⩾L max(levT (t), levT (t

′)) such that t|ℓ = t ′|ℓ
4 if t, t ′ are ⩽T -incomparable, then

{ℓ ⩾L max(levT (t), levT (t
′)) | t|ℓ ̸= t ′|ℓ} has a maximum, denoted

split(t, t ′)
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L-trees
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L-trees
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L-trees

Let T be a L-tree.

De�nitions

[T ] = {b ∈ T L | ∀ℓ ∈ L levTb(ℓ) = ℓ∧
∧ ∀ℓ, ℓ′ ∈ L (ℓ ⩽L ℓ′ ⇒ b(ℓ) ⩽T b(ℓ′))}

is the body of T

the elements of [T ] are the branches of T

T is pruned if for every t ∈ T there exists b ∈ [T ] such that
b(levT (t)) = t
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L-trees
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L-trees
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L-trees

Let T ,S be L-trees.

An embedding of T into S is an embedding f : T → S of the
orders that respect levels; that is, an injective function such that:

1 ∀t ∈ T levT (t) = levS f (t)
2 ∀t, t′ ∈ T (t ⩽T t′ ⇔ f (t) ⩽S f (t′))

An isomorphism from T to S is an isomorphism f : T → S of the
orders that respect the levels; equivalently, a surjective embedding

An isomorphism f : T → T is an automorphisms of T

Aut(T ) is the group of automorphisms of T

If T is countable, then Aut(T ), equipped with the pointwise convergence
topology, is a Polish group; indeed, it is topologically isomorphic to a
closed subgroup of Sym(N).
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Polish ultrametric spaces and L-trees

The following is a �rst answer to Gao and Kechris' problem (showing in
particular that the answer to their two questions is the same):

Theorem

Let G be a topological group. Then the following are equivalent:

1 G ∼= Iso(X ) for some Polish, ultrametric space X

2 G ∼= Iso(X ) for some perfect, locally compact, Polish ultrametric
space X

3 G ∼= Iso(X ) for some uniformly discrete, Polish ultrametric space X

4 G ∼= Aut(T ) for some countable, pruned L-tree T on some linear
order L
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Polish ultrametric spaces and L-trees

The proof exploits the existence of suitable functors between relevant
categories:

for every countable D ⊆ R+
0
, there exists a full embedding F from

the category of Polish ultrametric spaces with distances in D (with
isometric embedding) to the category of pruned Q-trees (with
embeddings)

for every countable linear order L, there exists a full embedding G
from the category of pruned L-trees (with embeddings) to the
category of uniformly discrete, Polish ultrametric spaces (with
isometric embeddings)

there exist a full embedding U from the category of uniformly
discrete, Polish ultrametric spaces to the category of perfect, locally
compact, Polish ultrametric spaces (both with isometric embeddings)

These functors provide reductions between the corresponding relations of
embeddability and isomorphism.
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A corollary on Borel complexity

Corollary

1 The relation of isometry on the class of perfect, locally compact,
Polish ultrametric spaces is Sym(N)-complete

2 The relation of isometric embeddability on the class of perfect,
locally compact, Polish ultrametric spaces is invariantly universal,
hence complete for analytic preorders

Proof. Argue as it was done in [Marcone, Motto Ros, C.; 2018] for other
classes of spaces, using the functors of the previous page.
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Generalised wreath products

There are several variants of generalised wreath products. Each one is
based on two main ingredients:

A skeleton (∆,N), where ∆ is a partial order and

N : ∆ → Card
δ 7→ Nδ

with Nδ > 0 for every δ.
The skeleton is countable if so are ∆ and all Nδ.

A domain S ⊆
∏

δ∈∆ Nδ such that for every x ∈ S , δ ∈ ∆, ι ∈ Nδ

there is some xδι satisfying

xδι (δ) = ι and ∀γ > δ xδι (γ) = x(γ)

A convenient notation. If x ∈
∏

δ∈∆ Nδ and δ ∈ ∆, denote

x|δ = x↾{γ∈∆|γ⩾δ} ∈
∏
γ⩾δ

Nγ

and similarly for colouring of other partially ordered sets.
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Generalised wreath products
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Generalised wreath products

Given a skeleton (∆,N) and a domain S , the associated generalised

wreath product is an operator WrSδ∈∆ taking as input a sequence
(Hδ)δ∈∆ of transitive permutation groups Hδ ⊆ Sym(Nδ) and yields a
subgroup

WrSδ∈∆Hδ ⊆ Sym(S)

De�nition

WrSδ∈∆Hδ is the subgroup consisting of all g ∈ Sym(S) satisfying for
every x , y ∈ S , δ ∈ ∆ the conditions:

x|δ = y|δ ⇔ (g(x))|δ = (g(y))|δ
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Generalised wreath products
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Generalised wreath products

Given a skeleton (∆,N) and a domain S , the associated generalised

wreath product is an operator WrSδ∈∆ taking as input a sequence
(Hδ)δ∈∆ of transitive permutation groups Hδ ⊆ Sym(Nδ) and yields a
subgroup

WrSδ∈∆Hδ ⊆ Sym(S)

De�nition

WrSδ∈∆Hδ is the subgroup consisting of all g ∈ Sym(S) satisfying for
every x , y ∈ S , δ ∈ ∆ the conditions:

x|δ = y|δ ⇔ (g(x))|δ = (g(y))|δ

the function ι 7→ (g(xδι ))(δ) is a permutation of Nδ belonging to Hδ

(the second condition does not depend on the choice of xδι )
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Examples

WrN0×N1
δ∈2 Hδ = H0WrH1

If ∆ is an antichain, then Wr
∏

δ∈∆ Nδ

δ∈∆ Hδ =
∏

δ∈∆ Hδ

Isometry groups of Polish ultrametric spaces



Domains de�ned by supports

A way to de�ne a domain S is via supports.
If x ∈

∏
δ∈∆ Nδ, let

supp(x) = {δ ∈ ∆ | x(δ) ̸= 0}

be the support of x .

If ∅ ≠ A ⊆ P(∆) is such that A ∈ A ∧ (A△A′ �nite) ⇒ A′ ∈ A, then

SA = {x ∈
∏
δ∈∆

Nδ | supp(x) ∈ A}

is a domain. One can simplify notations by letting

WrAδ∈∆Hδ = WrS
A

δ∈∆Hδ
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Examples

Various choices of supports can be found in the literature, according to
the problems at stake:

Examples

(Hall 1962) ∆ a linear order, A = Fin = {A ⊆ ∆ | A is �nite}
(Holland 1969) ∆ arbitrary,
A = Max = {A ⊆ ∆ | A is anti-well-founded}
(Malicki 2014) ∆ arbitrary, A = Wsp = {A ∈ Max |
every in�nite decreasing sequence in A has no lower bound in ∆}
∆ arbitrary,
A = LF = {A ⊆ ∆ | ∀δ ∈ ∆ A ∩ {γ ∈ ∆ | γ ⩾ δ} is �nite}

Therefore:

Fin ⊆ LF ⊆ Wsp ⊆ Max

If ∆ is a L-tree, then LF = Wsp
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The topology of a generalised wreath product

Equip
∏

δ∈∆ Nδ with the topology τ∆ generated by the sets

Vxγ = {y ∈
∏
δ∈∆

Nδ | y|γ = x|γ}, for x ∈
∏
δ∈∆

Nδ, γ ∈ ∆

When the skeleton (∆,N) is countable:

τ∆ is generated by a complete ultrametric d∆

Thus, if S ⊆
∏

δ∈∆ Nδ is closed, it is completely metrisable

If all Sδ = {x|δ}x∈S are countable, S is also separable

Then endow WrSδ∈∆Hδ with the topology of pointwise convergence with
respect to the relativisation of τ∆ to S .
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The topology of a generalised wreath product

Theorem

Let (∆,N) be a countable skeleton and S ⊆
∏

δ∈∆ Nδ be a closed
separable domain. If every Hδ ⊆ Sym(Nδ) is a closed group, then
WrSδ∈∆Hδ is a closed subgroup of Iso(S , d∆), hence a Polish group.

Examples

Let (∆,N) be a countable skeleton. Then

SLF ,SWsp,SMax are closed; but

in general only SLF is separable �hence Polish
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Homogeneuos spaces

A metric space X is homogeneous if for every x , y ∈ X there exists
φ ∈ Iso(X ) such that φ(x) = y .

De�nition

A L-tree T is homogeneous if for every s, t ∈ T with levT (s) = levT (t)
there exists φ ∈ Aut(T ) such that φ(s) = t.

Theorem

Let G be a topological group. Then the following are equivalent:

1 G ∼= Iso(X ) for some homogeneous, Polish ultrametric space X

2 G ∼= Aut(T ) for some countable, pruned, homogeneous L-tree T

3 G ∼= WrLFδ∈∆Sym(Nδ) when (∆,N) is a countable skeleton with ∆ a
linear order

skip proof
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The proof

The proof uses the following ingredients:

(1) ⇒ (2)

Functor F from Polish, ultrametric spaces to Q-trees restricts to a
functor that preserves homogeneity.

(2) ⇒ (3)

If T is a L-tree, let t ∼ t ′ ⇔ ∃φ ∈ Aut(T ) φ(t) = t ′ and set
∆(T ) = T/∼ , where

lev∆(T )[t] = levT t

[t] ⩽∆(T ) [t
′] ⇔ ∃s ∈ [t] ∃x ′ ∈ [t ′] s ⩽T s ′

If T is homogeneous, then ∆(T ) is a linear order and

Aut(T ) ∼= WrLFδ∈∆(T )Sym(Nδ)

where, for δ = [t],

Nδ = card({t ′ ∈ δ | t ′ = t ∨ split(t, t ′) = levT t})
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The proof

(3) ⇒ (1)

Using the fact that ∆ is a linear order, equip the domain SLF of
WrLFδ∈∆Sym(Nδ) with an ultrametric such that

Iso(SLF ) = WrLFδ∈∆Sym(Nδ)

and SLF turns out to be homogeneous
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Discrete, homogeneous spaces

Theorem

Let G be a topological group. Then the following are equivalent:

1 G ∼= Iso(X ) for some discrete, homogeneous, Polish ultrametric
space X

2 G ∼= Aut(T ) for some countable, homogeneous, pruned L-tree T
where L has a minimum

3 G ∼= WrFinδ∈∆Sym(Nδ) for some countable, linear order ∆

Note. WrFinδ∈∆Sym(Nδ) is Hall's generalised wreath product.
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Orbits with realised distances

Homogeneous spaces are a particular case of spaces whose orbits have
distances realised by points (a trivial particular case: there is just one
orbit).

Recall:

Theorem (Malicki 2024)

If X is a Polish, ultrametric space such that

the distance of any two orbits is realised by a pair of their points

X is locally non-rigid

then Iso(X ) is of the form WrWsp
δ∈∆Sym(Nδ).

Indeed, when the space is not homogeneous, the fact that the distances
of orbits are realised by points gives an important constraint on the
isometry groups.
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Orbits with realised distances

De�nition

Let T be a L-tree.

T is special if the quotient ∆(T ) = T/∼ is a L-tree as well

T satisfy condition (∗) if for every chain C ⊆ T and every t ∈ T
such that [t] ⩽∆(T ) [C ], there exists t ′ ∼ t such that t ′ ⩽T C

Theorem

Let G be a topological group. Then the following are equivalent:

1 G ∼= Iso(X ) for X a Polish ultrametric space whose orbits have
distances realised by points

2 G = Aut(T ) for T a countable, pruned, special L-tree T satisfying
condition (∗)

3 G = WrLFδ∈∆Sym(Nδ) = WrWsp
δ∈∆Sym(Nδ) for ∆ a countable, pruned

L-tree

skip local domains
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Even more generalised wreath products

To cover the general case, a further generalisation of wreath products is
used. Recall the notation

Sδ = {x|δ}x∈S ⊆
∏
γ⩾δ

Nγ

for the restrictions of the elements in the domain of a wreath product.
Recall also that a permutation g : S → S belongs to WrSδ∈∆Hδ i�:

1 x|δ = y|δ ⇔ (g(x))|δ = (g(y))|δ
2 the map ι 7→ (g(xδι ))(δ) is a permutation of Nδ belonging to Hδ

Thus:

every g ∈ WrSδ∈∆Hδ induces permutations gδ : Sδ → Sδ that commute
with restrictions: (gδ(z))|γ = gγ(z|γ )

Sγ Sγ

Sδ Sδ

gγ

restrγδ

gδ

restrγδ
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Even more generalised wreath products

Therefore, given a skeleton (∆,N) and a closed domain S ⊆
∏

δ∈∆ Nδ,

the following is an alternative presentation of WrSδ∈∆Hδ, where
S =

⋃
δ∈∆ Sδ:

Alternative de�nition

The generalised wreath product WrSδ∈∆Hδ is the group of all
permutations g : S → S such that for every δ ∈ ∆, z ∈ Sδ, γ ⩾ δ:

g(Sδ) = Sδ

g(z|γ ) = (g(z))|γ for every γ ⩾ δ

the map ι 7→ (g(zι))(δ) is a permutation of Nδ belonging to Hδ,

where zι(γ) =

{
z(γ) if γ > δ

ι otherwise
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Generalised wreath products over local domains

Fix a skeleton (∆,N). A family of local domains is a subset
S ⊆

⋃
δ∈∆

∏
γ⩾δ Nγ such that, for every δ ∈ ∆:

Sδ = S ∩
∏

γ⩾δ Nδ ̸= ∅
γ ⩾ δ ⇒ Sγ = {z|γ}z∈Sδ

Sδ = {zι | z ∈ Sδ, ι ∈ Nδ}

De�nition

Let (∆,N) be a skeleton. The generalised wreath product over the

family of local domains S is the group WrSδ∈∆Hδ of all permutations
g : S → S satisfying for every δ ∈ ∆, γ ⩾ δ, z ∈ Sδ:

1 g(Sδ) = Sδ
2 g(z|γ ) = (g(z))|γ
3 the map ι 7→ (g(zι))(δ) is a permutation of Nδ belonging to Hδ
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Generalised wreath products over local domains

The group WrSδ∈∆Hδ is endowed with the pointwise convergence
topology, where S is given the discrete topology.

De�nition

The family of local domains S is full if for every δ ∈ ∆, z ∈ Sδ there
exists x ∈

∏
γ∈∆ Nγ such that ∀γ ∈ ∆ x|γ ∈ Sγ .

Theorem

Let G be a topological group. Then the following are equivalent:

G ∼= WrSδ∈∆Hδ for some closed domain S ⊆
∏

δ∈∆ Nδ

G ∼= WrSδ∈∆Hδ for some full family S of local domains

The restrictions
Sδ → Sγ
z 7→ z|γ

can be replaced by other projections:
skip projective
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Projective wreath products

De�nition

Given a skeleton (∆,N), a system of projections is a pair (S, π) such
that:

S ⊆
⋃

δ∈∆

∏
γ⩾δ Nγ , satisfying the property

Sδ = {zι | z ∈ Sδ, ι ∈ Nδ}
π = {πδγ | δ ⩽ γ} is a family of surjective maps πδγ : Sδ → Sγ ,
satisfying the properties

πδγ(z) = πδγ(z
′) ⇔ z|γ = z ′|γ

πγβπδγ = πδβ

In particular, πδδ = id .
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Projective wreath products

De�nition

Let (∆,N) be a skeleton and let (S, π) be a system of projections. The
projective wreath product

WrSπδ∈∆Hδ

is the group of all permutations g ∈ Sym(S) satisfying the properties:

g(Sδ) = Sδ, for every δ ∈ ∆

gπδγ(z) = πδγg(z), for every δ ⩽ γ, z ∈ Sδ
the map ι 7→ (g(zι))(γ) is a permutation of Nδ belonging to Hδ, for
every δ ∈ ∆, z ∈ Sδ

The group WrSπδ∈∆Hδ is again equipped with the pointwise convergence
topology, where S is endowed with the discrete topology.

If S is countable and the groups Hδ are closed, WrSπδ∈∆Hδ is a Polish
group.

Isometry groups of Polish ultrametric spaces



The general theorem

Theorem

Let G be a topological group. Then the following are equivalent:

1 G ∼= Iso(X ) for some Polish ultrametric space X

2 G ∼= Iso(X ) for some perfect, locally compact, Polish ultrametric
space X

3 G ∼= Iso(X ) for some discrete, Polish ultrametric space X

4 G ∼= Aut(T ) for some countable, pruned L-tree T

5 G ∼= WrSδ∈∆Sym(Nδ) for some countable, pruned L-tree ∆ and
countable family S of local domains with S ⊆ SMax

6 G ∼= WrSπδ∈∆Sym(Nδ) for some countable, pruned L-tree ∆ and some
arbitrary system of projections (S, π) with S ⊆ SMax
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Does this provide a good characterisation?

Due to its construction, the proposed characterisation has some desirable
features.

(∗) It is versatile: given a subclass of ultrametric Polish space, one can
often explicitely �nd the corresponding class of automorphisms of
L-trees or of wreath products �some examples have been given in
the talk

(∗∗) It allows explicit computations
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(∗) Some correspondences

Isometry groups of: Automorphism groups Wreath products

all L-trees WrSδ∈∆Sym(Nδ)
S ⊆ SMax

locally compact L-trees WrSδ∈∆Sym(Nδ)
S ⊆ SMax

discrete homogeneous homogeneous L-tree WrFinδ∈∆Sym(Nδ)
L with a minimum ∆ linear

homogeneous homogeneous L-trees WrLFδ∈∆Sym(Nδ)
∆ linear

orbits with realised distances L-trees with property (∗) W LF
δ∈∆Sym(Nδ)
∆ an L-tree
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(∗∗) An example: Polish ultrametric Urysohn spaces

De�nition (Gao, Shao 2011)

Let R be a countable subset of R+. A R-ultrametric Urysohn space is an
ultrametric space X such that:

the distances between distinct elements of X belong to R (that is, X
is a R-ultrametric space)

for every �nite R-ultrametric space B, every A ⊆ B, every isometric
embedding φ : A → X there is an isometric embedding φ∗ : B → X
extending A

Theorem

Let G be a topological group. The following are equivalent.

G ∼= Iso(U) for some Polish ultrametric Urysohn space U

G ∼= WrLFδ∈∆Sym(Nδ) where ∆ is linear and Nδ ∈ {1, ω} for every
δ ∈ ∆

G ∼= WrLFδ∈∆Sym(Nδ) where ∆ is linear and Nδ = ω for every δ ∈ ∆
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Further developments

1 Use the characterisations to compute explicitly the isometry group of
other Polish ultrametric spaces

2 Find similar characterisations for the isometry groups of other
classes of Polish ultrametric spaces

3 Find a way to recognise when two generalised wreath products are
isomorphic

4 Compare the various versions of generalised wreath products
5 The description of the isometry group of a Polish ultrametric space

X using wreath products might help to answer questions like:

When conjugacy on Iso(X ) is Sym(N)-complete?

When Iso(X ) is amenable?

. . .

6 Note however that the most general formulation of Krasner's
problem is still open:

Problem (Krasner 1956)

Characterise (at least, algebraically) the isometry groups of ultrametric
spaces.
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